1
|
Yu X, Li S, Xiao T, Qi X, Fang H, Li L, Bai Y, Liu D, Liu Q, Chen Z, Xue Z, Liang C. Transcriptional regulation and functional validation analysis of the McbZIP1 in Mentha canadensis L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112212. [PMID: 39134122 DOI: 10.1016/j.plantsci.2024.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Monoterpenoids are the main components of Mentha canadensis essential oil. Monoterpene biosynthetic pathways have been explored, but the regulatory mechanisms remain unclarified. We identified an abscisic acid (ABA)-inducible A-type basic leucine zipper (bZIP) transcription factor McbZIP1 that was localized in the nucleus and positively regulates monoterpene synthesis. McbZIP1 was expressed in most M. canadensis tissues and was induced under ABA, mannitol, and NaCl treatments. McbZIP1 had transcriptional activity in yeast and the N terminus (amino acids 75-117) was sufficient for transactivation. Yeast one-hybrid and Dual-Luciferase assays showed that McbZIP1 binds to ABA-responsive elements in the promoter region of limonene synthase gene. Yeast two-hybrid and biomolecular fluorescence complementation assays revealed that McbZIP1 interacts with McSnRK2.4. Overexpression of McbZIP1 in peppermint resulted in dramatically up-regulated monoterpene biosynthesis gene levels and increased menthol contents. The results support a transcriptional regulation mechanism in which McbZIP1 serves as a positive regulator of menthol biogenesis. These findings contribute to the molecular mechanism of monoterpenoid biogenesis, which may have uses in genetic engineering and menthol production.
Collapse
Affiliation(s)
- Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Shumin Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Taolan Xiao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Qun Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhichao Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
3
|
Strieder MM, Bragagnolo FS, Mendiola JA, Rostagno MA, Ibáñez E. Screening and Characterization of 1,8-Cineole-Based Solvents as an Alternative to Hexane for Obtaining Nonpolar Compounds from Plant-Based Milk Coproducts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:16052-16063. [PMID: 39483209 PMCID: PMC11524417 DOI: 10.1021/acssuschemeng.4c05897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The design of new hydrophobic solvents is essential for replacing the toxic hexane for extracting nonpolar compounds such as fatty acids. On the other hand, the full use of plant matrices seeking to obtain new food and pharmaceutical products from their coproducts has also been the focus of sustainable processes. This study proposed new solvents for replacing hexane to extract fatty acids and hydrophobic bioactive compounds from coproducts obtained from almond- and peanut-based milk processing. The COSMO-RS method was used to select terpene-based mixtures to substitute hexane. Experimentally, four liquid solvents were formed from 1:2 tetradecanol/1,8-cineole (TE/EU), 1:2 camphor/1,8-cineole (CA/EU), 1:1 oleic acid/1,8-cineole (OL/EU), and 1:1 menthol/1,8-cineole (ME/EU). DSC analyses indicated the reduction of the CA/EU, OL/EU, and ME/EU melting points concerning their components. However, the melting point values predicted by the COSMO for obtaining eutectic mixtures differed. CA/EU was the only mixture with a melting point lower than the COSMO-RS-predicted one. In contrast, the FTIR spectra did not provide a clear visualization of the hydrogen bond formation between camphor and 1,8-cineole. This could be due to the formation of weak hydrogen bonds, a phenomenon observed in other studies. Nevertheless, these solvents have the advantage of low viscosity, a promising feature that likely facilitated mass transfer in the extraction of hydrophobic compounds from almond and peanut coproducts. ME/EU provided the same global extraction yield as hexane and higher phytosterol extraction from almond coproducts. On the other hand, CA/EU provided the same global yield and squalene content as hexane from peanut coproducts. The extracts can be directly used in food and pharmaceutical applications since the solvents are usually part of the formulations. However, DSC and TGA-DTA analyses indicated possible ways to separate the solvents.
Collapse
Affiliation(s)
- Monique M. Strieder
- Foodomics
Laboratory, Instituto de Investigación
en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid 28049, Spain
- Multidisciplinary
Laboratory of Food and Health (LabMAS), School of Applied Sciences
(FCA), Universidade Estadual de Campinas, Campinas, São Paulo 13484-350, Brazil
| | - Felipe S. Bragagnolo
- Multidisciplinary
Laboratory of Food and Health (LabMAS), School of Applied Sciences
(FCA), Universidade Estadual de Campinas, Campinas, São Paulo 13484-350, Brazil
| | - Jose A. Mendiola
- Foodomics
Laboratory, Instituto de Investigación
en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid 28049, Spain
| | - Maurício A. Rostagno
- Multidisciplinary
Laboratory of Food and Health (LabMAS), School of Applied Sciences
(FCA), Universidade Estadual de Campinas, Campinas, São Paulo 13484-350, Brazil
| | - Elena Ibáñez
- Foodomics
Laboratory, Instituto de Investigación
en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid 28049, Spain
| |
Collapse
|
4
|
Mao H, Zhou Y, Xu Z, Zhao Y. Enhanced enantioselective separation of racemic menthol via reverse-phase high-performance liquid chromatography: Method development and computational insights for pre-screening. Talanta 2024; 282:127062. [PMID: 39426195 DOI: 10.1016/j.talanta.2024.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
A robust and efficient enantioselective separation of racemic menthol was achieved on a standard C18 column with reverse-phase high-performance liquid chromatography (RP-HPLC) and UV detector. (R)-α-hydroxy-4-methylbenzeneacetic acid was utilized as the pre-column derivatization reagent. The impact of mobile phase composition on diastereomer selectivity was thoroughly investigated, resulting in a high resolution of 2.11 under optimized conditions. The method was rigorously validated for linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). Notably, a separation pre-screening mechanism (SPM) and a prediction model was developed based on density functional theory (DFT) studies. This model elucidated the relationship between molecular polarity differences (△MPI) and chromatographic behavior, facilitating the interpretation and prediction of racemic menthol resolution with various chiral derivatization reagents. The present work not only presents an efficient and economical approach for menthol enantiomeric separation, but also offers valuable insights for the innovative design and advancement of chromatographic methodologies for a wide array of chiral enantiomers.
Collapse
Affiliation(s)
- Haifang Mao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yucheng Zhou
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Zhengyang Xu
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yun Zhao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China; Shanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232, China.
| |
Collapse
|
5
|
Kaboutari M, Asle-Rousta M, Mahmazi S. Protective effect of menthol against thioacetamide-induced hepatic encephalopathy by suppressing oxidative stress and inflammation, augmenting expression of BDNF and α7-nACh receptor, and improving spatial memory. Eur J Pharmacol 2024; 981:176916. [PMID: 39154831 DOI: 10.1016/j.ejphar.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that can occur in people with acute or chronic liver disease. Here, we investigated the effects of menthol, a natural monoterpene, on HE induced by thioacetamide (TA) in male Wistar rats. The rats received 200 mg/kg of TA twice a week for four weeks and were administered 10 mg/kg of menthol intraperitoneally daily for the same period. The results showed that menthol treatment reduced oxidative stress and inflammation in the livers and hippocampi of the rats that received TA. It also lowered the levels of ammonium and liver enzymes AST, ALT, ALP, and GGT in the serum of these animals and prevented liver histopathological damage. In addition, the expression and activity of acetylcholinesterase in the hippocampus of HE model rats were decreased by menthol. Likewise, this monoterpene reduced the expression of TLR4, MyD88, and NF-κB in the hippocampus while increasing the expression of BDNF and α7-nACh receptor. Menthol also reduced neuronal death in the hippocampal cornu ammonis-1 and dentate gyrus regions and reduced astrocyte swelling, which led to improved learning and spatial memory in rats with HE. In conclusion, the study suggests that menthol may have strong protective effects on the liver and brain, making it a potential treatment for HE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Masoud Kaboutari
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
6
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
7
|
Serra J, Aguilar A, Barba E, Ciriza de Los Ríos C, Garcia Pravia L, Martínez V, Serrano Falcón B. Asociación Española de Neurogastroenterología y Motilidad (ASENEM) updated review on the management of functional abdominal pain. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:888-900. [PMID: 38677507 DOI: 10.1016/j.gastrohep.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 04/29/2024]
Abstract
Functional abdominal pain is a disorder in which central and peripheral sensitization processes converge, leading to hypersensitivity and allodynia. Differential diagnosis is made with organic digestive, renal, gynecological, endocrine, or neurological diseases. Treatment should be individualized for each patient. In cases of debilitating pain, therapy combining drugs with different mechanisms of action can be initiated, while in less severe cases, therapy with a progressive introduction of drugs based on clinical response is advised. The first line includes general lifestyle advice and antispasmodic substances, like peppermint oil, anticholinergic/antimuscarinic, and calcium channels antagonists. In the second line of treatment, neuromodulating agents are added. Finally, when these measures fail, third-line treatments such as gabapentine and atypical antipsychotics are considered. Psychological interventions should be considered if specialized therapists are available to manage these disorders.
Collapse
Affiliation(s)
- Jordi Serra
- Unidad de Motilidad Digestiva, Hospital Universitario Vall d'Hebrón, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), España.
| | - Ariadna Aguilar
- Unidad de Motilidad Digestiva, Hospital Universitario Vall d'Hebrón, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), España
| | - Elizabeth Barba
- Unidad de Motilidad Digestiva, Departamento de Gastroenterología, Hospital Clínic, Barcelona, España
| | - Constanza Ciriza de Los Ríos
- Servicio de Digestivo, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, España
| | - Laura Garcia Pravia
- Servicio de Digestivo, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, España
| | - Vicente Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), España; Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, España
| | | |
Collapse
|
8
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Takasawa S, Kimura K, Miyanaga M, Uemura T, Hachisu M, Miyagawa S, Ramadan A, Sukegawa S, Kobayashi M, Kimura S, Matsui K, Shiroishi M, Terashita K, Nishiyama C, Yashiro T, Nagata K, Higami Y, Arimura GI. The powerful potential of amino acid menthyl esters for anti-inflammatory and anti-obesity therapies. Immunology 2024; 173:76-92. [PMID: 38720202 DOI: 10.1111/imm.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 08/16/2024] Open
Abstract
Our newly developed menthyl esters of valine and isoleucine exhibit anti-inflammatory properties beyond those of the well-known menthol in macrophages stimulated by lipopolysaccharide (LPS) and in a mouse model of colitis induced by sodium dextran sulfate. Unlike menthol, which acts primarily through the cold-sensitive TRPM8 channel, these menthyl esters displayed unique mechanisms that operate independently of this receptor. They readily penetrated target cells and efficiently suppressed LPS-stimulated tumour necrosis factor-alpha (Tnf) expression mediated by liver X receptor (LXR), a key nuclear receptor that regulates intracellular cholesterol and lipid balance. The menthyl esters showed affinity for LXR and enhanced the transcriptional activity through their non-competitive and potentially synergistic agonistic effect. This effect can be attributed to the crucial involvement of SCD1, an enzyme regulated by LXR, which is central to lipid metabolism and plays a key role in the anti-inflammatory response. In addition, we discovered that the menthyl esters showed remarkable efficacy in suppressing adipogenesis in 3T3-L1 adipocytes at the mitotic clonal expansion stage in an LXR-independent manner as well as in mice subjected to diet-induced obesity. These multiple capabilities of our compounds establish them as formidable allies in the fight against inflammation and obesity, paving the way for a range of potential therapeutic applications.
Collapse
Affiliation(s)
- Seidai Takasawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kosuke Kimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masato Miyanaga
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Abdelaziz Ramadan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Satoru Sukegawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry, Yamaguchi University, Yamaguchi, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kaori Terashita
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yoshikazu Higami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
10
|
Dolan S, McDonald J, Claus E, Gahl RF, Sun Y, Farrar J, Meredith S. A Method for Amending Loose Smokeless Tobacco With Menthol for Administration in Clinical Studies. Nicotine Tob Res 2024; 26:1244-1247. [PMID: 38513001 DOI: 10.1093/ntr/ntae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Menthol has long been incorporated as a flavor additive in tobacco products and can impact use behaviors. Despite its inclusion in some of the most popular flavored smokeless tobacco (ST) products (eg, "mint" flavored products), few studies have systematically investigated the impact of menthol on ST use behaviors in prospective empirical studies. Rigorous investigation of ST menthol content on behavioral and physiological outcomes requires ST products with stable and precise levels of menthol; however, commercial product composition variability prevents product comparisons when evaluating the effects of systematic changes in menthol content on clinical outcomes. AIMS AND METHODS We developed amended loose moist snuff ST products by treating commercially available, unflavored loose ST with an ethanol-based menthol spiking solution or a nonmentholated ethanol control solution to develop test products with different levels of menthol: 0, 1, 3, and 5 mg menthol/g tobacco. We evaluated the stability of menthol content in these products over 24 months and evaluated menthol exposure associated with the products through pharmacokinetic analysis of plasma menthol-glucuronide in human participants (n = 22). RESULTS Menthol content of the amended products was on target, homogenous, and stable for up to 24 months. Menthol exposure (menthol-glucuronide Cmax and AUC) significantly differed between each test product. CONCLUSIONS These data suggest that stable products with nonoverlapping menthol content can be developed using a menthol spiking solution and can be subsequently administered for clinical assessments of mentholated loose ST. IMPLICATIONS The results from this study suggest that a menthol spiking solution can be used to mentholate unflavored, loose ST to a target menthol content. With this method, the ST menthol content was stable for at least 24 months, and the products exposed users to menthol in a dose-dependent manner. This method yielded loose ST products with precise, stable levels of menthol to allow systematic evaluation of ST menthol content on clinical outcomes. The method may have applications for systematically evaluating changes in other tobacco product ingredients.
Collapse
Affiliation(s)
- Sean Dolan
- Food and Drug Administration, Center for Tobacco Products, Office of Science, Silver Spring, MD, USA
| | - Jacob McDonald
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Eric Claus
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- The Mind Research Network, Albuquerque, New Mexico, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Robert F Gahl
- Division of Extramural Activities, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Sun
- Food and Drug Administration, Center for Tobacco Products, Office of Science, Silver Spring, MD, USA
| | - Jabari Farrar
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven Meredith
- Food and Drug Administration, Center for Tobacco Products, Office of Science, Silver Spring, MD, USA
| |
Collapse
|
11
|
Wang J, Zhang CS, Zhang AL, Changli Xue C, Lu C. Chinese herbal medicine bath therapy for psoriasis vulgaris using topical calcipotriol as the comparator: A systematic review with meta-analysis and association rule analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118166. [PMID: 38621466 DOI: 10.1016/j.jep.2024.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory skin disease. Vitamin D analogues are the first-line topical agents for the long-term management of psoriasis. Chinese herbal medicine (CHM) bath therapy is commonly employed for psoriasis. However, the effects and safety of CHM bath therapy for psoriasis vulgaris, using topical calcipotriol as the comparator, remain inconclusive. Furthermore, the combination of herbs, a distinctive feature of CHM, is essential for its therapeutic effects due to the individual and synergistic properties of the herbs involved. AIM OF THE STUDY The review was conducted to evaluate the effectiveness and safety of CHM bath therapy for psoriasis vulgaris, using calcipotriol as the comparator. Potential herbs and herb combinations of CHM bath therapy were also explored for further drug discovery. MATERIALS AND METHODS Nine databases were searched from inception until March 05, 2024. Randomised controlled trials (RCTs) investigating CHM bath therapy, using calcipotriol as the comparator, were included. Statistical analyses were performed using RevMan 5.4, Stata 12.0 and SPSS Clementine 12.0 software. The evidence certainty for outcomes was assessed using the approach proposed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group. Moreover, association rule analysis on herbs identified in the systematic review was conducted to explore the potential herbs and herb combinations. RESULTS A total of 17 RCTs involving 1,379 participants were included in this systematic review. The findings of this review revealed that: 1) CHM bath therapy produced comparable effects to calcipotriol in reducing Psoriasis Area and Severity Index (PASI), Psoriasis Scalp Severity Index (PSSI), and itch visual analogue scale (VAS) at the end of the treatment phase; as well as exhibited a superior long-term effect than calcipotriol through decreasing relapse rates at the end of the follow-up phase; 2) CHM bath therapy showed an additional benefit when combined with calcipotriol in managing psoriasis vulgaris at the end of the treatment phase, in terms of PASI, PSSI, itch VAS, IL-17, IL-23, CD3+ and CD4+ T cells. The certainty of the evidence was rated as 'very low', 'low' or 'moderate' based on the GRADE assessment, considering some concerns or high risk of bias of included studies, substantial heterogeneity, and existing publication bias of some outcomes. Additionally, the proportions of participants reporting adverse events were similar in both groups. Association rule analysis of all included herbs identified 23 herb combinations including Prunus persica (L.) Batsch and Carthamus tinctorius L., as well as 11 frequently used herbs, such as Kochia scoparia (L.) Schrad., Dictamnus dasycarpus Turcz. And Sophora flavescens Ait. CONCLUSIONS The effects of CHM bath therapy were comparable with those of topical calcipotriol but demonstrated a longer-lasting effect. Combining CHM bath therapy with calcipotriol also provided an additional benefit for adult psoriasis vulgaris. However, the certainty of the evidence was downgraded due to the methodological limitations of included studies. To confirm the findings of this review, future investigations should involve double-blinded, placebo-controlled RCTs. Importantly, it appears worthwhile to consider further research for drug development utilising the identified herbs or herb combinations.
Collapse
Affiliation(s)
- Junyue Wang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Burke BE, Baillie JE. Randomized placebo controlled trial of phytoterpenes in DMSO for the treatment of plantar fasciitis. Sci Rep 2024; 14:17621. [PMID: 39085322 PMCID: PMC11291970 DOI: 10.1038/s41598-024-65979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Plantar fasciitis is the most common cause of heel pain in adults with an overall prevalence of 0.85% in the adult population of the US, affecting over 2 million adults annually. Most current treatment modalities are not supported by sufficient evidence to recommend one particular strategy over another. Topical application of analgesics for soft tissue pain is well established, however the plantar fascia presents challenges in this regard due to thick skin, fibrotic tissue, and an often thickened fat pad. Sixty-two patients with plantar fasciitis were randomized to a placebo controlled trial testing the efficacy of a topical solution of plant terpenes containing camphor, menthol, eugenol, eucalyptol, and vanillin. Skin permeation of the mixture was enhanced with 15% dimethylsulfoxide (DMSO), 1% limonene, and rosemary oil. One ml of solution was applied topically twice daily, and pain scores evaluated on Day 0, Day 1, Day 3, and Day 10. Using the validated foot function index 78.1% of patients reported an 85% or greater decrease in their total pain score by day 10 while placebo treatment was without effect (One Way ANOVA, P < 0.01). This study adapts the treatment modality of topical analgesia for soft tissue pain to a problematic area of the body and shows therapeutic promise.ClinicalTrials.gov Identifier: NCT05467631.
Collapse
Affiliation(s)
- Briant E Burke
- Institute for Biomedical Sciences, 967 East Parkcenter Blvd, Ste 205, Boise, ID, 83706, USA.
| | - Jon E Baillie
- Institute for Biomedical Sciences, 967 East Parkcenter Blvd, Ste 205, Boise, ID, 83706, USA
| |
Collapse
|
13
|
Altay Benetti A, Thwin MT, Suhaimi A, Liang RST, Ng LFP, Lum FM, Benetti C. Development of Proniosome Gel Formulation for CHIKV Infection. Pharmaceutics 2024; 16:994. [PMID: 39204339 PMCID: PMC11360264 DOI: 10.3390/pharmaceutics16080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Given the increasing aging population and the rising prevalence of musculoskeletal diseases due to obesity and injury, urgent research is needed to formulate new treatment alternatives, as current options remain inadequate. Viruses can exacerbate arthritis and worsen symptoms in patients with pre-existing osteoarthritis. Over the past decade, the chikungunya virus (CHIKV) has emerged as a significant public health concern, especially in Asia and South America. Exploring natural products, such as berberine, has shown promise due to its anticatabolic, antioxidative, and anti-inflammatory effects. However, berberine's low stability and bioavailability limit its efficacy. We hypothesized that encapsulating berberine into a proniosome gel, known for its ease of preparation and stability, could enhance its bioavailability and efficacy when applied topically, potentially treating CHIKV infection. Our investigation focused on how varying berberine loads and selected excipients in the proniosome gel influenced its physical properties, stability, and skin permeability. We also examined the biological half-life of berberine in plasma upon topical administration in mice to assess the potential for controlled and sustained drug release. Additionally, we analyzed the antioxidant stress activity and cell viability of HaCaT keratinocytes and developed a lipopolysaccharide-stimulated cell culture model to evaluate anti-inflammatory effects using pro-inflammatory cytokines. Overall, the research aims to transform the treatment landscape for arthritis by leveraging berberine's therapeutic potential.
Collapse
Affiliation(s)
- Ayça Altay Benetti
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Ma Thinzar Thwin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Ahmad Suhaimi
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Ryan Sia Tze Liang
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Lisa Fong-Poh Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Camillo Benetti
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| |
Collapse
|
14
|
Wu Q, Li HP, Liu Y, Shou C, Chen Q, Xu JH, Li CX. Discovery and Engineering of a Bacterial (+)-Pulegone Reductase for Efficient (-)-Menthol Biosynthesis. CHEMSUSCHEM 2024:e202400704. [PMID: 38860330 DOI: 10.1002/cssc.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
15
|
Wang L, Zhao Z, Li X, Zhao X, Li S, Li H. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials. Int J Biol Macromol 2024; 271:132698. [PMID: 38824104 DOI: 10.1016/j.ijbiomac.2024.132698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Ecofriendly fabrics with antibacterial and anti-adhesion properties have been attracted an increasing attention in recent years. Herein, natural menthol modified polyacrylate (PMCA) antibacterial adhesion agent was synthesized by esterification and polymerisation while natural pterostilbene-grafted-chitosan (PGC) antibacterial agent was prepared through Mannich reaction. The antibacterial and anti-adhesion cotton fabric was fabricated through durable PMCA dip finishing and then layer-by-layer self-assembly of PGC. The results showed that the antibacterial adhesion rates and antibacterial rates of the dual-function cotton fabric against Staphylococcus aureus and Escherichia coli reached up to 99.9 %. Its antibacterial adhesion rates improved by 36.1 % and 40.1 % in comparison with those of cotton fabric treated by menthol alone. Meanwhile against S. aureus, the dual-function cotton fabrics improved the antibacterial rates by 56.7 % and 36.4 %, respectively, from those of chitosan- and pterostilbene-treated fabrics. Against E. coli, the improvements were 89.4 % and 24.8 %, respectively. After 20 household washings, the dual-function cotton fabric maintained >80 % of its original anti-adhesion and antibacterial rates against both species. The dual-function cotton fabric also possessed safe and excellent wearability.
Collapse
Affiliation(s)
- Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314500, PR China.
| | - Zhiqiang Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangyu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaomin Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuokang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huijun Li
- Hangzhou Huasi Xiasha Textile Technology Co., LTD., Hangzhou 311199, PR China
| |
Collapse
|
16
|
Ji Y, Han J, Moses M, Wang D, Wu L, Xue W, Sun L, Xu B, Chen C, Xiang Y, Huang X. The antimicrobial property of JY-1, a complex mixture of Traditional Chinese Medicine, is linked to it abilities to suppress biofilm formation and disrupt membrane permeability. Microb Pathog 2024; 189:106573. [PMID: 38354989 DOI: 10.1016/j.micpath.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.
Collapse
Affiliation(s)
- Ying Ji
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ji Han
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Munika Moses
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Laboratory of Microbiology and Parasitology of Guizhou & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Xue
- Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Lu Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Rydel-Ciszek K. DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes. Molecules 2024; 29:1579. [PMID: 38611858 PMCID: PMC11013946 DOI: 10.3390/molecules29071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Nowadays, the effective processing of natural monoterpenes that constitute renewable biomass found in post-production waste into products that are starting materials for the synthesis of valuable compounds is a way to ensure independence from non-renewable fossil fuels and can contribute to reducing global carbon dioxide emissions. The presented research aims to determine, based on DFT calculations, the activity and reactivity of limonene, an organic substrate used in previous preparative analyses, in comparison to selected monoterpenes such as cymene, pinene, thymol, and menthol. The influence of the solvent model was also checked, and the bonds most susceptible to reaction were determined in the examined compounds. With regard to EHOMO, it was found that limonene reacts more easily than cymene or menthol but with more difficultly than thymol and pienene. The analysis of the global chemical reactivity descriptors "locates" the reactivity of limonene in the middle of the studied monoterpenes. It was observed that, among the tested compounds, the most reactive compound is thymol, while the least reactive is menthol. The demonstrated results can be a reference point for experimental work carried out using the discussed compounds, to focus research on those with the highest reactivity.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
18
|
Yang H, Wang C, Zhou G, Zhang Y, He T, Yang L, Wu Y, Wang Z, Tang X, Chen G, Liu Z, Tang H, Zhou H, Kang X, Zhang S, Leng L, Chen S, Song C. A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens 'Variegata'. HORTICULTURE RESEARCH 2024; 11:uhae022. [PMID: 38469381 PMCID: PMC10925848 DOI: 10.1093/hr/uhae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
Mentha is a commonly used spice worldwide, which possesses medicinal properties and fragrance. These characteristics are conferred, at least partially, by essential oils such as menthol. In this study, a gap-free assembly with a genome size of 414.3 Mb and 31,251 coding genes was obtained for Mentha suaveolens 'Variegata'. Based on its high heterozygosity (1.5%), two complete haplotypic assemblies were resolved, with genome sizes of 401.9 and 405.7 Mb, respectively. The telomeres and centromeres of each haplotype were almost fully annotated. In addition, we detected a total of 41,135 structural variations. Enrichment analysis demonstrated that genes involved in terpenoid biosynthesis were affected by these structural variations. Analysis of volatile metabolites showed that M. suaveolens mainly produces piperitenone oxide rather than menthol. We identified three genes in the M. suaveolens genome which encode isopiperitenone reductase (ISPR), a key rate-limiting enzyme in menthol biosynthesis. However, the transcription levels of ISPR were low. Given that other terpenoid biosynthesis genes were expressed, M. suaveolens ISPRs may account for the accumulation of piperitenone oxide in this species. The findings of this study may provide a valuable resource for improving the detection rate and accuracy of genetic variants, thereby enhancing our understanding of their impact on gene function and expression. Moreover, our haplotype-resolved gap-free genome assembly offers novel insights into molecular marker-assisted breeding of Mentha.
Collapse
Affiliation(s)
- Hanting Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guanru Zhou
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lulu Yang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Ya Wu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhengnan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Gang Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanyu Tang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Hanlin Zhou
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xumei Kang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
19
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
20
|
Ma M, Li M, Wu Z, Liang X, Zheng Q, Li D, Wang G, An T. The microbial biosynthesis of noncanonical terpenoids. Appl Microbiol Biotechnol 2024; 108:226. [PMID: 38381229 PMCID: PMC10881772 DOI: 10.1007/s00253-024-13048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.
Collapse
Affiliation(s)
- Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
21
|
Wang C, Yu X, Wu L, Feng C, Ye J, Wu F. A contrast of emerging contaminants rac- and l-menthol toxicities to Microcystis aeruginosa through biochemical, physiological, and morphological investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169508. [PMID: 38154634 DOI: 10.1016/j.scitotenv.2023.169508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Fragrances rac- and l-menthol extracted from peppermint are widely used and considered as emerging contaminants recently, which are persistent in the environment. Menthol has always been considered as a safe chemical for humans, but its potential adverse ecological effects on aquatic organisms and the toxic mechanisms have not yet been fully understood. The present study aims to investigate the physiological response of Microcystis aeruginosa after exposure to the two menthol isomers, and to explore the toxic mechanisms and ecological risks of these two chemicals. Results showed that rac-menthol exhibited a hormesis effect on the cell growth, chlorophyll a and protein contents; while l-menthol showed an inhibition effect. Adenosine triphosphate (ATP) content increased significantly at day 3 and then decreased markedly at day 6 after exposure to the two chemicals. Compared with rac-menthol, l-menthol can cause damage to the antioxidant system and plasmalemma more severely, promote the production and release of microcystins-LR (MC-LR) more dramatically, upregulate the expression of MC-transportation-related gene mcyH, and induce higher apoptosis rates. Overall results revealed that the toxic effects of l-menthol on cyanobacteria were significantly greater than those of rac-menthol. The significant increase in the malondialdehyde (MDA) content and the ultrastructural characteristics of the cells indicated that the plasma membranes were damaged. Thus, further attention should be paid to the scientific use, ecological and environmental risk assessment of chiral menthol. This study will also provide a scientific basis for future water quality criteria establishment on emerging contaminants such as fragrances.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinyue Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA 90013, United States
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
22
|
Baesso GMM, Venâncio AV, Barca LCV, Peppi PF, Faria CA, Machado JPC, Murgas LDS, Bicudo ÁJDA, Lima EMMD, Barreto-Vianna ARDC. Exploring the effects of eugenol, menthol, and lidocaine as anesthetics on zebrafish glucose homeostasis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109784. [PMID: 37935341 DOI: 10.1016/j.cbpc.2023.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Zebrafish (Danio rerio) are widely employed as an experimental model in various scientific fields. The investigation of glucose metabolism dysfunctions has gained recent significant prominence. Considering that certain anesthetics may impact glycemic levels, it is imperative to carefully select an anesthetic that does not induce such side effects, thereby mitigating potential adverse influences on research outcomes. In this sense, this study aimed to evaluate potential glucose alterations and induction and recovery times resulting from the use of eugenol, menthol and lidocaine as anesthetics in zebrafish. A total of 150 adult male and female zebrafish were divided into ten groups, comprising a control group euthanized by rapid chilling, and three groups anesthetized with low (40 mg/L eugenol, 60 mg/L menthol, 100 mg/L lidocaine), intermediate (60 mg/L eugenol, 90 mg/L menthol, 225 mg/L lidocaine), and high (80 mg/L eugenol, 120 mg/L menthol, 350 mg/L lidocaine) anesthetic concentrations. Glucose levels and induction and recovery times were assessed. The findings reveal that eugenol and menthol did not cause glucose level alterations at any of the investigated concentrations, while lidocaine caused a non-concentration-dependent hyperglycemia. Eugenol and menthol also exhibited similar recovery times at different concentrations, while lidocaine recovery times were concentration-dependent. This study, therefore, concludes that eugenol and menthol are safe and satisfactory anesthetics for use in zebrafish research involving glucose analyses, while lidocaine use can cause biases due to altered glucose levels and safety concerns. Researchers should, therefore, carefully consider anesthetic selection to ensure reliable results in zebrafish assessments.
Collapse
|
23
|
Brock BA, Mir H, Flenaugh EL, Oprea-Ilies G, Singh R, Singh S. Social and Biological Determinants in Lung Cancer Disparity. Cancers (Basel) 2024; 16:612. [PMID: 38339362 PMCID: PMC10854636 DOI: 10.3390/cancers16030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.
Collapse
Affiliation(s)
- Briana A. Brock
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Eric L. Flenaugh
- Division of Pulmonary Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Rosales AM, Walters MJ, McGlynn ML, Collins CW, Slivka DR. Influence of topical menthol gel on thermoregulation and perception while walking in the heat. Eur J Appl Physiol 2024; 124:317-327. [PMID: 37505231 DOI: 10.1007/s00421-023-05279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Menthol is known to elicit opposing thermoregulatory and perceptual alterations during intense exercise. The current purpose was to determine the thermoregulatory and perceptual effects of topical menthol application prior to walking in the heat. METHODS Twelve participants walked (1.6 m s-1, 5% grade) for 30 min in the heat (38 °C, 60% relative humidity) with either a 4% menthol or control gel on the upper (shoulder to wrist) and lower (mid-thigh to ankle) limbs. Skin blood flow (SkBF), sweat (rate, composition), skin conductivity, heart rate, temperature (skin, core), and thermal perception were measured prior to and during exercise. RESULTS Skin conductivity expressed as time to 10, 20, 30, and 40 µS was delayed due to menthol (559 ± 251, 770 ± 292, 1109 ± 301, 1299 ± 335 s, respectively) compared to the control (515 ± 260, 735 ± 256, 935 ± 300, 1148 ± 298 s, respectively, p = 0.048). Sweat rate relative to body surface area was lower due to menthol (0.55 ± 0.16 L h-1 m(2)-1) than the control (0.64 ± 0.16 L h-1 m(2)-1, p = 0.049). Core temperature did not differ at baseline between the menthol (37.4 ± 0.3 °C) and control (37.3 ± 0.4 °C, p = 0.298) but was higher at 10, 20, and 30 min due to menthol (37.5 ± 0.3, 37.7 ± 0.2, 38.1 ± 0.3 °C, respectively) compared to the control (37.3 ± 0.4, 37.4 ± 0.3, 37.7 ± 0.3 °C, respectively, p < 0.05). The largest rise in core temperature from baseline was at 30 min during menthol (0.7 ± 0.3 °C) compared to the control (0.4 ± 0.2 °C, p = 0.004). Overall, the menthol treatment was perceived cooler, reaching "slightly warm" whereas the control treatment reached "warm" (p < 0.001). CONCLUSION Menthol application to the limbs impairs whole-body thermoregulation while walking in the heat despite perceiving the environment as cooler.
Collapse
Affiliation(s)
- Alejandro M Rosales
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
- School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Matthias J Walters
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA.
- School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
| |
Collapse
|
25
|
Arumugam M, Shanmugavel B, Sellppan M, Pavadai P. In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 - inhibitors using molecular dynamic approach. J Biomol Struct Dyn 2024; 42:1072-1078. [PMID: 37139540 DOI: 10.1080/07391102.2023.2201848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Coronavirus, an extremely contagious infections disease had a harmful effect on the world's population. It is a family of enveloped, single-stranded, positive-strand RNA viruses of Nidovirales order belongs to coroviridae family. At present, worldwide several lakhs of deaths and several billions of infections have been reported. Hence, the focus of the present study was to assess the SARS-CoV-2 enzyme inhibitory potential of certain commercially available terpenoids using Lamarckian genetic algorithm as a working principle and molecular dynamic studies was also performed. AutoDock 4.2 software was used to perform the computational docking calculations of terpenoids against SARS-CoV-2 enzyme. The terpenoids such as, Andrographolide, Betulonic acid, Erythrodiol, Friedelin, Mimuscopic acid, Moronic acid, and Retinol were selected based on the drug likeness properties. Remdesivir a well-known anti-viral drug was selected as the standard drug. Molecular dynamic simulation studies were carried using Desmond module of Schrodinger Suite. In the current study we observed that, Friedelin was exhibited excellent SARS-CoV-2 enzyme inhibitory potential than the standard drug and other selected terpenoids. Friedelin and the standard Remdesivir was undergone the molecular dynamic studies and Friedelin showed a good number of hydrogen bonds over the simulation time of 100 ns. Based on the in silico computational evaluation, it can be concluded that Friedelin could be worthwhile terpenoid against SARS-CoV-2 spike protein. A further study on Friedelin is required to develop a potential chemical entity against the management of COVID disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madeswaran Arumugam
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Brahmasundari Shanmugavel
- Department of Pharmacology, Sri Ramakrishna Institute of Paramedical Sciences, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Mohan Sellppan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
26
|
Villegas-Serna T, Wilson LJ, Curtis C. Topical application of L-Menthol - Physiological and genetic considerations to assist in developing female athlete research: A narrative review. J Therm Biol 2024; 119:103758. [PMID: 38070272 DOI: 10.1016/j.jtherbio.2023.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.
Collapse
Affiliation(s)
- Tatiana Villegas-Serna
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, NW4 4BT, United Kingdom
| | - Christopher Curtis
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain.
| |
Collapse
|
27
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
28
|
Zlotnikov ID, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations. Pharmaceuticals (Basel) 2023; 16:1651. [PMID: 38139778 PMCID: PMC10747112 DOI: 10.3390/ph16121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1-10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15-20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
29
|
Griffiths A, Boyall SL, Müller P, Harrington JP, Sobolewska AM, Reynolds WR, Bourne RA, Wu K, Collins SM, Muldowney M, Chamberlain TW. MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports. NANOSCALE 2023; 15:17910-17921. [PMID: 37901966 DOI: 10.1039/d3nr03634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal-organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis.
Collapse
Affiliation(s)
- Anthony Griffiths
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, UK.
| | - Sarah L Boyall
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, UK.
| | - Pia Müller
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, UK.
| | - John P Harrington
- Leeds Electron Microscopy and Spectroscopy Centre, LEMAS, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna M Sobolewska
- Sterling Pharma Solutions Limited, Dudley, Cramlington, Northumberland, NE23 7QG, UK
| | - William R Reynolds
- Sterling Pharma Solutions Limited, Dudley, Cramlington, Northumberland, NE23 7QG, UK
| | - Richard A Bourne
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, UK.
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Kejun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Muldowney
- Sterling Pharma Solutions Limited, Dudley, Cramlington, Northumberland, NE23 7QG, UK
| | - Thomas W Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, UK.
| |
Collapse
|
30
|
Camaioni L, Ustyanowski B, Buisine M, Lambert D, Sendid B, Billamboz M, Jawhara S. Natural Compounds with Antifungal Properties against Candida albicans and Identification of Hinokitiol as a Promising Antifungal Drug. Antibiotics (Basel) 2023; 12:1603. [PMID: 37998805 PMCID: PMC10668714 DOI: 10.3390/antibiotics12111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Candida albicans is an opportunistic yeast that causes most fungal infections. C. albicans has become increasingly resistant to antifungal drugs over the past decade. Our study focused on the identification of pure natural compounds for the development of antifungal medicines. A total of 15 natural compounds from different chemical families (cinnamic derivatives, aromatic phenols, mono- and sesquiterpenols, and unclassified compounds) were screened in this study. Among these groups, hinokitiol (Hi), a natural monoterpenoid extracted from the wood of the cypress family, showed excellent anti-C. albicans activity, with a MIC value of 8.21 µg/mL. Hi was selected from this panel for further investigation to assess its antifungal and anti-inflammatory properties. Hi exhibited significant antifungal activity against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. It also reduced biofilm formation and hyphal growth. Treatment with Hi protected Caenorhabditis elegans against infection with C. albicans and enhanced the expression of antimicrobial genes in worms infected with C. albicans. Aside from its antifungal activities against C. albicans, Hi challenge attenuated the LPS-induced expression of pro-inflammatory cytokines (IL-6, IL-1β, and CCL-2) in macrophages. Overall, Hi is a natural compound with antifungal and anti-inflammatory properties, making Hi a promising platform with which to fight against fungal infections.
Collapse
Affiliation(s)
- Louis Camaioni
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Bastien Ustyanowski
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Mathys Buisine
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Dylan Lambert
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
31
|
Hudz N, Kobylinska L, Pokajewicz K, Horčinová Sedláčková V, Fedin R, Voloshyn M, Myskiv I, Brindza J, Wieczorek PP, Lipok J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023; 28:7444. [PMID: 37959863 PMCID: PMC10649426 DOI: 10.3390/molecules28217444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review aims to analyze Mentha piperita L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of M. piperita, along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of M. piperita. The results of this review indicate that M. piperita is a source rich in phytoconstituents of different chemical nature and can be regarded as a source of active substances to enhance health and to develop medicinal products for complementary therapy of various conditions, especially those related with oxidant stress, inflammation, and moderate infections. Essential oil has a broad spectrum of activities. Depending on the test and concentration, this essential oil has both anti- and prooxidant properties. Gram-positive bacteria are more sensitive to the essential oil of M. piperita than Gram-negative ones. This review also considered some facets of the standardization of essential oil and extracts of M. piperita. Among the identified phenolics of extracts were caffeic acid, rosmarinic acid, eriocitrin, luteolin derivates (luteolin-7-O-rutinoside, luteolin-7-O-glucoronide), and hesperidin. The concentration of these phenolics depends on the solvent used. This review also considered the relationships between the chemical component and biological activity. The results showed that the essential oil and extracts reduced inflammation in vitro by inhibiting the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and in vivo by reducing the paw edema induced using carrageenan injection in rats. Therefore, herbal preparations of M. piperita are promising medicinal and cosmetic preparations for their usage in skincare and oral cavity care products with antimicrobial, anti-inflammatory, and wound-healing properties. This plant can also be regarded as a platform for the development of antibacterial preparations and combined anti-inflammatory and cardioprotective medicinal products (synthetic active substances plus herbal preparations). This review could be considered for the justification of the composition of some medicinal products during their pharmaceutical development for writing a registration dossier in the format of Common Technical Document.
Collapse
Affiliation(s)
- Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Vladimira Horčinová Sedláčková
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Roman Fedin
- Department of Pharmacy and Biology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 79010 Lviv, Ukraine;
| | - Mariia Voloshyn
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Iryna Myskiv
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Ján Brindza
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Piotr Paweł Wieczorek
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
32
|
Zhang WS, Ji DW, Yang Y, Song TT, Zhang G, Wang XY, Chen QA. Nucleophilic aromatization of monoterpenes from isoprene under nickel/iodine cascade catalysis. Nat Commun 2023; 14:7087. [PMID: 37925506 PMCID: PMC10625535 DOI: 10.1038/s41467-023-42847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
Collapse
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
33
|
Hedayati S, Tarahi M, Azizi R, Baeghbali V, Ansarifar E, Hashempur MH. Encapsulation of mint essential oil: Techniques and applications. Adv Colloid Interface Sci 2023; 321:103023. [PMID: 37863014 DOI: 10.1016/j.cis.2023.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Rezvan Azizi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, UK
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali AMBH. A novel microextraction technique aided by air agitation using a natural hydrophobic deep eutectic solvent for the extraction of fluvastatin and empagliflozin from plasma samples: application to pharmacokinetic and drug-drug interaction study. RSC Adv 2023; 13:31201-31212. [PMID: 37881757 PMCID: PMC10595561 DOI: 10.1039/d3ra05929d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
This study focuses on the interaction between the antihyperlipidemic drug fluvastatin (FLV) and the antidiabetic drug empagliflozin (EMP), which are commonly co-administered medications. EMP's impact on FLV levels is attributed to its inhibition of organic anion transporting polypeptide 1B1 (OATP1B1), responsible for FLV liver uptake, consequently elevating FLV concentrations in blood. Traditional extraction methods for FLV faced difficulties due to its high hydrophobicity. In this study, a hydrophobic natural deep eutectic solvent (NDES) using air assisted dispersive liquid-liquid microextraction (AA-DLLME) was utilized as an excellent choice for achieving the highest extraction recovery, reaching 96% for FLV and 92% for EMP. The NDES was created through the combination of menthol and hippuric acid in a 4 : 1 ratio, making it a green and cost-effective pathway. Liquid phase microextraction followed by spectrofluorometric measurements of FLV at λem = 395 nm and EMP at λem = 303 nm, with excitation at a single wavelength of 275 nm was carried out. Response surface methodology (RSM) relying on central composite design (CCD) was used to optimize the variables affecting the AA-NDES-DLLME. The optimized conditions for extraction are: NDES volume of 200 μL, centrifugation time of 15 minutes, air-agitation cycle of 6 cycles, and sample pH of 4.0. Under these optimized conditions, the developed method exhibited good linearity and precision. The method showed good recoveries from rabbit plasma samples spiked at varying concentrations of the analyzed compounds. To assess the applicability and effectiveness of the hydrophobic DES, the validated method was applied to extract the studied drugs from rabbit plasma samples after oral administration of FLV alone and in combination with EMP. The pharmacokinetic parameters of FLV were calculated in both cases to investigate any changes and determine the need for dose adjustment.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| |
Collapse
|
35
|
Kumar S, Acharya TK, Halder RR, Mahapatra P, Chang YT, Goswami C. Menthol causes mitochondrial Ca 2+-influx, affects structure-function relationship and cools mitochondria. Life Sci 2023; 331:122032. [PMID: 37604353 DOI: 10.1016/j.lfs.2023.122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects. We demonstrate that menthol causes increased mitochondrial Ca2+ in a complex manner, which is mainly contributed by intracellular sources, including ER. Menthol also changes the Ca2+-load of individual mitochondrial particles in different conditions. Menthol increases ER-mito contact points, causes mitochondrial morphological changes, and increases mitochondrial ATP, cardiolipin, mitochondrial ROS and reduces mitochondrial membrane potential (ΔΨm). Menthol also prevents the mitochondrial quality damaged by sub-lethal and lethal doses of CCCP. In addition, menthol lowers the mitochondrial temperature within cell and also serves as a cooling agent for the isolated mitochondria in a cell free system too. Notably, menthol-induced reduction of mitochondrial temperature is observed in diverse types of cells, including neuronal, immune and cancer cells. As the higher mitochondrial temperature is a hallmark of several inflammatory, metabolic, disease and age-related disorders, we propose that menthol can serve as an active anti-aging compound against all these disorders. These findings may have relevance in case of several pharmacological and clinical applications of menthol. SIGNIFICANCE STATEMENT: Menthol is a plant-derived bioactive compound that is widely used for several physiological, behavioural, addictive, and medicinal purposes. It is a well-established "cooling and analgesic agent". However, the exact cellular and sub-cellular responses of menthol is poorly understood. In this work, we have characterized the effects of menthol on mitochondrial metabolism. Menthol regulates mitochondrial Ca2+, ATP, superoxides, cardiolipin, membrane-potential, and ER-mito contact sites. Moreover, the cooling agent menthol also cools down mitochondria and protects mitochondrial damage by certain toxins. These findings may promote use of menthol as a useful supplementary agent for anti-aging, anti-cancer, anti-inflammatory purposes where higher mitochondrial temperature is prevalent.
Collapse
Affiliation(s)
- Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Ramizur Rahaman Halder
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
36
|
Abd El-Hack ME, Kamal M, Altaie HAA, Youssef IM, Algarni EH, Almohmadi NH, Abukhalil MH, Khafaga AF, Alqhtani AH, Swelum AA. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon 2023; 234:107309. [PMID: 37802220 DOI: 10.1016/j.toxicon.2023.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
A facultative parasite called Aspergillus flavus contaminates several important food crops before and after harvest. In addition, the pathogen that causes aspergillosis infections in humans and animals is opportunistic. Aflatoxin, a secondary metabolite produced by Aspergillus flavus, is also carcinogenic and mutagenic, endangering human and animal health and affecting global food security. Peppermint essential oils and plant-derived natural products have recently shown promise in combating A. flavus infestations and aflatoxin contamination. This review discusses the antifungal and anti-aflatoxigenic properties of peppermint essential oils. It then discusses how peppermint essential oils affect the growth of A. flavus and the biosynthesis of aflatoxins. Several cause physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and associated metabolic enzymes and genes. Finally, the prospects for using peppermint essential oils and natural plant-derived chemicals to develop novel antifungal agents and protect foods are highlighted. In addition to reducing the risk of aspergillosis infection, this review highlights the significant potential of plant-derived natural products and peppermint essential oils to protect food and feed from aflatoxin contamination and A. flavus infestation.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Hayman A A Altaie
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-kitab University, Kirkuk 36001, Iraq
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Eman H Algarni
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, 18 Taif 21944, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Rizg WY, Hosny KM, Alblowi JA, Alkharobi H. Development and Optimization of a Novel Lozenge Containing a Metronidazole-Peppermint Oil-Tranexamic Acid Self-Nanoemulsified Delivery System to Be Used after Dental Extraction: In Vitro Evaluation and In Vivo Appraisal. Pharmaceutics 2023; 15:2342. [PMID: 37765310 PMCID: PMC10535350 DOI: 10.3390/pharmaceutics15092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In-depth studies on essential oil-based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems (MZ-PO-TX-SNEDDS) were created and loaded into novel lozenges to act as antifungal, hemostatic, antimicrobial, and analgesic dosage forms after dental extractions. The design-of-experiments approach was used in creating them. To generate the NEs, different concentrations of MZ-PO (240, 180, and 120 mg), 2% TX (600, 450, and 300 mg), and Smix1:1 (600, 400, and 200 mg) were used. The ideal formulation had serum levels of 1530 U/mL of interleukin-6, a minimal inhibitory concentration against bacteria of 1.5 µg/mL, a droplet size of 96 nm, and a blood coagulation time of 16.5 min. Moreover, the produced NE offered better MZ release. The adopted design was used to produce the ideal formulation; it contained 240 mg of MZ-PO, 600 mg of 2% TX, and 600 mg of Smix1:1. It was incorporated into lozenges with acceptable characteristics and an improved capability for drug release. These lozenges had reasonable coagulation times, IL-6 serum levels, and MIC values. All of these characteristics are desirable for managing symptoms following tooth extractions. Therefore, these lozenges loaded with MZ-PO-TX-SNEDDs might be considered a beneficial paradigm for relieving complications encountered after tooth extractions.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ghadah S. Abusalim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ghfren S. Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Suad A. Alghamdi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Jazia A. Alblowi
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
38
|
Ahmad N, Ali S, Abbas M, Fazal H, Saqib S, Ali A, Ullah Z, Zaman S, Sawati L, Zada A, Sohail. Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep 2023; 13:14972. [PMID: 37696980 PMCID: PMC10495404 DOI: 10.1038/s41598-023-41502-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Misuse of antibiotics leads to the worldwide spread of antibiotic resistance, which motivates scientists to create new antibiotics. The recurring UTI due to antibiotics-resistant microorganism's challenges scientists globally. The biogenic nanoparticles have the potential to meet the escalating requirements of novel antimicrobial agents. The green synthesis of nanoparticles (NPs) gained more attention due to their reliable applications against resistant microbes. The current study evaluates the biogenic ZnO NPs of Mentha piperata extract against resistant pathogens of urinary tract infections by agar well diffusion assay. The biogenic ZnO NPs revealed comparatively maximum inhibition in comparison to synthetic antibiotics against two bacterial strains (Proteus mirabilis, Pseudomonas aeruginosa) and a fungal strain (Candida albicans).The synthesized biogenic ZnO NPs alone revealed maximum activities than the combination of plant extract (PE) and ZnO NPs, and PE alone. The physiochemical features of ZnO NPs characterized through UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX. The UV-Vis spectroscopy revealed 281.85 nm wavelengths; the XRD pattern revealed the crystalline structure of ZnO NPs. The FTIR analysis revealed the presence of carboxylic and nitro groups, which could be attributed to plant extract. SEM analysis revealed spherical hollow symmetry due to electrostatic forces. The analysis via EDX confirmed the presence of Zn and oxygen in the sample. The physiochemical features of synthesized ZnO NPs provide pivotal information such as quality and effectiveness. The current study revealed excellent dose-dependent antimicrobial activity against the pathogenic isolates from UTI-resistant patients. The higher concentration of ZnONPs interacts with the cell membrane which triggers oxidative burst. They may bind with the enzymes and proteins and brings epigenetic alteration which leads to membrane disruption or cell death.
Collapse
Affiliation(s)
- Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Shujat Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Muhammad Abbas
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200, Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, 25120, Pakistan
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Biology, Chinese Academy of Sciences, Beijing, China
| | - Ahmad Ali
- Centre of Plant Science and Biodiversity, University of Swat, Charbagh, Swat, 19200, Pakistan
| | - Zahid Ullah
- Centre of Plant Science and Biodiversity, University of Swat, Charbagh, Swat, 19200, Pakistan
| | - Shah Zaman
- Department of Botany, University of Malakand, Chakdara, 18800, KPK, Pakistan.
| | - Laraib Sawati
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, 25124, Pakistan
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115, Berlin, Germany.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Lamarra J, Rivero S, Pinotti A, Lopez D. Nanofiber mats functionalized with Mentha piperita essential oil stabilized in a chitosan-based emulsion designed via an electrospinning technique. Int J Biol Macromol 2023; 248:125980. [PMID: 37506795 DOI: 10.1016/j.ijbiomac.2023.125980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
A nanostructured device based on poly(vinyl alcohol) (PVA) loaded with a cross-linked chitosan (CH) emulsion, soy lecithin, and peppermint essential oil (Mentha piperita) was designed for topical applications using an electrospinning instrument coupled to a rotary drum collector. Different suspensions were obtained by varying the PVA to emulsion ratio (PVA:Em) 87.5:12.5, 82:18, and 75:25, using a PVA solution as a control. ATR-FTIR spectra confirmed the interactions among the components of the system. Scanning electron microscopy (SEM) of the mats evinced that the aligned fiber diameter decreased with higher proportions of emulsion while dynamic mechanical analysis (DMA) revealed a decrease in the storage modulus. The entrapment of the functionalized emulsions not only improved the elongation of the matrices but also provided them with greater structural integrity compared to the single PVA matrix. The most favorable formulation in terms of mechanical properties was found to be the 82:18 ratio. After 1 h of close contact between the 82:18 matrix and a porcine skin explant, the latter was examined by confocal microscopy, which revealed the localization of the essential oil mainly on the surface of the stratum corneum (SC).However, after 7 h of contact, the distribution of the peppermint EO throughout the viable epidermis was observed, which was further supported by ATR-FTIR studies. Tailored electrospun matrices would have potential applications as devices for topical or transdermal treatments due to their vehiculization role that allows the diffusion of peppermint essential oil as a skin penetration enhancer.
Collapse
Affiliation(s)
- Javier Lamarra
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata 1900, Argentina.
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata 1900, Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ingeniería, UNLP, La Plata 1900, Argentina
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de La Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
40
|
Zhang Y, Liu C, E. D, Jia W, Sun P, Li H, Yu G, Quan P, Liu M, Fang L. The enantioselective enhancing effect and mechanistic insights of chiral enhancers in transdermal drug delivery. Asian J Pharm Sci 2023; 18:100849. [PMID: 37915759 PMCID: PMC10616145 DOI: 10.1016/j.ajps.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
Overlook of chiral consideration in transdermal drug delivery increases administrated dose and risk of side effects, decreasing therapeutical effects. To improve the transdermal delivery efficiency of eutomer, this work focused on investigating the law and mechanism of enantioselective enhancing effects of chiral permeation enhancers on drug enantiomers. Chiral nonsteroidal anti-inflammatory drugs and terpene permeation enhancers were selected as model drug and enhancers. The results indicated that the L-isomer of permeation enhancers increased the skin absorption of S-enantiomer of drug and D-isomer improve the permeation of R-enantiomer, in which the enhancement effect (ER) of L-menthol on S-enantiomer (ER = 3.23) was higher than that on R-enantiomer (ER = 1.49). According to the pharmacokinetics results, L-menthol tended to enhance the permeation of S-enantiomer better than R-enantiomer (2.56 fold), and showed excellent in vitro/in vivo correlations. The mechanism study showed that L-isomer of permeation enhancers improved the permeation of S-enantiomer by increasing the retention, but the D-isomer by improving partition for better permeation. Enantioselective mechanism indicated that the weaker chiral H-bond interaction between drug-chiral enhancers was caused by the enantiomeric conformation. Additionally, stronger chiral enhancers-skin interaction between L-isomer and S-conformation of ceramide produced better enhancing effects. In conclusion, enantioselective interaction of chiral drug-chiral enhancers and chiral enhancers-chiral skin played a critical role in transdermal drug delivery, rational utilization of which contributed to improving the uptake of eutomer and inhibiting distomers to decrease a half of dose and side effects, increasing transdermal therapeutical efficiency.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongxiao E.
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxuan Jia
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Sun
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Li
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guojing Yu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingzhe Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
41
|
Madeswaran A, Mohan S. Neuroprotective effects of terpenoids against streptozotocin-nicotinamide-induced diabetic rats: An in silico, in vitro and in vivo study. Int J Biol Macromol 2023; 247:125817. [PMID: 37455002 DOI: 10.1016/j.ijbiomac.2023.125817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The present study focused to determine the neuroprotective effects of terpenoids in streptozotocin & nicotinamide-induced type-2 diabetes in rats. The in silico studies were carried out for 68 terpenoids using AutoDock 4.2. The in vitro cholinestrerase, α-amylase enzyme inhibitory assays were perfomed using standard procedures. For in vivo neuroprotective studies, male wistar rats were separated into five groups and each group comprised of six animals. Treatment groups were received low dose and high dose α-Bisabolol 100 and 200 mg/kg respectively, and the standard groups received rivastigmine 2 mg/kg, p.o. and metformin group 100 mg/kg, p.o. for 30 consecutive days. Administration of streptozotocin (45 mg/kg, i.p.) and nicotinamide (110 mg/kg, i.p.)-induced the type 2 diabetes in all groups except the control. The behavioural assessments such as Morris water maze, and open field test were performed and biochemical parameters such as acetylcholinesterase levels and enzymatic antioxidants and reduced glutathione level were estimated from brain homogenates. Treatment of diabetic rats with α-Bisabolol was lowered blood glucose level, improved spatial recognition memory in behavioural assessments in a concentration dependent manner. It can be concluded that α-Bisabolol could act as a potential drug candidate in the management of diabetic Alzheimer's disease.
Collapse
Affiliation(s)
- Arumugam Madeswaran
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Coimbatore, Tamil Nadu, India.
| | - Selleppan Mohan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
42
|
Qiu YG, Yang ZH, Sun XB, Jin DJ, Zheng YM, Li J, Gu W. Synthesis and Antifungal Activity of Novel L-Menthol Hydrazide Derivatives as Potential Laccase Inhibitors. Chem Biodivers 2023; 20:e202300539. [PMID: 37317940 DOI: 10.1002/cbdv.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.
Collapse
Affiliation(s)
- Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xue-Bao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
43
|
Ritz M, Ahmad N, Brueck T, Mehlmer N. Differential RNA-Seq Analysis Predicts Genes Related to Terpene Tailoring in Caryopteris × clandonensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2305. [PMID: 37375930 DOI: 10.3390/plants12122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Enzymatic terpene functionalization is an essential part of plant secondary metabolite diversity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity of volatile compounds essential in plant communication and defense. This work sheds light on the differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic reference was subjected to further improvements to provide a comprehensive basis, where the number of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold, Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct transcription profile investigated. Within this data resource, we detected interesting variations and additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis related to terpene functionalization. As previously described, different cultivars vary in their modification of monoterpenes, especially limonene, resulting in different limonene-derived molecules. This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid differences between these plants. Furthermore, these data provide the basis for functional assays and the verification of putative enzyme activities.
Collapse
Affiliation(s)
- Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
44
|
Segneanu AE, Vlase G, Chirigiu L, Herea DD, Pricop MA, Saracin PA, Tanasie ȘE. Romanian Wild-Growing Armoracia rusticana L.-Untargeted Low-Molecular Metabolomic Approach to a Potential Antitumoral Phyto-Carrier System Based on Kaolinite. Antioxidants (Basel) 2023; 12:1268. [PMID: 37371998 PMCID: PMC10295413 DOI: 10.3390/antiox12061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Horseradish is a globally well-known and appreciated medicinal and aromatic plant. The health benefits of this plant have been appreciated in traditional European medicine since ancient times. Various studies have investigated the remarkable phytotherapeutic properties of horseradish and its aromatic profile. However, relatively few studies have been conducted on Romanian horseradish, and they mainly refer to the ethnomedicinal or dietary uses of the plant. This study reports the first complete low-molecular-weight metabolite profile of Romanian wild-grown horseradish. A total of ninety metabolites were identified in mass spectra (MS)-positive mode from nine secondary metabolite categories (glucosilates, fatty acids, isothiocyanates, amino acids, phenolic acids, flavonoids, terpenoids, coumarins, and miscellaneous). In addition, the biological activity of each class of phytoconstituents was discussed. Furthermore, the development of a simple target phyto-carrier system that collectively exploits the bioactive properties of horseradish and kaolinite is reported. An extensive characterization (FT-IR, XRD, DLS, SEM, EDS, and zeta potential) was performed to investigate the morpho-structural properties of this new phyto-carrier system. The antioxidant activity was evaluated using a combination of three in vitro, non-competitive methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay, and phosphomolybdate (total antioxidant capacity)). The antioxidant assessment indicated the stronger antioxidant properties of the new phyto-carrier system compared with its components (horseradish and kaolinite). The collective results are relevant to the theoretical development of novel antioxidant agent fields with potential applications on antitumoral therapeutic platforms.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
- Research Center for Thermal Analysis in in Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Liviu Chirigiu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Daniel Dumitru Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania;
| | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital “Pius Branzeu”, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Patricia-Aida Saracin
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Ștefania Eliza Tanasie
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| |
Collapse
|
45
|
Moreira RC, de Melo RPF, Martínez J, Marostica Junior MR, Pastore GM, Zorn H, Bicas JL. Supercritical CO 2 as a Valuable Tool for Aroma Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289784 DOI: 10.1021/acs.jafc.3c01023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review addresses the possibilities of using supercritical carbon dioxide (SC-CO2) in the flavor industry in extraction and fractionation processes and its use as a reaction medium to generate aroma esters. The advantages and disadvantages are presented, comparing SC-CO2 processing with traditional methods. The most distinguishable features of SC-CO2 include mild reaction conditions, time savings, fewer toxicity concerns, higher sustainability, and the possibility of modulating solvent selectivity according to the process conditions (such as pressure and temperature). Thus, this review indicates the potential of using SC-CO2 to obtain a high selectivity of compounds that can be applied in aroma technology and related fields.
Collapse
Affiliation(s)
- Rafael Chelala Moreira
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Rayanne Priscilla França de Melo
- University of Campinas, School of Food Engineering, Department of Food Engineering and Technology. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Julian Martínez
- University of Campinas, School of Food Engineering, Department of Food Engineering and Technology. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Mario Roberto Marostica Junior
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring, 17, 35392 Giessen, Germany
| | - Juliano Lemos Bicas
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition. Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
46
|
Makibuchi T, Yamashiro K, Anazawa S, Fujimoto T, Ochi G, Ikarashi K, Sato D. Assessing the Effects of the Topical Application of L-Menthol on Pain-Related Somatosensory-Evoked Potentials Using Intra-Epidermal Stimulation. Brain Sci 2023; 13:918. [PMID: 37371396 DOI: 10.3390/brainsci13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
L-menthol is known to activate transient receptor potential melastatin 8 (TRPM8) and induce analgesia to thermal stimuli. However, since thermal stimulation leads to the interaction among the other TRP channels, it was unclear whether L-menthol causes analgesia to stimuli other than thermal stimuli. Therefore, we aimed to investigate whether activating TRPM8 via topical application of 10% menthol solution attenuates pain-related somatosensory-evoked potentials (pSEPs) and affects numerical rating scale (NRS) score using intra-epidermal electrical stimulation (IES). We applied 10% L-menthol or control solution on the dorsum of the right hand of 25 healthy participants. The pSEP and NRS, elicited by IES, and sensory threshold were measured before and after each solution was applied. The results showed that the topical application of 10% L-menthol solution significantly reduced N2-P2 amplitude in pSEPs compared with the control solution. Moreover, the N2 latency was significantly prolonged upon the topical application of L-menthol solution. NRS scores were similar under both conditions. These results suggest that topical application of L-menthol does not alter subjective sensation induced using IES, although it may attenuate afferent signals at free nerve endings even with stimuli that do not directly activate TRP channels.
Collapse
Affiliation(s)
- Taiki Makibuchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Sayaka Anazawa
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Genta Ochi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
47
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
48
|
Romo-Castillo M, Flores-Bautista VA, Guzmán-Gutiérrez SL, Reyes-Chilpa R, León-Santiago M, Luna-Pineda VM. Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections. Pharmaceuticals (Basel) 2023; 16:839. [PMID: 37375786 DOI: 10.3390/ph16060839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Increased antibiotic resistance presents a health problem worldwide. The World Health Organization published a list of pathogens considered a priority for designing new treatments. Klebsiella pneumoniae (Kp) is a top-priority microorganism, highlighting the strains that produce carbapenemases. Developing new efficient therapies or complementing existing treatments is a priority, and essential oils (EOs) provide an alternative. EOs could act as antibiotic adjuvants and enhance antibiotic activity. Employing standard methodologies, the antibacterial activity of the EOs and their synergic effect with antibiotics were detected. A string test was used to identify the impact of the EOs over the hypermucoviscosity phenotype presented by Kp strains, and Gas Chromatography-Mass Spectrometry analysis identified EOs and the composition of EOs. The potential of EOs for designing synergistic therapies with antibiotics to combat the infection of KPC diseases was demonstrated. In addition, the alteration of the hypermucoviscosity phenotype was shown as the principal mechanism of a synergic action between EOs and antibiotics. The differential composition of the EOs lets us identify some molecules that will be analyzed. Synergic activity of EOs and antibiotics can provide a solid platform for combating multiresistant pathogens that represent a severe health sector problem, such as Kp infections.
Collapse
Affiliation(s)
- Mariana Romo-Castillo
- CONAHCYT/HIMFG, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Victor Andrés Flores-Bautista
- Facultad de Estudios Superiores Zaragoza Campus II, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Silvia Laura Guzmán-Gutiérrez
- CONAHCYT/Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mayra León-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Victor Manuel Luna-Pineda
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
49
|
Qanash H, Bazaid AS, Binsaleh NK, Alharbi B, Alshammari N, Qahl SH, Alhuthali HM, Bagher AA. Phytochemical Characterization of Saudi Mint and Its Mediating Effect on the Production of Silver Nanoparticles and Its Antimicrobial and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112177. [PMID: 37299156 DOI: 10.3390/plants12112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new area of study that encompasses the development and discovery of new agents for their utilization in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was conducted by using HPLC indicated the presence of numerous compounds in the ME. Through an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using ME and were confirmed via UV-visible spectroscopy at 412 nm of the maximum absorption. The mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD). Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29, and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and 27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial and antioxidant agents.
Collapse
Affiliation(s)
- Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biological Sciences, University of Ha'il, Hail 81451, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | | |
Collapse
|
50
|
Ben Miri Y, Nouasri A, Herrera M, Djenane D, Ariño A. Antifungal Activity of Menthol, Eugenol and Their Combination against Aspergillus ochraceus and Aspergillus niger In Vitro and in Stored Cereals. Foods 2023; 12:2108. [PMID: 37297353 PMCID: PMC10252706 DOI: 10.3390/foods12112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Aspergillus ochraceus and Aspergillus niger are spoilage and mycotoxin-producing fungi that can contaminate agricultural commodities and derived products. In the present study, menthol, eugenol, and their combination (mix 1:1) were tested to determine their contact and fumigation toxicity against the two fungi. Menthol, eugenol, and their mixture significantly reduced mycelial growth and spore germination at concentrations from 300 to 600 µg/mL, and the inhibitory effects showed clear dose dependence. The minimum inhibitory concentration (MIC) values against A. ochraceus were 500 µg/mL (menthol), 400 µg/mL (eugenol), and 300 µg/mL (mix 1:1), while the MIC values for A. niger were 500 µg/mL (menthol), 600 µg/mL (eugenol), and 400 µg/mL (mix 1:1). Additionally, the analyzed compounds exhibited more than 50% protection against A. ochraceus and A. niger by fumigation of stored cereal grains (maize, barley, and rice) in sealed containers. The binary mixture of menthol and eugenol showed synergistic effects against both fungi in both in vitro direct contact and stored grain fumigation trials. The results of the present study provide a scientific basis for the application of a combination of natural antifungals in food preservation.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, P.O. Box 166, M’sila 28000, Algeria;
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi-Ouzou 15000, Algeria
| | - Ahmed Nouasri
- Laboratory of Bioactive Products and Biomass Valorization Research, ENS Kouba, P.O. Box 92, Vieux-Kouba, Algiers 16308, Algeria;
| | - Marta Herrera
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.H.); (A.A.)
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi-Ouzou 15000, Algeria
| | - Agustín Ariño
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.H.); (A.A.)
| |
Collapse
|