1
|
Vanhakylä S, Salminen JP. Mass Spectrometric Fingerprint Mapping Reveals Species-Specific Differences in Plant Polyphenols and Related Bioactivities. Molecules 2023; 28:6388. [PMID: 37687216 PMCID: PMC10490256 DOI: 10.3390/molecules28176388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Plant species show large variation in the composition and content of their tannins and other polyphenols. These large metabolites are not easy to measure accurately, but they are important factors for species bioactivity and chemotaxonomy. Here, we used an automated group-specific UHPLC-DAD-MS/MS tool to detect and quantify eight most common polyphenol groups in 31 chemically diverse plant species representing many types of growth forms and evolutionary ages. Ten replicate plants were used for each species and two polyphenol-related bioactivities, i.e., protein precipitation capacity and oxidative activity were measured in all samples as well. By the help of a novel 2D fingerprint mapping tool we were able to visualize the qualitative and quantitative differences between the species in hydrolysable tannins (galloyl and hexahydroxydiphenoyl derivatives), proanthocyanidins (procyanidins and prodelphinidins), flavonols (kaempferol, quercetin and myricetin derivatives) and quinic acid derivatives together with the two bioactivities. The highest oxidative activities were found with species containing ellagitannins (e.g., Quercus robur, Geranium sylvaticum, Lythrum salicaria and Chamaenerion angustifolium) or prodelphinidin-rich proanthocyanidins (e.g., Ribes alpinum, Salix phylicifolia and Lysimachia vulgaris). The best species with high protein precipitation capacity were rich in gallotannins (Acer platanoides and Paeonia lactiflora) or oligomeric ellagitannins (e.g., Comarum palustre, Lythrum salicaria and Chamaenerion angustifolium). These types of tools could prove their use in many types of screening experiments and might reveal even unusually active polyphenol types directly from the crude plant extracts.
Collapse
Affiliation(s)
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
2
|
Imran IB, Engström MT, Karonen M, Williams AR, Salminen JP. Alkaline oxidization can increase the in vitro antiparasitic activity of proanthocyanidin-rich plant extracts against Ascarissuum. Exp Parasitol 2023; 248:108493. [PMID: 36889503 DOI: 10.1016/j.exppara.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Proanthocyanidins (PAs) are a class of plant specialized metabolites with well-documented bioactivities such as antiparasitic effects. However, little is known about how the modification of PAs influences their bioactivity. The objective of this study was to investigate a wide range of PA-containing plant samples to determine if extracts containing PAs modified by oxidation had altered antiparasitic activities, compared to the original extracts that had not been modified in alkaline conditions. We extracted and analyzed samples from 61 proanthocyanidin-rich plants. The extracts were then oxidized under alkaline conditions. We used these non-oxidized and oxidized proanthocyanidin-rich extracts to conduct a detailed analysis of direct antiparasitic effects against the intestinal parasite Ascaris suum in vitro. These tests showed that the proanthocyanidin-rich extracts had antiparasitic activity. Modification of these extracts significantly increased the antiparasitic activity for the majority the extracts, suggesting that the oxidation procedure enhanced the bioactivity of the samples. Some samples that showed no antiparasitic activity before oxidation showed very high activity after the oxidation. High levels of other polyphenols in the extracts, such as flavonoids, was found to be associated with increased antiparasitic activity following oxidation. Thus, our in vitro screening opens up the opportunity for future research to better understand the mechanism of action how alkaline treatment of PA-rich plant extracts increases their biological activity and potential as novel anthelmintics.
Collapse
Affiliation(s)
- Iqbal Bin Imran
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
3
|
Manninen M, Karonen M, Salminen JP. Chemotaxonomic Markers for the Leaf Buds of Common Finnish Trees and Shrubs: A Rapid UHPLC MS Fingerprinting Tool for Species Identification. Molecules 2022; 27:6810. [PMID: 36296401 PMCID: PMC9611062 DOI: 10.3390/molecules27206810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 09/10/2023] Open
Abstract
In this study, a chemotaxonomic tool was created on the basis of ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) for the identification of 13 common Finnish deciduous trees and shrubs from their leaf bud metabolites. The bud extracts were screened with UHPLC-ESI-QqQ-MS and UHPLC-ESI-Q-Orbitrap-MS to discover suitable markers for each species. Two approaches were tested in the marker selection: (1) unique species-specific markers to obtain selective fingerprints per species and (2) major markers to maximise the sensitivity of the fingerprints. The markers were used to create two selected ion-recording-based fingerprinting tools with UHPLC-ESI-QqQ-MS. The methods were evaluated for their selectivity, repeatability, and robustness in plant species identification by analysing leaf buds from several replicates of each species. The created chemotaxonomic tools were shown to provide unique chromatographic profiles for the studied species in less than 6 min. A variety of plant metabolites, such as flavonoids, triterpenoids, and hydroxycinnamic acid derivatives, were found to serve as good chemotaxonomic markers for the studied species. In 10 out of 13 cases, species-specific markers were superior in creating selective and repeatable fingerprints.
Collapse
Affiliation(s)
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | | |
Collapse
|
4
|
Kim J, Gripenberg S, Karonen M, Salminen JP. Seed tannin composition of tropical plants. PHYTOCHEMISTRY 2021; 187:112750. [PMID: 33845405 DOI: 10.1016/j.phytochem.2021.112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Seeds collected from trees, shrubs and lianas growing on Barro Colorado Island, Panama, were analyzed for their content of phenolic compounds, oxidative activities and protein precipitation capacities. Proanthocyanidins and hydrolysable tannins were detected in one-third of 189 studied species. The most oxidatively active group of species were the ones containing prodelphinidins and ellagitannins whereas the species that had the highest protein precipitation capacity in relation to their total phenolics were the ones containing punicalagin. In addition, the oxidative activity and relative protein precipitation capacity were exceptionally high in the proanthocyanidin-rich genus Psychotria. This study offers a comprehensive overview on the tannin composition and the alkaline oxidative activities and protein precipitation capacities of the seeds of tropical plants.
Collapse
Affiliation(s)
- Jorma Kim
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK.
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
5
|
Karonen M, Imran IB, Engström MT, Salminen JP. Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS. Molecules 2021; 26:molecules26071873. [PMID: 33810382 PMCID: PMC8037856 DOI: 10.3390/molecules26071873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we analyzed the proanthocyanidin (PA) composition of 55 plant extracts before and after alkaline oxidation by ultrahigh-resolution UHPLC-MS/MS. We characterized the natural PA structures in detail and studied the sophisticated changes in the modified PA structures and the typical patterns and models of reactions within different PA classes due to the oxidation. The natural PAs were A- and B-type PCs, PDs and PC/PD mixtures. In addition, we detected galloylated PAs. B-type PCs in different plant extracts were rather stable and showed no or minor modification due to the alkaline oxidation. For some samples, we detected the intramolecular reactions of PCs producing A-type ether linkages. A-type PCs were also rather stable with no or minor modification, but in some plants, the formation of additional ether linkages was detected. PAs containing PD units were more reactive. After alkaline oxidation, these PAs or their oxidation products were no longer detected by MS even though a different type and/or delayed PA hump was still detected by UV at 280 nm. Galloylated PAs were rather stable under alkaline oxidation if they were PC-based, but we detected the intramolecular conversion from B-type to A-type. Galloylated PDs were more reactive and reacted similarly to nongalloylated PDs.
Collapse
|
6
|
Imran IB, Karonen M, Salminen JP, Engström MT. Modification of Natural Proanthocyanidin Oligomers and Polymers Via Chemical Oxidation under Alkaline Conditions. ACS OMEGA 2021; 6:4726-4739. [PMID: 33644580 PMCID: PMC7906247 DOI: 10.1021/acsomega.0c05515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 05/31/2023]
Abstract
We tested the susceptibility of 102 proanthocyanidin (PA)-rich plant extracts to oxidation under alkaline conditions and the possibility to produce chemically modified PAs via oxidation. Both the nonoxidized and the oxidized extracts were analyzed using group-specific ultrahigh-performance liquid chromatography-diode array detection-tandem mass spectrometry (UHPLC-DAD-MS/MS) methods capable of detecting procyanidin (PC) and prodelphinidin (PD) moieties along the two-dimensional (2D) chromatographic fingerprints of plant PAs. The results indicated different reactivities for PCs and PDs. When detected by UHPLC-DAD only, most of the PC-rich samples exhibited only a subtle change in their PA content, but the UHPLC-MS/MS quantitation showed that the decrease in the PC content varied by 0-100%. The main reaction route was concluded to be intramolecular. The PD-rich and galloylated PAs showed a different pattern with high reductions in the original PA content by both ultraviolet (UV) and MS/MS quantitation, accompanied by the shifted retention times of the chromatographic PA humps. In these samples, both intra- and intermolecular reactions were indicated.
Collapse
|
7
|
Kim J, Pälijärvi M, Karonen M, Salminen JP. Distribution of enzymatic and alkaline oxidative activities of phenolic compounds in plants. PHYTOCHEMISTRY 2020; 179:112501. [PMID: 32877871 DOI: 10.1016/j.phytochem.2020.112501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we screened 287 plant tissue samples from 175 plant species for their phenolic profiles. The samples were oxidized enzymatically in planta or at high pH in vitro to determine how these two oxidative conditions would alter the initial polyphenol profiles of the plant. Compounds that contained a pyrogallol or dihydroxyphenethyl group were highly active at pH 10. Enzymatic oxidation favored compounds that contained a catechol group, whereas compounds containing a pyrogallol group or monohydroxysubstituted phenolic moieties at most were oxidized less frequently. This study gives a broad overview of the distribution and alkaline oxidative activities of water-soluble phenolic compounds in plants as well as the enzymatic oxidative activities of various plant tissues.
Collapse
Affiliation(s)
- Jorma Kim
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Maija Pälijärvi
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
8
|
Willemann JR, Escher GB, Kaneshima T, Furtado MM, Sant'Ana AS, Vieira do Carmo MA, Azevedo L, Granato D. Response surface optimization of phenolic compounds extraction from camu-camu (Myrciaria dubia) seed coat based on chemical properties and bioactivity. J Food Sci 2020; 85:2358-2367. [PMID: 32645216 DOI: 10.1111/1750-3841.15327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/11/2023]
Abstract
Food companies should comply with the requirements of a zero-waste concept to adapt to the circular economy requirements. In fruit companies, usually seeds are discarded without proper utilization and extraction of the bioactive compounds. Fruit seeds are sources of chemical compounds that can be extracted, studied, and applied in high value-added products. Thus, in this work the experimental conditions for the water extraction of phenolic compounds from camu-camu (Myrciaria dubia) seed coat were optimized using a central composite design and the desirability function. Total phenolic content (TPC), and condensed tannins (CT), DPPH radical scavenging activity, ferric reducing antioxidant capacity (FRAP), Folin-Ciocalteu reducing capacity (FCRC), and Cu2+ chelating ability were assessed. Seed coat extracted for 51.1 min using a 1:34.1 solid:liquid ratio was the optimal condition to extract 6,242 mg gallic acid equivalent (GAE)/100 g of TPC and 695 mg catechin equivalent (CE)/100 g of CT. The optimized extract displayed free-radical scavenging activity, reducing properties and ability to chelate Cu2+ , and inhibited the growth of Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, Salmonella Enteritidis, Bacillus cereus, and Staphylococcus aureus. Additionally, the lyophilized water extract inhibited the in vitro activity of α-amylase, α-glucosidase, and angiotensin converting enzyme and showed cytotoxic effects towards Caco-2, A549, and HepG2 cancer cells, but no cytotoxicity towards IMR90 cells. Vescalagin, castalagin, and 3,4-dihydroxybenzoic acid were the major phenolic compounds identified in the optimized extract. In conclusion, the optimized camu-camu seed coat water extract is a rich source of phenolic compounds with antioxidant, antidiabetic, antihypertensive, and antiproliferative effects. PRACTICAL APPLICATION: Camu-camu fruit pulp and seeds have been studied for their phenolic composition and bioactivity. However, seeds are usually discarded and represent an environmental problem in South American countries. We presented a methodological overview on the extraction optimization of the phenolic compounds from camu-camu seed coat and studied the bioactivity of the optimized extract using chemical, enzymatic, and cell-based experiments. Results can be used by camu-camu processors to obtain a phenolic-rich extract for industrial applications, without any further processing.
Collapse
Affiliation(s)
| | - Graziela Bragueto Escher
- Graduation School of Food Science and Technology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Tai Kaneshima
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Marianna Miranda Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | | | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Brazil
| | - Daniel Granato
- Department of Food Engineering, State University of Ponta Grossa, Ponta Grossa, Brazil.,Food Processing and Quality, Production Systems Unit-Natural Resources Institute Finland (Luke)-Tietotie 2, Espoo, Finland
| |
Collapse
|
9
|
Marsh KJ, Wallis IR, Kulheim C, Clark R, Nicolle D, Foley WJ, Salminen J. New approaches to tannin analysis of leaves can be used to explain in vitro biological activities associated with herbivore defence. THE NEW PHYTOLOGIST 2020; 225:488-498. [PMID: 31412143 PMCID: PMC6916633 DOI: 10.1111/nph.16117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/08/2023]
Abstract
Although tannins have been an important focus of studies of plant-animal interactions, traditional tannin analyses cannot differentiate between the diversity of structures present in plants. This has limited our understanding of how different mixtures of these widespread secondary metabolites contribute to variation in biological activity. We used UPLC-MS/MS to determine the concentration and broad composition of tannins and polyphenols in 628 eucalypt (Eucalyptus, Corymbia and Angophora) samples, and related these to three in vitro functional measures believed to influence herbivore defence: protein precipitation capacity, oxidative activity at high pH and capacity to reduce in vitro nitrogen (N) digestibility. Protein precipitation capacity was most strongly correlated with concentrations of procyanidin subunits in proanthocyanidins (PAs), and late-eluting ellagitannins. Capacity to reduce in vitro N digestibility was affected most by the subunit composition and mean degree of polymerisation (mDP) of PAs. Finally, concentrations of ellagitannins and prodelphinidin subunits of PAs were the strongest determinants of oxidative activity. The results illustrate why measures of total tannins rarely correlate with animal feeding responses. However, they also confirm that the analytical techniques utilised here could allow researchers to understand how variation in tannins influence the ecology of individuals and populations of herbivores, and, ultimately, other ecosystem processes.
Collapse
Affiliation(s)
- Karen J. Marsh
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Ian R. Wallis
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Carsten Kulheim
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert Clark
- Research School of FinanceActuarial Studies and StatisticsThe Australian National UniversityCanberraACT2601Australia
| | - Dean Nicolle
- Currency Creek ArboretumPO Box 808Melrose ParkSA5039Australia
| | - William J. Foley
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Juha‐Pekka Salminen
- Natural Chemistry Research GroupDepartment of ChemistryUniversity of TurkuTurkuFI‐20500Finland
| |
Collapse
|
10
|
Donkor D, Mirzahosseini Z, Bede J, Bauce E, Despland E. Detoxification of host plant phenolic aglycones by the spruce budworm. PLoS One 2019; 14:e0208288. [PMID: 31095557 PMCID: PMC6522000 DOI: 10.1371/journal.pone.0208288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
This study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (Choristoneura fumiferana). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione- conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.
Collapse
Affiliation(s)
- Dominic Donkor
- Biology Department, Concordia University, Montreal, Canada
| | | | - Jacquie Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Eric Bauce
- Département des sciences du bois et de la forêt, Université Laval, Ste-Foy, Canada
| | - Emma Despland
- Biology Department, Concordia University, Montreal, Canada
- * E-mail:
| |
Collapse
|
11
|
Oxidatively Active Plant Phenolics Detected by UHPLC-DAD-MS after Enzymatic and Alkaline Oxidation. J Chem Ecol 2018; 44:483-496. [DOI: 10.1007/s10886-018-0949-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 12/29/2022]
|
12
|
Marsh KJ, Kulheim C, Blomberg SP, Thornhill AH, Miller JT, Wallis IR, Nicolle D, Salminen JP, Foley WJ. Genus-wide variation in foliar polyphenolics in eucalypts. PHYTOCHEMISTRY 2017; 144:197-207. [PMID: 28957714 DOI: 10.1016/j.phytochem.2017.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Many studies quantify total phenolics or total tannins, but understanding the ecological role of polyphenolic secondary metabolites requires at least an understanding of the diversity of phenolic groups present. We used UPLC-MS/MS to measure concentrations of different polyphenol groups - including the four most common tannin groups, the three most common flavonoid groups, and quinic acid derivatives - in foliage from 628 eucalypts from the genera Eucalyptus, Angophora and Corymbia. We also tested for phylogenetic signal in each of the phenolic groups. Many eucalypts contained high concentrations of polyphenols, particularly ellagitannins, which have been relatively poorly studied, but may possess strong oxidative activity. Because the biosynthetic pathways of many phenolic compounds share either precursors or enzymes, we found negative correlations between the concentrations of several of the constituents that we measured, including proanthocyanidins (PAs) and hydrolysable tannins (HTs), HTs and flavonol derivatives, and HTs and quinic acid derivatives. We observed moderate phylogenetic signal in all polyphenol constituents, apart from the concentration of the prodelphinidin subunit of PAs and the mean degree of polymerisation of PAs. These two traits, which have previously been shown to be important in determining plants' protein precipitation capacity, may have evolved under selection, perhaps in response to climate or herbivore pressure. Hence, the signature of evolutionary history appears to have been erased for these traits. This study is an important step in moving away from analysing "totals" to a better understanding of how phylogenetic effects influence phenolic composition, and how this in turn influences ecological processes.
Collapse
Affiliation(s)
- Karen J Marsh
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Carsten Kulheim
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon P Blomberg
- School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Andrew H Thornhill
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, GPO Box 1600, Canberra, ACT, 2601, Australia; Australian Tropical Herbarium, James Cook University, Cairns, QLD, 4870, Australia
| | - Joseph T Miller
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, GPO Box 1600, Canberra, ACT, 2601, Australia; Office of International Science and Engineering, National Science Foundation, Arlington, VA, 22230, USA
| | - Ian R Wallis
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Dean Nicolle
- Currency Creek Arboretum, PO Box 808, Melrose Park, SA, 5039, Australia
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
13
|
Conrad AO, McPherson BA, Wood DL, Madden LV, Bonello P. Constitutive phenolic biomarkers identify naïve Quercus agrifolia resistant to Phytophthora ramorum, the causal agent of sudden oak death. TREE PHYSIOLOGY 2017; 37:1686-1696. [PMID: 29036534 DOI: 10.1093/treephys/tpx116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Sudden oak death, caused by the invasive pathogen Phytophthora ramorum Werres, de Cock & Man in't Veld, can be deadly for Quercus agrifolia Neé (coast live oak, CLO). However, resistant trees have been observed in natural populations. The objective of this study was to examine if pre-attack (constitutive) levels of phenolic compounds can be used as biomarkers to identify trees likely to be resistant. Naïve trees were selected from a natural population and phloem was sampled for analysis of constitutive phenolics. Following P. ramorum inoculation, trees were phenotyped to determine disease susceptibility and constitutive phenolic biomarkers of resistance were identified. Seasonal variation in phloem phenolics was also assessed in a subset of non-inoculated trees. Four biomarkers, including myricitrin and three incompletely characterized flavonoids, together correctly classified 80% of trees. Biomarker levels were then used to predict survival of inoculated CLO and the proportion of resistant trees within a subset of non-inoculated trees from the same population. Levels of five phenolics were significantly affected by season, but with no pronounced variation in average levels among seasons. These results suggest that pre-infection levels of specific phenolic compounds (i.e., biomarkers) can identify trees naturally resistant to this invasive forest pathogen. Knowledge of resistant trees within natural populations may be useful for conserving and breeding resistant trees and for disease management.
Collapse
Affiliation(s)
- Anna O Conrad
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Brice A McPherson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Mulford Hall, Berkeley, CA 94720, USA
| | - David L Wood
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Mulford Hall, Berkeley, CA 94720, USA
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Natal DIG, Rodrigues KCDC, Moreira MEDC, de Queiróz JH, Benjamin LDA, dos Santos MH, Sant'Ana HMP, Martino HSD. Bioactive compounds of the Ubá mango juices decrease inflammation and hepatic steatosis in obese Wistar rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Oxidizable Phenolic Concentrations Do Not Affect Development and Survival of Paropsis Atomaria Larvae Eating Eucalyptus Foliage. J Chem Ecol 2017; 43:411-421. [PMID: 28367596 DOI: 10.1007/s10886-017-0835-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g-1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.
Collapse
|
16
|
Gomes Natal DI, de Castro Moreira ME, Soares Milião M, dos Anjos Benjamin L, de Souza Dantas MI, Machado Rocha Ribeiro S, Stampini Duarte Martino H. Ubá mango juices intake decreases adiposity and inflammation in high-fat diet-induced obese Wistar rats. Nutrition 2016; 32:1011-8. [DOI: 10.1016/j.nut.2016.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
|
17
|
Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions. J Chem Ecol 2015; 41:822-36. [PMID: 26364295 DOI: 10.1007/s10886-015-0620-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/26/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Lepidopteran larvae encounter a variety of phenolic compounds while consuming their host plants. Some phenolics may oxidize under alkaline conditions prevailing in the larval guts, and the oxidation products may cause oxidative stress to the larvae. In this study, we aimed to find new ways to predict how phenolic compounds may be modified in the guts of herbivorous larvae. To do so, we studied the ease of oxidation of phenolic compounds from 12 tropical tree species. The leaf extracts were incubated in vitro in alkaline conditions, and the loss of total phenolics during incubation was used to estimate the oxidizability of extracts. The phenolic profiles of the leaf extracts before and after incubation were compared, revealing that some phenolic compounds were depleted during incubation. The leaves of the 12 tree species were each fed to 12 species of lepidopteran larvae that naturally feed on these trees. The phenolic profiles of larval frass were compared to those of in vitro incubated leaf extracts. These comparisons showed that the phenolic profiles of alkali-treated samples and frass samples were similar in many cases. This suggested that certain phenolics, such as ellagitannins, proanthocyanidins, and galloylquinic acid derivatives were modified by the alkaline pH of the larval gut. In other cases, the chromatographic profiles of frass and in vitro incubated leaf extracts were not similar, and new modifications of phenolics were detected in the frass. We conclude that the actual fates of phenolics in vivo are often more complicated than can be predicted by a simple in vitro method.
Collapse
|
18
|
Tuominen A, Sinkkonen J, Karonen M, Salminen JP. Sylvatiins, acetylglucosylated hydrolysable tannins from the petals of Geranium sylvaticum show co-pigment effect. PHYTOCHEMISTRY 2015; 115:239-51. [PMID: 25669991 DOI: 10.1016/j.phytochem.2015.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 05/22/2023]
Abstract
Four hydrolysable tannins, named as sylvatiins A (1), B (2), C (3) and D (4), were isolated from the petals of Geranium sylvaticum. On the basis of spectrometric evidence of NMR analysis ((1)H NMR, (13)C NMR, DQF-COSY, TOCSY, NOESY, HSQC and HMBC), circular dichroism (CD) and ESI-MS/MS, sylvatiins A, B and C were characterized as galloyl glucoses containing one or two acetylglucoses attached to the 3-OH of the galloyl group, whereas sylvatiin D was found to have a chebulinic acid core containing acetylglucose attached in a similar way. The potential of these compounds to act as defensive compounds against herbivores was evaluated using the radial diffusion assay that measures the protein precipitation capacity. In addition, the capacity of sylvatiins to act as co-pigments with anthocyanins of G. sylvaticum petals was measured in vitro at different pH values. Sylvatiins A and D maintained efficiently the purple flower color near the natural pH of petal cells. The amount of sylvatiins was changed according to the flower color; deep purple petals with higher amount of anthocyanin contained more sylvatiins A and C than whiter petals. It was concluded that G. sylvaticum petal cells may accumulate sylvatiins for intermolecular co-pigmentation purposes.
Collapse
Affiliation(s)
- Anu Tuominen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, FI-20014, University of Turku, Finland.
| | - Jari Sinkkonen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Maarit Karonen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Juha-Pekka Salminen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, FI-20014, University of Turku, Finland
| |
Collapse
|