1
|
Saeedi M, Soltani F, Babalar M, Wiesner-Reinhold M, Baldermann S, Mastinu A. Selenium Enhances Growth, Phenolic Compounds, Antioxidant Capacity in Brassica Oleracea Var. Italica. Chem Biodivers 2025; 22:e202401731. [PMID: 39373226 DOI: 10.1002/cbdv.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Selenium is a micronutrient element that is beneficial for the growth and development of plants. It has antioxidant, anticancer, and antiviral properties that are essential for human and animal health. Low-consumption mineral elements such as selenium can be included in the diet from various sources. To investigate the growth and phytochemical attributes of a broccoli cultivar "Heracklion", an experiment with five levels of selenium concentration (0, 5, 10, 15, 20 mg/L sodium selenate) was carried out in a randomized complete block design with 3 replications in the field condition. With increasing the concentration of sodium selenate in the foliar application, the accumulation of sodium selenate in broccoli increased and the highest amount (1.47 mg/kg dry weight) was measured at 20 mg/L of sodium selenate. The highest amount of photosynthetic pigments in leaves was recorded at 15 mg/L of sodium selenate. In the case of glucosinolates, with increasing selenium concentration up to 20 mg/L concentration, glucoraphanin, 4-methoxy glucobrassicin, and aliphatic glucosinolates increased in leaves. It could be demonstrated that foliar application of selenium at 10 mg/L led to an improvement of secondary metabolites, especially glucoraphanin, both in leaves and florets, and could also have a positive effect on human nutrition.
Collapse
Affiliation(s)
- Mahboobeh Saeedi
- Department of Horticultural Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Forouzandeh Soltani
- Department of Horticultural Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Mesbah Babalar
- Department of Horticultural Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | | | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- Food Metabolome, Faculty of Life Sciences: Food, Nutrition, University of Bayreuth, Kulmbach, Germany
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
2
|
Michalczyk M. Methods of Modifying the Content of Glucosinolates and Their Derivatives in Sprouts and Microgreens During Their Cultivation and Postharvest Handling. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:2133668. [PMID: 39839498 PMCID: PMC11750299 DOI: 10.1155/ijfo/2133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions. The way in which sprouts are prepared for consumption affects the yield of glucosinolate hydrolysis. Genetic variation leading to different plant responses to the same factors (e.g., type of light) makes it necessary to conduct detailed studies involving species and variety diversity. Heat stress and the use of cold plasma appear to be fairly universal methods for increasing glucosinolate content. Studies on the use of light at different wavelengths do not provide unequivocal results. Despite experiments on the use of seed soaking solutions (e.g., sulfur and selenium compounds), there are no studies in the available literature on the effects of chemical and thermal seed disinfection methods on the glucosinolate content of the obtained sprouts and microgreens.
Collapse
Affiliation(s)
- Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
3
|
Bafumo RF, Alloggia FP, Ramirez DA, Maza MA, Fontana A, Moreno DA, Camargo AB. Optimal Brassicaceae family microgreens from a phytochemical and sensory perspective. Food Res Int 2024; 193:114812. [PMID: 39160037 DOI: 10.1016/j.foodres.2024.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.
Collapse
Affiliation(s)
- Roberto F Bafumo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Florencia P Alloggia
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Daniela A Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Marcos A Maza
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Catedra de Enología I, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain.
| | - Alejandra B Camargo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
4
|
Layla A, Syed QA, Zahoor T, Shahid M. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Int Microbiol 2024; 27:753-764. [PMID: 37700156 DOI: 10.1007/s10123-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5-7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.
Collapse
Affiliation(s)
- Anam Layla
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Qamar Abbas Syed
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Tahir Zahoor
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
6
|
Baenas N, Vega-García A, Manjarrez-Marmolejo J, Moreno DA, Feria-Romero IA. The preventive effects of broccoli bioactives against cancer: Evidence from a validated rat glioma model. Biomed Pharmacother 2023; 168:115720. [PMID: 37839110 DOI: 10.1016/j.biopha.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Angélica Vega-García
- Neurological Diseases Medical Research Unit, National Medical Center "Siglo XXI", IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - Joaquín Manjarrez-Marmolejo
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico
| | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo - 25, 30100 Murcia, Spain.
| | - Iris A Feria-Romero
- Neurological Diseases Medical Research Unit, National Medical Center "Siglo XXI", IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico.
| |
Collapse
|
7
|
Pusty K, Dash KK, Tiwari A, Balasubramaniam VM. Ultrasound assisted extraction of red cabbage and encapsulation by freeze-drying: moisture sorption isotherms and thermodynamic characteristics of encapsulate. Food Sci Biotechnol 2023; 32:2025-2042. [PMID: 37860738 PMCID: PMC10581982 DOI: 10.1007/s10068-023-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 10/21/2023] Open
Abstract
In the present study encapsulation of ultrasound assisted red cabbage extract was carried out using four different carrier agents such as maltodextrin, gum arbic, xanthan gum, and gellan gum. Among the four hydrocolloids investigated, maltodextrin was found to have the least destructive effect on anthocyanin content (14.87 mg C3G/g dw), TPC (54.51 ± 0.09 mg GAE/g dw), TFC (19.82 Mg RE/g dw) and antioxidant activity (74.15%) upon freeze-drying. Subsequently a storage study was conducted using maltodextrin as carrier agent at 25-50 °C. The Clausius-Clapeyron equation was used to evaluate the net isosteric heat (qst) of water adsorption. The differential entropy (ΔS) and qst decreased from 82.298 to 38.628 J/mol, and 27.518 kJ/mol to 12.505 kJ/mol, respectively as the moisture content increased from 2 to 14%. The value of isokinetic energy and Gibb's free energy were found to be 364.88 and - 1.596 kJ/mol for freeze dried red cabbage. Graphical abstract
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - Kshirod K. Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
- Department of Food Agricultural and Biological Engineering, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
| |
Collapse
|
8
|
Wang M, Li Y, Yang Y, Tao H, Mustafa G, Meng F, Sun B, Wang J, Zhao Y, Zhang F, Cheng K, Wang Q. Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends Food Sci Technol 2023; 140:104164. [DOI: 10.1016/j.tifs.2023.104164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
9
|
Lee S, Park CH, Kim JK, Ahn K, Kwon H, Kim JK, Park SU, Yeo HJ. LED Lights Influenced Phytochemical Contents and Biological Activities in Kale ( Brassica oleracea L. var. acephala) Microgreens. Antioxidants (Basel) 2023; 12:1686. [PMID: 37759989 PMCID: PMC10525181 DOI: 10.3390/antiox12091686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Light-emitting diodes (LEDs) are regarded as an effective artificial light source for producing sprouts, microgreens, and baby leaves. Thus, this study aimed to investigate the influence of different LED lights (white, red, and blue) on the biosynthesis of secondary metabolites (glucosinolates, carotenoids, and phenolics) and the biological effects on kale microgreens. Microgreens irradiated with white LEDs showed higher levels of carotenoids, including lutein, 13-cis-β-carotene, α-carotene, β-carotene, and 9-cis-β-carotene, than those irradiated with red or blue LEDs. These findings were consistent with higher expression levels of carotenoid biosynthetic genes (BoPDS and BoZDS) in white-irradiated kale microgreens. Similarly, microgreens irradiated with white and blue LEDs showed slightly higher levels of glucosinolates, including glucoiberin, progoitrin, sinigrin, and glucobrassicanapin, than those irradiated with red LEDs. These results agree with the high expression levels of BoMYB28-2, BoMYB28-3, and BoMYB29 in white- and blue-irradiated kale microgreens. In contrast, kale microgreens irradiated with blue LEDs contained higher levels of phenolic compounds (gallic acid, catechin, ferulic acid, sinapic acid, and quercetin). According to the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assays, the extracts of kale microgreens irradiated with blue LEDs had slightly higher antioxidant activities, and the DPPH inhibition percentage had a positive correlation with TPC in the microgreens. Furthermore, the extracts of kale microgreens irradiated with blue LEDs exhibited stronger antibacterial properties against normal pathogens and multidrug-resistant pathogens than those irradiated with white and red LEDs. These results indicate that white-LED lights are suitable for carotenoid production, whereas blue-LED lights are efficient in increasing the accumulation of phenolics and their biological activities in kale microgreens.
Collapse
Affiliation(s)
- Seom Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kyungmin Ahn
- Department of Statistics, Keimyung University, Daegu 42601, Republic of Korea
| | - Haejin Kwon
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea
| |
Collapse
|
10
|
Ortega-Hernández E, Camero-Maldonado AV, Acevedo-Pacheco L, Jacobo-Velázquez DA, Antunes-Ricardo M. Immunomodulatory and Antioxidant Effects of Spray-Dried Encapsulated Kale Sprouts after In Vitro Gastrointestinal Digestion. Foods 2023; 12:foods12112149. [PMID: 37297394 DOI: 10.3390/foods12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The health-related compounds present in kale are vulnerable to the digestive process or storage conditions. Encapsulation has become an alternative for their protection and takes advantage of their biological activity. In this study, 7-day-old Red Russian kale sprouts grown in the presence of selenium (Se) and sulfur (S) were spray-dried with maltodextrin to assess their capacity to protect kale sprout phytochemicals from degradation during the digestion process. Analyses were conducted on the encapsulation efficiency, particle morphology, and storage stability. Mouse macrophages (Raw 264.7) and human intestinal cells (Caco-2) were used to assess the effect of the intestinal-digested fraction of the encapsulated kale sprout extracts on the cellular antioxidant capacity, the production of nitric oxide (NOx), and the concentrations of different cytokines as indicators of the immunological response. The highest encapsulation efficiency was observed in capsules with a 50:50 proportion of the hydroalcoholic extract of kale and maltodextrin. Gastrointestinal digestion affected compounds' content in encapsulated and non-encapsulated kale sprouts. Spray-dried encapsulation reduced the phytochemicals' degradation during storage, and the kale sprouts germinated with S and Se showed less degradation of lutein (35.6%, 28.2%), glucosinolates (15.4%, 18.9%), and phenolic compounds (20.3%, 25.7%), compared to non-encapsulated ones, respectively. S-encapsulates exerted the highest cellular antioxidant activity (94.2%) and immunomodulatory activity by stimulating IL-10 production (88.9%) and COX-2 (84.1%) and NOx (92.2%) inhibition. Thus, encapsulation is an effective method to improve kale sprout phytochemicals' stability and bioactivity during storage and metabolism.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Ana Victoria Camero-Maldonado
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Ignacio Morones Prieto 3000, Monterrey 64710, Mexico
| | - Laura Acevedo-Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
11
|
Bowen-Forbes C, Armstrong E, Moses A, Fahlman R, Koosha H, Yager JY. Broccoli, Kale, and Radish Sprouts: Key Phytochemical Constituents and DPPH Free Radical Scavenging Activity. Molecules 2023; 28:molecules28114266. [PMID: 37298743 DOI: 10.3390/molecules28114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny's Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm's Sprouting Broccoli (MUM), one kale: Johnny's Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts.
Collapse
Affiliation(s)
| | - Edward Armstrong
- Department of Pediatrics, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Audric Moses
- Lipidomics Core Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Helia Koosha
- School of Public Health, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
12
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Aziz A, Noreen S, Khalid W, Mubarik F, Niazi MK, Koraqi H, Ali A, Lima CMG, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022; 27:7320. [PMID: 36364145 PMCID: PMC9658993 DOI: 10.3390/molecules27217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, we discuss the advantages of vegetable sprouts in the development of food products as well as their beneficial effects on a variety of disorders. Sprouts are obtained from different types of plants and seeds and various types of leafy, root, and shoot vegetables. Vegetable sprouts are enriched in bioactive compounds, including polyphenols, antioxidants, and vitamins. Currently, different conventional methods and advanced technologies are used to extract bioactive compounds from vegetable sprouts. Due to some issues in traditional methods, increasingly, the trend is to use recent technologies because the results are better. Applications of phytonutrients extracted from sprouts are finding increased utility for food processing and shelf-life enhancement. Vegetable sprouts are being used in the preparation of different functional food products such as juices, bread, and biscuits. Previous research has shown that vegetable sprouts can help to fight a variety of chronic diseases such as cancer and diabetes. Furthermore, in the future, more research is needed that explores the extraordinary ways in which vegetable sprouts can be incorporated into green-food processing and preservation for the purpose of enhancing shelf-life and the formation of functional meat products and substitutes.
Collapse
Affiliation(s)
- Afifa Aziz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fizza Mubarik
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Madiha khan Niazi
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, St. Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410017, China
| | | | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
14
|
Wang J, Mao S, Liang M, Zhang W, Chen F, Huang K, Wu Q. Preharvest Methyl Jasmonate Treatment Increased Glucosinolate Biosynthesis, Sulforaphane Accumulation, and Antioxidant Activity of Broccoli. Antioxidants (Basel) 2022; 11:antiox11071298. [PMID: 35883789 PMCID: PMC9312100 DOI: 10.3390/antiox11071298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli is becoming increasingly popular among consumers owing to its nutritional value and rich bioactive compounds, such glucosinolates (GSLs) and hydrolysis products, which are secondary metabolites for plant defense, cancer prevention, and higher antioxidant activity for humans. In this study, 40 μmol/L methyl jasmonate (MeJA) was sprayed onto broccoli from budding until harvest. The harvested broccoli florets, stem, and leaves were used to measure the contents of GSLs, sulforaphane, total phenolics, and flavonoids, as well as myrosinase activity, antioxidant activity, and gene expression involved in GSL biosynthesis. The overall results revealed that GSL biosynthesis and sulforaphane accumulation were most likely induced by exogenous MeJA treatment by upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous MeJA treatment more remarkably contributed to the increased GSL biosynthesis in broccoli cultivars with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv No.3). Moreover, MeJA treatment had a more remarkable increasing effect in broccoli florets than stem and leaves. Interestingly, total flavonoid content substantially increased in broccoli florets after MeJA treatment, but total phenolics did not. Similarly, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, trolox-equivalent antioxidant capacity (ABTS), and ferric-reducing antioxidant power (FRAP) were higher in broccoli floret after MeJA treatment. In conclusion, MeJA mediated bioactive compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and flavonoids accumulation, and showed positive correlation on inducing higher antioxidant activities in broccoli floret. Hence, preharvest supplementation with 40 μM MeJA could be a good way to improve the nutritional value of broccoli florets.
Collapse
Affiliation(s)
- Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Mantian Liang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Wenxia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Fangzhen Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| |
Collapse
|
15
|
Manipulation of the Phytochemical Profile of Tenderstem ® Broccoli Florets by Short Duration, Pre-Harvest LED Lighting. Molecules 2022; 27:molecules27103224. [PMID: 35630699 PMCID: PMC9144114 DOI: 10.3390/molecules27103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Light quality has been reported to influence the phytochemical profile of broccoli sprouts/microgreens; however, few studies have researched the influence on mature broccoli. This is the first study to investigate how exposing a mature glasshouse grown vegetable brassica, Tenderstem® broccoli, to different light wavelengths before harvest influences the phytochemical content. Sixty broccoli plants were grown in a controlled environment glasshouse under ambient light until axial meristems reached >1 cm diameter, whereupon a third were placed under either green/red/far-red LED, blue LED, or remained in the original compartment. Primary and secondary spears were harvested after one and three weeks, respectively. Plant morphology, glucosinolate, carotenoid, tocopherol, and total polyphenol content were determined for each sample. Exposure to green/red/far-red light increased the total polyphenol content by up to 13% and maintained a comparable total glucosinolate content to the control. Blue light increased three of the four indole glucosinolates studied. The effect of light treatments on carotenoid and tocopherol content was inconclusive due to inconsistencies between trials, indicating that they are more sensitive to other environmental factors. These results have shown that by carefully selecting the wavelength, the nutritional content of mature broccoli prior to harvest could be manipulated according to demand.
Collapse
|
16
|
Sosa F, Marguet E, Vallejo M. Cambios en la concentración de ácido fítico, fósforo libre y hierro soluble durante la fermentación de repollo blanco y repollo chino. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se estudió la evolución de la concentración de ácido fítico, fósforo libre y hierro soluble durante la fermentación de repollo blanco y repollo chino. En ambos casos, la máxima población de bacterias ácido lácticas se logró a los cinco días del proceso y luego disminuyó continuamente hasta el final. El pH inicial del repollo blanco y repollo chino fue de 6,1 y durante los primeros cinco días disminuyó a 3,7 y 4,3 respectivamente, luego permanecieron estables hasta los 30 días. En el repollo blanco, la concentración de ácido fítico disminuyó y el fósforo libre se incrementó durante los primeros cinco días, después no se detectaron cambios significativos. En el repollo chino, la degradación del ácido fítico se observó durante los primeros 15 días, mientras que el fósforo libre aumentó hasta el final del proceso. Ambos vegetales mostraron una concentración inicial de hierro comparable, luego, se observó un incremento hasta el final del proceso, siendo este fenómeno más notable en el repollo chino. Los resultados obtenidos sugieren que la degradación del ácido fítico producida durante la fermentación por la actividad de fitasas vegetales y bacterianas, no sólo origina la liberación de fósforo libre, sino que mejora la bioaccesibilidad del hierro.
Palabras claves. biodisponibilidad de nutrientes, fermentación espontánea, Brassica
Collapse
Affiliation(s)
- Franco Sosa
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 2 Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| | - Emilio Marguet
- Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| |
Collapse
|
17
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L. UV and Visible Spectrum LED Lighting as Abiotic Elicitors of Bioactive Compounds in Sprouts, Microgreens and Baby Leaves. A Comprehensive Review Including Their Mode of Action. Foods 2022; 11:foods11030265. [PMID: 35159417 PMCID: PMC8834035 DOI: 10.3390/foods11030265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.
Collapse
|
18
|
Toro MT, Ortiz J, Becerra J, Zapata N, Fierro P, Illanes M, López MD. Strategies of Elicitation to Enhance Bioactive Compound Content in Edible Plant Sprouts: A Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2759. [PMID: 34961237 PMCID: PMC8709354 DOI: 10.3390/plants10122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
Vegetable sprouts are a food source that presents high content of bioactive compounds which can also be enhanced through elicitation mechanisms. To better understand the scientific production and research trends on this topic, a bibliometric analysis by means of the Web of Science database was carried out. The results showed significant growth in research on the elicitation of edible plants sprouts. The three most productive journals were the Journal of Agricultural and Food Chemistry, followed by Food Chemistry and LWT-Food Science and Technology. The co-occurrence of keyword analysis of the different authors showed that the main research topics in this domain were 'germination', 'antioxidant activity', 'sprouts', 'glucosinolates' and 'phenolics'. The countries with the highest number of scientific publications were China, followed by India and USA. The productivity patterns of the authors conformed to Lotka's law. This study provides an overview of research on elicitation to enrich bioactive compounds in sprouts, and the need to review and update the trends on this subject.
Collapse
Affiliation(s)
- María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Jaime Ortiz
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8320000, Chile;
| | - José Becerra
- Natural Products Chemistry Laboratory, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Víctor Lamas 1290, Concepción 4070386, Chile;
| | - Nelson Zapata
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Paulo Fierro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Marcelo Illanes
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - María Dolores López
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| |
Collapse
|
19
|
Renner IE, Gardner G, Fritz VA. Manipulation of Continuous and End-of-Day Red/Far-Red Light Ratios Affects Glucobrassicin and Gluconasturtiin Accumulation in Cabbage ( Brassica oleracea) and Watercress ( Nasturtium officinale), Respectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14126-14142. [PMID: 34787406 DOI: 10.1021/acs.jafc.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cabbage (Brassica oleracea) and watercress (Nasturtium officinale) produce glucobrassicin (GBS) and gluconasturtiin (GNST), precursors of chemopreventive compounds. Their accumulation is affected by environmental signals. We studied the impact of the red to far-red light (R/FR) ratio on GBS concentration in red ″Ruby Ball″ and green ″Tiara″ cabbage. Foliar shading, via weed surrogates that competed with cabbage plants for specific durations, induced R/FR variation among treatments. ″Ruby Ball″ GBS concentrations were the highest when R/FR within the canopy was the lowest. ″Tiara″ was unaffected by competition. The same trend was observed in a controlled environment using R and FR LEDs without weeds present. ″Ruby Ball″ subjected to an R/FR = 0.3 treatment had 2.5- and 1.4-fold greater GBS concentration compared to R/FR = 1.1 and 5.0 treatments combined. Watercress given end-of-day (EOD) R and/or FR pulses after the main photoperiod had the lowest GNST concentrations after an EOD FR pulse but the highest concentrations after an R followed by FR pulse.
Collapse
Affiliation(s)
- Ilse E Renner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Vincent A Fritz
- Southern Research and Outreach Center, University of Minnesota-Twin Cities, 35838 120th Street, Waseca, Minnesota 56093, United States
| |
Collapse
|
20
|
Kapusta-Duch J, Kusznierewicz B. Young Shoots of White and Red Headed Cabbages Like Novel Sources of Glucosinolates as Well as Antioxidative Substances. Antioxidants (Basel) 2021; 10:1277. [PMID: 34439525 PMCID: PMC8389310 DOI: 10.3390/antiox10081277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
Most literature data indicate that the diet rich in plant products reduces the risk of developing chronic non-communicable diseases and cancer. Brassica vegetables are almost exclusively synthesizing glucosinolates. Glucosinolates are higher in sprouts than in mature plants, being related to the activity of the specific myrosinase involved in the degradation of glucosinolates during developmental stages. This study compares the content of total glucosinolates with their profile and, rare in the literature, also with products of their degradation. Average amounts of total glucosinolates in young shoots of white and red headed cabbage were 26.23 µmol/g d.m. and 27.93 µmol/g d.m., respectively. In addition, antioxidative properties of 21-day-old shoots of white and red headed cabbage were assessed. The area of negative peaks after post-column derivatization with the ABTS reagent, indicating antioxidant activity of young red cabbage shoots, was 20185, compared to the value determined for young white cabbage shoots (3929). The results clearly indicate that, regardless of the vegetable species, young shoots of white and red headed cabbage can be an important source of bioactive substances in the diet, thus being an important element of cancer chemoprevention.
Collapse
Affiliation(s)
- Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Faculty of Chemistry, Technology and Biotechnology, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland;
| |
Collapse
|
21
|
Maina S, Ryu DH, Cho JY, Jung DS, Park JE, Nho CW, Bakari G, Misinzo G, Jung JH, Yang SH, Kim HY. Exposure to Salinity and Light Spectra Regulates Glucosinolates, Phenolics, and Antioxidant Capacity of Brassica carinata L. Microgreens. Antioxidants (Basel) 2021; 10:1183. [PMID: 34439431 PMCID: PMC8389028 DOI: 10.3390/antiox10081183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Jai-Eok Park
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Gaymary Bakari
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.B.); (G.M.)
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (S.M.); (D.H.R.); (J.Y.C.); (D.S.J.); (J.-E.P.); (C.W.N.); (J.H.J.)
| |
Collapse
|
22
|
Almuhayawi SM, Almuhayawi MS, Al Jaouni SK, Selim S, Hassan AHA. Effect of Laser Light on Growth, Physiology, Accumulation of Phytochemicals, and Biological Activities of Sprouts of Three Brassica Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6240-6250. [PMID: 34033484 DOI: 10.1021/acs.jafc.1c01550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brassica sprouts are known as a good source of antimicrobial bioactive compounds such as phenolics and glucosinolates (GLs). We aim at understanding how He-Ne laser light treatment (632 nm, 5 mW) improves sprout growth and physiology and stimulates the accumulation of bioactive metabolites in three Brassica spp., i.e., mustard, cauliflower, and turnip. Moreover, how these changes consequently promote their biological activities. Laser light improved growth, photosynthesis, and respiration, which induced the accumulation of primary and secondary metabolites. Laser light boosted the levels of pigments, phenolics, and indole and aromatic precursors of GLs, which resulted in increased total GLs and glucoraphanin contents. Moreover, laser light induced the myrosinase activity to provoke GLs hydrolysis to bioactive sulforaphane. Interestingly, laser light also reduced the anti-nutrient content and enhanced the overall biological activities of treated sprouts including antioxidant, antibacterial, anti-inflammatory, and anticancer activities. Accordingly, laser light is a promising approach for boosting the accumulation of beneficial metabolites in Brassica sprouts and, subsequently, their biological activities.
Collapse
Affiliation(s)
- Saad M Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. 2014, Sakaka, Saudi Arabia
| | - Abdelrahim H A Hassan
- Department of Food Safety & Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
23
|
Liu Z, Wang H, Xie J, Lv J, Zhang G, Hu L, Luo S, Li L, Yu J. The Roles of Cruciferae Glucosinolates in Disease and Pest Resistance. PLANTS 2021; 10:plants10061097. [PMID: 34070720 PMCID: PMC8229868 DOI: 10.3390/plants10061097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
With the expansion of the area under Cruciferae vegetable cultivation, and an increase in the incidence of natural threats such as pests and diseases globally, Cruciferae vegetable losses caused by pathogens, insects, and pests are on the rise. As one of the key metabolites produced by Cruciferae vegetables, glucosinolate (GLS) is not only an indicator of their quality but also controls infestation by numerous fungi, bacteria, aphids, and worms. Today, the safe and pollution-free production of vegetables is advocated globally, and environmentally friendly pest and disease control strategies, such as biological control, to minimize the adverse impacts of pathogen and insect pest stress on Cruciferae vegetables, have attracted the attention of researchers. This review explores the mechanisms via which GLS acts as a defensive substance, participates in responses to biotic stress, and enhances plant tolerance to the various stress factors. According to the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Linli Hu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Correspondence: ; Tel.: +86-931-763-2188
| |
Collapse
|
24
|
Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic-glucosinolates biosynthesis in broccoli sprouts. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Estimation of Glucosinolates and Anthocyanins in Kale Leaves Grown in a Plant Factory Using Spectral Reflectance. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spectral reflectance technique for the quantification of the functional components was applied in different studies for different crops, but related research on kale leaves is limited. This study was conducted to estimate the glucosinolate and anthocyanin components of kale leaves cultivated in a plant factory based on diffuse reflectance spectroscopy through regression methods. Kale was grown in a plant factory under different treatments. After specific periods of transplantation, leaf samples were collected, and reflectance spectra were measured immediately from nine different points on each leaf. The same leaf samples were freeze-dried and stored for analysis of the functional components. Regression procedures, such as principal component regression (PCR), partial least squares regression (PLSR), and stepwise multiple linear regression (SMLR), were applied to relate the functional components with the spectral data. In the laboratory analysis, progoitrin and glucobrassicin, as well as cyanidin and malvidin, were found to be dominating components in glucosinolates and anthocyanins, respectively. From the overall analysis, the SMLR model showed better performance, and the identified wavelengths for estimating the glucosinolates and anthocyanins were in the early near-infrared (NIR) region. Specifically, reflectance at 742, 761, 787, 796, 805, 833, 855, 932, 947, and 1000 nm showed a strong correlation.
Collapse
|
26
|
Alhomodi AF, Zavadil A, Berhow M, Gibbons WR, Karki B. Composition of canola seed sprouts fermented by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei under submerged-state fermentation. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Paśko P, Galanty A, Tyszka-Czochara M, Żmudzki P, Zagrodzki P, Gdula-Argasińska J, Prochownik E, Gorinstein S. Health Promoting vs Anti-nutritive Aspects of Kohlrabi Sprouts, a Promising Candidate for Novel Functional Food. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:76-82. [PMID: 33492585 DOI: 10.1007/s11130-020-00877-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Kohlrabi sprouts are just gaining popularity as the new example of functional food. The study was focused on the influence of germination time and light conditions on glucosinolates, phenolic acids, flavonoids, and fatty acids content in kohlrabi sprouts, in comparison to the bulbs. The effect of kohlrabi products on SW480, HepG2 and BJ cells was also determined. The length of sprouting time and light availability significantly influenced the concentrations of the phenolic compounds. Significant differences in progoitrin concentrations were observed between the sprouts harvested in light and in the darkness, with significantly lower content for darkness conditions. Erucic acid was the dominant fatty acid found in sprouts (14.5-34.5%). Sprouts and bulbs were less toxic to normal than to cancer cells. The sprouts stimulated necrosis (56.4%) more than apoptosis (34.1%) in SW480 cells, while the latter effect was predominant for the bulbs. Both sprouts and bulbs caused rather necrosis (45.5 and 63.9%) than apoptosis (32 and 32.5%) in HepG2 cells.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
28
|
Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chem 2020; 330:127189. [DOI: 10.1016/j.foodchem.2020.127189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
|
29
|
Is There Such a Thing as "Anti-Nutrients"? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020; 12:nu12102929. [PMID: 32987890 PMCID: PMC7600777 DOI: 10.3390/nu12102929] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Collapse
|
30
|
Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Domagała D, Kusznierewicz B. Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03593-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractCruciferous vegetables are a valuable source of ingredients with health benefits. The most characteristic compounds of cruciferous vegetables with identified anticancer properties are glucosinolates. Young shoots and sprouts of red cabbage are becoming a popular fresh food rich in nutrients and bioactive compounds. The objective of this research was to determine, for the first time in a comprehensive approach, whether young shoots of red headed cabbage are a better source of selected nutrients and glucosinolates in the human diet in comparison to the vegetable at full maturity. The proximate composition (protein, fat, digestible carbohydrates, fiber), fatty acids profile, minerals (calcium, magnesium, potassium, sodium, iron, zinc, manganese, copper), as well as glucosinolates were examined. The red headed cabbage was characterized by a significantly larger amount of dry matter, and total and digestible carbohydrates in comparison to young shoots. The ready-to-eat young shoots, which are in the phase of intensive growth, are a better source of protein, selected minerals, and especially glucosinolates. The level of some nutrients can be enhanced and the intake of pro-healthy glucosinolates can be significantly increased by including young shoots of red cabbage into the diet.
Collapse
|
31
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
32
|
Olszewska MA, Granica S, Kolodziejczyk-Czepas J, Magiera A, Czerwińska ME, Nowak P, Rutkowska M, Wasiński P, Owczarek A. Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food Funct 2020; 11:7231-7244. [PMID: 32760968 DOI: 10.1039/d0fo01387k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Broccoli sprouts represent a health-promoting food, rich in antioxidant and anti-inflammatory phytochemicals, among which sulfur compounds are most extensively investigated. In this study, the phenolics of broccoli sprouts (Brassica oleracea var. italica'Cezar') were examined for variability during germination and influence on the bioactivity of sprouts. In the sprouts germinated in darkness, 31 compounds were identified by UHPLC-PDA-ESI-MS3 (18 sinapic acid derivatives, 8 glucosinolates, and 5 flavonoids) with sinapoyl components (SADs) prevailing among polyphenols. The total SADs decreased during germination (down to 4.85 mg per g dw in 6-day-sprouts), but the concurrent changes in molecular structures of the leading compounds (sinapine was replaced by sinapate sugar esters and sinapic acid) increased the antioxidant capacity of the sprouts. The glucosinolate-depleted 6-day-sprout extract (34.2 mg SADs per g dw) effectively protected human plasma components against peroxynitrite-induced oxidative damage in vitro (reduced the levels of 3-nitrotyrosine, lipid hydroperoxides and thiobarbituric acid-reactive substances) and enhanced the non-enzymatic antioxidant status of plasma. It also downregulated the release of pro-inflammatory cytokines (TNF-α, IL-6) from LPS-stimulated human peripheral blood mononuclear cells and increased the production of IL-10, an anti-inflammatory mediator. The relevant activity parameters of sinapic acid indicated that SADs might be linked to the observed effects. The results support the application of broccoli sprouts in oxidative stress- and inflammation-related diseases and the role of SADs as their bioactive components next to glucosinolates.
Collapse
Affiliation(s)
- Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head ( Brassica oleracea var. capitata) Germplasm. Molecules 2020; 25:molecules25081860. [PMID: 32316621 PMCID: PMC7221891 DOI: 10.3390/molecules25081860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.
Collapse
|
34
|
Li L, Song S, Nirasawa S, Hung YC, Jiang Z, Liu H. Slightly Acidic Electrolyzed Water Treatment Enhances the Main Bioactive Phytochemicals Content in Broccoli Sprouts via Changing Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:606-614. [PMID: 30576129 DOI: 10.1021/acs.jafc.8b04958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Changes in the content of bioactive phytochemicals in the broccoli sprouts subjected to different slightly acidic electrolyzed water (SAEW) treatments were investigated in the present study. The highest sulforaphane amount in broccoli sprouts treated with SAEW with an available chlorine concentration (ACC) of 50 mg/L was 11.49 mg/g in dry weight (DW), which increased by 61.2% compared to the control. SAEW treatment enhanced the sulforaphane content mainly by increasing the glucoraphanin (GRA) concentration due to the promotion of methionine metabolism and increased myrosinase activities. In addition, the relative anthocyanin contents of light-germinated broccoli under SAEW 50 treatment were 2.03 times that of broccoli sprouts with tap water treatment, and these contents were associated with an increase in phenylalanine ammonia lyase (PAL) activities and phenylalanine participation in biosynthesis. In summary, SAEW promotes metabolism to induce the accumulation of bioactive compounds in broccoli sprouts.
Collapse
Affiliation(s)
- Lizhen Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Shuhui Song
- Beijing Vegetable Research Center , National Engineering Research Center for Vegetables , Beijing 100045 , China
| | - Satoru Nirasawa
- Biological Resources and Postharvest Division , Japan International Research Center for Agricultural Science , Ibaraki 305-8686 , Japan
| | - Yen-Con Hung
- Department of Food Science and Technology , University of Georgia , Griffin , Georgia 30223 , United States
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Haijie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , China Agricultural University , Beijing 100083 , China
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
35
|
Paśko P, Galanty A, Żmudzki P, Gdula-Argasińska J, Zagrodzki P. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:302-308. [PMID: 29876936 DOI: 10.1002/jsfa.9188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND This study aimed to evaluate the presence and content of selected phytochemicals, namely glucosinolates, fatty acids and phenolic compounds, in rutabaga (Brassica napus L. var. napobrassica) sprouts grown under various light conditions, in comparison to rutabaga seeds and roots. As rutabaga sprouts are likely to become new functional food, special emphasis was placed on the related risks of progoitrin and erucic acid presence - compounds with proven antinutritive properties. RESULTS Time of sprouting significantly decreased progoitrin content, especially after 10 days (by 91.5%) and 12 days (by 97.5%), as compared to 8 days. In addition, sprouts grown under dark conditions showed 27%, 60% and 17% reduction in progoitrin level in 8, 10 and 12 days after sowing, respectively, as compared to sprouts grown under natural conditions. Progoitrin was found to be the predominant glucosinolate in rutabaga seeds (804.07 ± 60.89 mg 100 g-1 dry weight (DW)), accompanied by glucoerucin (157.82 ± 21.04 mg 100 g-1 DW), also found in the roots (82.20 ± 16.53 mg 100 g-1 DW). Among the unsaturated fatty acids in rutabaga sprouts, erucic, linoleic, linolenic and gondoic acids decreased significantly, and only oleic acid increased as germination days progressed. The amount of harmful erucic acid in rutabaga sprouts was found to vary between 1.8% and 7%, depending on the day of seeding or light conditions, as compared to 42.5% in the seeds. CONCLUSION The evaluated rutabaga products showed a wide content range of potentially antinutritive compounds, sprouts having the lowest amounts of erucic acid and progoitrin. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, Cracow, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| | | | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
36
|
Aborus NE, Šaponjac VT, Čanadanović-Brunet J, Ćetković G, Hidalgo A, Vulić J, Šeregelj V. Sprouted and Freeze-Dried Wheat and Oat Seeds - Phytochemical Profile and in Vitro
Biological Activities. Chem Biodivers 2018; 15:e1800119. [DOI: 10.1002/cbdv.201800119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Naji Elhadi Aborus
- Faculty of Technology; University of Novi Sad; BulevarcaraLazara 1 21000 Novi Sad Serbia
| | - Vesna Tumbas Šaponjac
- Faculty of Technology; University of Novi Sad; BulevarcaraLazara 1 21000 Novi Sad Serbia
| | | | - Gordana Ćetković
- Faculty of Technology; University of Novi Sad; BulevarcaraLazara 1 21000 Novi Sad Serbia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS); University of Milan; Via Celoria 2 20133 Milan Italy
| | - Jelena Vulić
- Faculty of Technology; University of Novi Sad; BulevarcaraLazara 1 21000 Novi Sad Serbia
| | - Vanja Šeregelj
- Faculty of Technology; University of Novi Sad; BulevarcaraLazara 1 21000 Novi Sad Serbia
| |
Collapse
|
37
|
Šamec D, Pavlović I, Radojčić Redovniković I, Salopek-Sondi B. Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chem 2018; 269:96-102. [PMID: 30100490 DOI: 10.1016/j.foodchem.2018.06.133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
Five Brassicaceae sprouts (white cabbage, kale, broccoli, Chinese cabbage, arugula) were comparatively analyzed based on phytochemicals (polyphenols, glucosinolates, carotenoids, chlorophylls, ascorbic acid) content and accompanying enzymes associated with phytochemical stability and bioavailability (peroxidases, myrosinase, and polyphenol-oxidase) that consequently impact food quality. Significantly high content of polyphenols and glucosinolates, as well as a high antioxidant activity were found in white cabbage, followed by kale sprouts. In addition, white cabbage contained higher amount of fibers and lower polyphenol-oxidase activity which potentially indicates prevention of browning and consequently better sprout quality. Arugula and broccoli showed higher activity of myrosinase that may result in higher bioavailability of active glucosinolates forms. According to our data, sprouts are cheap, easy- and fast-growing source of phytochemicals but also they are characterized by different endogenous enzymes activity. Consequently, this parameter should also be taken into consideration in the studies related to the health benefits of the plant-based food.
Collapse
Affiliation(s)
- Dunja Šamec
- Ruđer Bošković Institute, Department of Molecular Biology, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Iva Pavlović
- Ruđer Bošković Institute, Department of Molecular Biology, Bijenička c. 54, 10000 Zagreb, Croatia
| | | | - Branka Salopek-Sondi
- Ruđer Bošković Institute, Department of Molecular Biology, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci 2017; 18:E2330. [PMID: 29113068 PMCID: PMC5713299 DOI: 10.3390/ijms18112330] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|
39
|
Baenas N, Suárez-Martínez C, García-Viguera C, Moreno DA. Bioavailability and new biomarkers of cruciferous sprouts consumption. Food Res Int 2017; 100:497-503. [DOI: 10.1016/j.foodres.2017.07.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022]
|
40
|
Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, Shin EC, Kim JK. Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: A review. Crit Rev Food Sci Nutr 2017; 58:2026-2038. [DOI: 10.1080/10408398.2017.1300134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Breann Abernathy
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
41
|
Pandey C, Augustine R, Panthri M, Zia I, Bisht NC, Gupta M. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:144-154. [PMID: 27930927 DOI: 10.1016/j.plaphy.2016.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As), a non-essential metalloid, severely affects the normal functioning of plants, animals and humans. Plants play a crucial role in metabolic, physiological and numerous detoxification mechanisms to cope up with As induced stress. This study aimed to examine the differential response in two Brassica juncea cultivars, Varuna and Pusa Jagannath (PJn) exposed to different doses of As (50, 150, 300 μM) for 48 h duration. Change in morphological traits, concentration of individual as well as total GSL, sulfur related thiol proteins, sulfur content, and phytochemicals were analyzed in both cultivars. Accumulation pattern of As showed dose dependent accumulation in both the cultivars, being more in PJn. Our finding revealed that both cultivars were tolerant at low concentrations of As, while at higher concentration Varuna excelled over PJn. The increased tolerance of Varuna cultivar exposed to 150 and 300 μM concentration of As, correlated with its increased thiol related proteins, sulfur content and phytochemicals, which serves as defence strategy in the plant against oxidative stress. Differential pattern of total as well as individual GSLs content was observed in both Varuna and PJn cultivars. Varuna cultivar showed higher level of total and aliphatic GSLs, which serves as defence compound with other detoxification machineries to combat As stress. Our findings provide foundation for developing metalloid tolerant crops by analyzing the role of different genes involved in GSL mechanism and signaling pathways in different organs of plant.
Collapse
Affiliation(s)
- Chandana Pandey
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ismat Zia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
42
|
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. Glucosinolates in Food. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
43
|
Baenas N, González-Trujano ME, Guadarrama-Enríquez O, Pellicer F, García-Viguera C, Moreno DA. Broccoli sprouts in analgesia – preclinical in vivo studies. Food Funct 2017; 8:167-176. [DOI: 10.1039/c6fo01489e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Broccoli sprouts produce significant and dose-dependent antinociceptive activity involving an opioid mechanism without sedative or gastric damage.
Collapse
Affiliation(s)
- Nieves Baenas
- Laboratory of Neuropharmacology of Natural Products
- Neuroscience Research Department
- Instituto Nacional de Psiquiatría “Ramón de la Fuente”
- México
- Mexico
| | - María Eva González-Trujano
- Laboratory of Neuropharmacology of Natural Products
- Neuroscience Research Department
- Instituto Nacional de Psiquiatría “Ramón de la Fuente”
- México
- Mexico
| | - Omar Guadarrama-Enríquez
- Laboratory of Neuropharmacology of Natural Products
- Neuroscience Research Department
- Instituto Nacional de Psiquiatría “Ramón de la Fuente”
- México
- Mexico
| | - Francisco Pellicer
- Laboratory of Neuropharmacology of Natural Products
- Neuroscience Research Department
- Instituto Nacional de Psiquiatría “Ramón de la Fuente”
- México
- Mexico
| | | | - Diego A. Moreno
- Phytochemistry Lab
- Department of Food Science and Technology
- CEBAS-CSIC
- 30100 Murcia
- Spain
| |
Collapse
|
44
|
The impact of high pressure on glucosinolate profile and myrosinase activity in seedlings from Brussels sprouts. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Ragusa L, Picchi V, Tribulato A, Cavallaro C, Lo Scalzo R, Branca F. The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. Int J Food Sci Nutr 2016; 68:411-420. [DOI: 10.1080/09637486.2016.1248907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucia Ragusa
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Valentina Picchi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per i processi dell’Industria Agroalimentare, Milan, Italy
| | - Alessandro Tribulato
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Chiara Cavallaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Roberto Lo Scalzo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per i processi dell’Industria Agroalimentare, Milan, Italy
| | - Ferdinando Branca
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
46
|
Guo R, Huang Z, Deng Y, Chen X, XuHan X, Lai Z. Comparative Transcriptome Analyses Reveal a Special Glucosinolate Metabolism Mechanism in Brassica alboglabra Sprouts. FRONTIERS IN PLANT SCIENCE 2016; 7:1497. [PMID: 27757119 PMCID: PMC5047911 DOI: 10.3389/fpls.2016.01497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 05/20/2023]
Abstract
Brassica sprouts contain abundant phytochemicals, especially glucosinolates (GSs). Various methods have been used to enhance GS content in sprouts. However, the molecular basis of GS metabolism in sprouts remains an open question. Here we employed RNA-seq analysis to compare the transcriptomes of high-GS (JL-08) and low-GS (JL-09) Brassica alboglabra sprouts. Paired-end Illumina RNA-seq reads were generated and mapped to the Brassica oleracea reference genome. The differentially expressed genes were analyzed between JL-08 and JL-09. Among these, 1477 genes were up-regulated and 1239 down-regulated in JL-09 compared with JL-08. Enrichment analysis of these differentially expressed genes showed that the GS biosynthesis had the smallest enrichment factor and the highest Q-value of all metabolic pathways in Kyoto Encyclopedia of Genes and Genomes database, indicating the main metabolic difference between JL-08 and JL-09 is the GS biosynthetic pathway. Thirty-seven genes of the sequenced data were annotated as putatively involved in GS biosynthesis, degradation, and regulation, of which 11 were differentially expressed in JL-08 and JL-09. The expression level of GS degradation enzyme myrosinase in high-GS JL-08 was lower compared with low-GS JL-09. Surprisingly, in high-GS JL-08, the expression levels of GS biosynthesis genes were also lower than those in low-GS JL-09. As the GS contents in sprouts are determined by dynamic equilibrium of seed stored GS mobilization, de novo synthesis, degradation, and extra transport, the result of this study leads us to suggest that efforts to increase GS content should focus on either raising GS content in seeds or decreasing myrosinase activity, rather than improving the expression level of GS biosynthesis genes in sprouts.
Collapse
Affiliation(s)
- Rongfang Guo
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongkai Huang
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanping Deng
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaodong Chen
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xu XuHan
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institut de la Recherche Interdisciplinaire de ToulouseToulouse, France
- *Correspondence: Xu XuHan
| | - Zhongxiong Lai
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Zhongxiong Lai
| |
Collapse
|
47
|
Jiang J, Wang Y, Xie T, Rong H, Li A, Fang Y, Wang Y. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica napus-Sinapis alba Hybrids. Molecules 2015; 20:21204-13. [PMID: 26633322 PMCID: PMC6332043 DOI: 10.3390/molecules201219761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
Breeding of yellow-seeded rapeseed (Brassica napus) is preferred over black-seeded rapeseed for the desirable properties of the former. This study evaluated the metabolites and nutritive values of black-seeded rapeseed meal and yellow-seeded meal from the progeny of a B. napus–Sinapis alba hybrid. Yellow-seed meal presented higher protein (35.46% vs. 30.29%), higher sucrose (7.85% vs. 7.29%), less dietary fiber (26.19% vs. 34.63%) and crude fiber (4.56% vs. 8.86%), and less glucosinolates (22.18 vs. 28.19 μmol/g) than black-seeded one. Amounts of ash (3.65% vs. 4.55%), phytic acid (4.98% vs. 5.60%), and total polyphenols (2.67% vs. 2.82%) were decreased slightly in yellow-seeded meal compared with black-seeded meal. Yellow-seeded meal contained more essential amino acids than black-seeded meal. Levels of the mineral elements Fe, Mn, and Zn in yellow-seeded meal were higher than black-seeded meal. By contrast, levels of P, Ca, and Mg were lower in yellow-seeded meal. Moreover, yellow-seeded meal showed lower flavonol (kaempferol, quercetin, isorhamnetin, and their derivatives) content than black-seeded meal. Comparison of metabolites between yellow and black rapeseed confirmed the improved nutritional value of meal from yellow-seeded B. napus, and this would be helpful to the breeding and improvement of rapeseed for animal feeding.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Yue Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Aimin Li
- Jiangsu Institute of Agricultural Science in the Lixiahe District, Yangzhou 225009, China.
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|