1
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03342-x. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
2
|
Satora P, Michalczyk M, Banaś J. Impact of Thyme Essential Oil on the Aroma Profile and Shelf Life of Vacuum-Packed Minced Turkey Meat. Molecules 2024; 29:3524. [PMID: 39124929 PMCID: PMC11314540 DOI: 10.3390/molecules29153524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
There is considerable interest in the use of essential oils for food preservation, but their effect on the aroma profile of a product is poorly understood. This study investigated the effect of thyme essential oil (EO) addition at increasing concentrations (0.005, 0.01, 0.02, and 0.03% v/w) on the volatile compound composition of vacuum-packed minced turkey meat after storage for 8 days at 1-2 °C. The aroma profile of the meat was determined using the HS-SPME/GCMS (headspace solid-phase microextraction/gas chromatography-mass spectrometry) method. The results were also analysed by PCA (principal component analysis). The addition of thyme EO had a modifying effect on the aroma profile of meat-derived components, e.g., the formation of benzeneacetaldehyde, benzyl alcohol, 4,7-dimethylbenzofuran, hexathiane, hexanal, and 1-hexanol was reduced and the appearance of 9-hexadecenoic acid was observed in the stored samples. The increase in EO concentration affected the levels of its individual components in the meat headspace in different ways. In terms of fat rancidity indices, even a 0.005% addition of this essential oil significantly reduced the peroxide value. Quantitative descriptive analysis (QDA) showed that the addition of thyme EO reduced or masked the intensity of unpleasant odours associated with meat spoilage. In the aroma analysis, the turkey with 0.02% v/w EO scored highest, and pleasant citrus notes were found.
Collapse
Affiliation(s)
- Paweł Satora
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| | - Magdalena Michalczyk
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Joanna Banaś
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
3
|
Ahmadi H, Fatahi R, Zamani Z, Shokrpour M, Sheikh-Assadi M, Poczai P. RNA-seq analysis reveals narrow differential gene expression in MEP and MVA pathways responsible for phytochemical divergence in extreme genotypes of Thymus daenensis Celak. BMC Genomics 2024; 25:237. [PMID: 38438980 PMCID: PMC10913619 DOI: 10.1186/s12864-024-10164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, β-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Reza Fatahi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran.
| | - Zabihollah Zamani
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Morteza Sheikh-Assadi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Lange BM, Srividya N, Lange I, Parrish AN, Benzenberg LR, Pandelova I, Vining KJ, Wüst M. Biochemical basis for the formation of organ-specific volatile blends in mint. FRONTIERS IN PLANT SCIENCE 2023; 14:1125065. [PMID: 37123862 PMCID: PMC10140540 DOI: 10.3389/fpls.2023.1125065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha ˣ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-β-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.
Collapse
Affiliation(s)
- B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- *Correspondence: B. Markus Lange,
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Amber N. Parrish
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
| | - Lukas R. Benzenberg
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, WashingtonState University, Pullman, WA, United States
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Matthias Wüst
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich Wilhelms-UniversitätBonn, Bonn, Germany
| |
Collapse
|
7
|
Sun M, Zhang Y, Zhu L, Liu N, Bai H, Sun G, Zhang J, Shi L. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. PLANT COMMUNICATIONS 2022; 3:100413. [PMID: 35841150 PMCID: PMC9700128 DOI: 10.1016/j.xplc.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Čelak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofeng Sun
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Pan X, Junejo SA, Tan CP, Zhang B, Fu X, Huang Q. Effect of potassium salts on the structure of γ-cyclodextrin MOF and the encapsulation properties with thymol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6387-6396. [PMID: 35556247 DOI: 10.1002/jsfa.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Thymol is a natural essential oil with strong volatility, low solubility, poor dispersion, strong irritation, and an unpleasant smell, which often requires appropriate porous materials to encapsulate thymol during the application process. However, the encapsulation efficiency of thymol in inclusion complexes is low, and new methods of encapsulation need to be developed. In the present study, the encapsulation capacity, storage stability, and antibacterial activity of thymol were investigated using γ-cyclodextrin (γ-CD) metal-organic frameworks (MOFs) by cocrystallization and high-temperature adsorption methods. The effect of different potassium salts (i.e. KOH, KCl, and KAc) on the structure and complexation of γ-CD-MOFs was also analyzed. RESULTS Compared with γ-CD, the thymol encapsulation capacity of γ-CD-MOFs was increased by two- to three-fold, with the encapsulation content following the order: KAc-γ-CD-MOF (293.8 mg g-1 ) > KOH-γ-CD-MOF (287.7 mg g-1 ) > KCl-γ-CD-MOF (249.3 mg g-1 ). The anions in the solution participate in the coordination and influence the symmetry relationship between atoms and ions. This explains the differences in both the three-dimensional γ-CD-MOF structure and the thymol encapsulation amount, as well as the high storage stability of thymol. CONCLUSION The in vitro release kinetics and antibacterial experiments showed that the inclusion complexes prepared by γ-CD-MOFs had higher stability, sustainability, and antibacterial activity, which suggests that it is an excellent complex material for industrial and agricultural applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaodan Pan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
9
|
Phenolic compounds and antimicrobial properties of mint and thyme. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Thymol Disrupts Cell Homeostasis and Inhibits the Growth of Staphylococcus aureus. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8743096. [PMID: 36034206 PMCID: PMC9392601 DOI: 10.1155/2022/8743096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus (S. aureus) is a typical kind of symbiotic bacteria, which can cause human pneumonia, food poisoning, and other health problems. Nowadays, the corresponding prevention and treatment have been a hot issue of general concern in related research areas. However, the mechanism of action against S. aureus is not well understood. In order to tackle such problem, we used broth microdilution to discuss the antibacterial effect of 5-methyl-2-isopropylphenol and determine inhibitory concentration. In addition, membrane potential and lipid peroxidation levels were also measured under experimental conditions. The experimental results suggested that 300 μg/mL thymol might cause cell membrane damage and decrease of NADPH concentration and increase of NADP+ and lipid peroxidation level. In such condition, thymol has the potential to result in membrane rupture and disruption of cellular homeostasis. Furthermore, we also found that NOX2 is involved in maintaining the balance of NADPH/NADP+ in cells. Finally, our work confirms that NOX2 is a potential downstream target for thymol in the cell. Such target can provide specific guidance and recommendations for its application in antifungal activity. Meanwhile, our study also provides a new inspiration for the molecular mechanism of thymol's bacteriostatic action.
Collapse
|
11
|
Stimulation of Secondary Metabolites and γ-Terpinene Synthase by Silver Nanoparticles in Callus Cultures of Carum carvi. Appl Biochem Biotechnol 2022; 194:3228-3241. [PMID: 35349082 DOI: 10.1007/s12010-022-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Biotechnology and nanotechnology are important tools for understanding biochemical pathways. They can be used efficiently for stimulating and increasing the production of secondary metabolites in medicinal plants. The present study aimed to identify the γ-terpinene synthase gene (CcTPS2) as an effective contributor to the biosynthetic pathway of monoterpenes. The effects of silver nanoparticles (AgNPs; 50 and 100 mg l- 1) and time (24 and 48 h) were examined on secondary metabolites in cell suspension cultures of Carum carvi. This involved the identification, isolation, and sequencing of a partial sequence in the CcTPS2 gene of C. carvi. The genomic sequence of CcTPS2 comprised 292 bp which were organized into two exons (110 and 82 bp) and one intron (100 bp), while the cDNA was 192 bp. In the scale of nucleotides, the CcTPS2 gene showed 96% similarity with the TPS2 gene of Oliveria decumbens. We generated sequence data of the CcTPS2 gene for the first time in this species, thereby enabling further developments in understanding the molecular mechanisms responsible for terpene biosynthesis and other chemical derivatives in C. carvi. The results of GC/MS and GC/FID showed that AgNPs strongly affected the secondary metabolites in cell suspension cultures of C. carvi. According to the results, the AgNPs (50 mg l- 1) increased p-cymene and carvone contents in comparison with the control. The exposure of plants to 100 mg l- 1 AgNPs induced the production of thymol and carvacrol. The results of real-time PCR revealed that the exposure of plants to 100 mg l- 1 AgNPs caused a significant upregulation of CcTPS2 expression for 24 h. These cell suspension cultures were elicited by AgNPs, the application of which proved as an effective method to improve the production of secondary metabolites in vitro.
Collapse
|
12
|
The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc Natl Acad Sci U S A 2021; 118:2110092118. [PMID: 34930840 PMCID: PMC8719858 DOI: 10.1073/pnas.2110092118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
The monoterpene alcohols thymol, carvacrol, and thymohydroquinone are characteristic flavor compounds of thyme, oregano, and other Lamiaceae. These specialized metabolites are also valuable for their antibacterial, anti-spasmolytic, and antitumor activities. We elucidated the complete biosynthetic pathway of these compounds, which starts with the formation of γ-terpinene from geranyl diphosphate. The aromatic backbone of thymol and carvacrol is formed by P450 monooxygenases in combination with a dehydrogenase via an unstable intermediate. Additional P450s hydroxylate thymol and carvacrol to form thymohydroquinone. Our findings demonstrate a mechanism for the formation of phenolic monoterpenes that differs from previous predictions and provides targets for metabolic engineering of high-value terpenes in plants. Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto–enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana. Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.
Collapse
|
13
|
Ugbogu OC, Emmanuel O, Agi GO, Ibe C, Ekweogu CN, Ude VC, Uche ME, Nnanna RO, Ugbogu EA. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil ( Ocimum gratissimum L.). Heliyon 2021; 7:e08404. [PMID: 34901489 PMCID: PMC8642617 DOI: 10.1016/j.heliyon.2021.e08404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
In traditional medicine, Ocimum gratissimum (clove basil) is used in the treatment of various diseases such as diabetes, cancer, inflammation, anaemia, diarrhoea, pains, and fungal and bacterial infections. The present study reviewed the phytochemicals, essential oils, and pharmacological activities of O. gratissimum. The bioactive compounds extracted from O. gratissimum include phytochemicals (oleanolic acid, caffeic acid, ellagic acid, epicatechin, sinapic acid, rosmarinic acid, chlorogenic acid, luteolin, apigenin, nepetoidin, xanthomicrol, nevadensin, salvigenin, gallic acid, catechin, quercetin, rutin, and kaempfero) and essential oils (camphene, β-caryophyllene, α- and β-pinene, α-humulene, sabinene, β-myrcene, limonene, 1,8-cineole, trans-β-ocimene, linalool, α- and δ-terpineol, eugenol, α-copaene, β-elemene, p-cymene, thymol, and carvacrol). Various in vivo and in vitro studies have shown that O. gratissimum and its bioactive constituents possess pharmacological properties such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, antihypertensive, antidiarrhoeal, and antimicrobial properties. This review demonstrated that O. gratissimum has a strong preventive and therapeutic effect against several diseases. The effectiveness of O. gratissimum to ameliorate various diseases may be attributed to its antimicrobial and antioxidant properties as well as its capacity to improve the antioxidant systems. However, despite the widespread pharmacological activities of O. gratissimum, further experiments in human clinical trial studies are needed to establish effective and safe doses for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Grace Oka Agi
- Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Abia State University, Uturu, PMB 2000, Uturu, Abia State, Nigeria
| | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Victor Chibueze Ude
- Department of Medical Biochemistry, College of Medicine Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria
| | - Miracle Ebubechi Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | | |
Collapse
|
14
|
Kianersi F, Pour-Aboughadareh A, Majdi M, Poczai P. Effect of Methyl Jasmonate on Thymol, Carvacrol, Phytochemical Accumulation, and Expression of Key Genes Involved in Thymol/Carvacrol Biosynthetic Pathway in Some Iranian Thyme Species. Int J Mol Sci 2021; 22:11124. [PMID: 34681782 PMCID: PMC8539593 DOI: 10.3390/ijms222011124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Thyme species are a good source of thymol and carvacrol, which play a key role in controlling diseases. For the first time, the expression patterns of γ-terpinene synthase (TPS2), CYP71D178, and CYP71D180 genes and the amount of phenolics compounds were evaluated in T. migricus and T. daenensis after different methyl jasmonate (MeJA) treatments. The highest thymol and carvacrol contents were observed in T. migricus (86.27%) and T. daenensis (17.87%) at MeJA 100 µM, which was consistent with the expression patterns of the three investigated genes. All species treated showed high total phenolic and flavonoid content compared to control plants for which the highest amounts were observed in T. vulgaris treated with 100 µM and 10 µM MeJA. Furthermore, in the 100 µM MeJA treatment, the relative expression of TPS2 and CYP71D178 in T. migricus increased 7.47 and 9.86-fold compared with the control, respectively. The highest level of CYP71D180 transcripts (5.15-fold) was also observed for T. daenensis treated. This finding highlights the notion that thymol was known as the dominant component of the essential oil rather than carvacrol in diffident thyme species. This implies that MeJA at different concentrations influenced metabolic pathways and induced expression changes, resulting in a rise in essential oil levels.
Collapse
Affiliation(s)
- Farzad Kianersi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan P.O. Box 6517838695, Iran;
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3183964653, Iran
| | - Mohammad Majdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj P.O. Box 1517566177, Iran;
- Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj P.O. Box 1517566177, Iran
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Baraki F, Gebregergis Z, Belay Y, Berhe M, Teame G, Hassen M, Gebremedhin Z, Abadi A, Negash W, Atsbeha A, Araya G. Multivariate analysis for yield and yield-related traits of sesame ( Sesamum indicum L.) genotypes. Heliyon 2020; 6:e05295. [PMID: 33117902 PMCID: PMC7581916 DOI: 10.1016/j.heliyon.2020.e05295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/15/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Sesame production under irrigation is limited in Ethiopia because of in availability of high yielding varieties, inadequate and inefficient irrigation schemes, and insignificant awareness of producers. This study, comprising 13 sesame genotypes, was conducted around Humera and Werer during 2018 and 2019 under irrigation. The design was randomized completely block design with three replications and the objectives were to develop high yielding genotypes and identify important agronomic traits. Multivariate statistical methods like Additive Main Effect and Multiplicative Interaction (AMMI) model, Principal Component Analysis, Cluster and factor analyses were used. The genotypes (6.22%), environments (42.62) and Genotype × Environment Interactions (25.09%) were statistically (p < 0.001) significant for the agronomic traits. The grain yield in each observation varied from 383 kg/ha to 2044 kg/ha and the grand mean yield was 820.19 kg/ha. The highest mean yield was recorded from G12 (948.6 kg/ha) followed by G4 (938.9 kg/ha) while the lowest was recorded from G8 (703.1 kg/ha). G1, G4, G12, G5, G8, G11 and G13 are identified as unstable genotypes while G2, G3, G6, and G9 are stable genotypes. The genotypes were grouped in to four clusters and cluster-II was characterized as the high yielding cluster and it was also associated with grain yield, pods per plant, branches per plant and thousand seed weight. Branches per plant, pods per plant and thousand seed weight may be most determinant and crucial in developing high yielding sesame varieties. This finding recommends that G4 and G6 are desirable genotypes and can be used for irrigation production.
Collapse
Affiliation(s)
- Fiseha Baraki
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Zenawi Gebregergis
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Yirga Belay
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Muez Berhe
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Goitom Teame
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Mohammed Hassen
- Ethiopian Institute of Agricultural Research, Wolkite Agricultural Research Center, Addis Ababa, Ethiopia
| | - Zerabruk Gebremedhin
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Assefa Abadi
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Weres Negash
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Alem Atsbeha
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Goitom Araya
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| |
Collapse
|
17
|
Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and Thyme Essential Oil-New Insights into Selected Therapeutic Applications. Molecules 2020; 25:E4125. [PMID: 32917001 PMCID: PMC7571078 DOI: 10.3390/molecules25184125] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Thymol (2-isopropyl-5-methylphenol) belongs to the phenolic monoterpenes and mostly occurs in thyme species. It is one of the main compounds of thyme essential oil. Both thymol and thyme essential oil have long been used in traditional medicine as expectorant, anti-inflammatory, antiviral, antibacterial, and antiseptic agents, mainly in the treatment of the upper respiratory system. The current search for new directions of biological or therapeutic activities of natural plant substances with known structures includes thyme essential oil and thymol. Novel studies have demonstrated their antibiofilm, antifungal, antileishmanial, antiviral, and anticancer properties. Also, their new therapeutic formulations, such as nanocapsules containing these constituents, can be beneficial in medicinal practice and create opportunities for their extensive use. Extensive application of thymol and thyme essential oil in the healthcare sector is very promising but requires further research and analysis.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| | - Martyna Przychodna
- Student’s Scientific Group of Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.P.); (S.S.)
| | - Sylwia Sopata
- Student’s Scientific Group of Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.P.); (S.S.)
| | - Agnieszka Bodalska
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| |
Collapse
|
18
|
Tardugno R, Serio A, Purgatorio C, Savini V, Paparella A, Benvenuti S. Thymus vulgaris L. essential oils from Emilia Romagna Apennines (Italy): phytochemical composition and antimicrobial activity on food-borne pathogens. Nat Prod Res 2020; 36:837-842. [DOI: 10.1080/14786419.2020.1798666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roberta Tardugno
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Vincenzo Savini
- Clinical Microbiology and Virology, Spirito Santo Civil Hospital, Pescara, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Sarfaraz D, Rahimmalek M, Saeidi G, Sabzalian MR. Genetic relations among and within wild and cultivated Thymus species based on morphological and molecular markers. 3 Biotech 2020; 10:289. [PMID: 32550108 DOI: 10.1007/s13205-020-02274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/23/2020] [Indexed: 11/26/2022] Open
Abstract
In the present study, the diversity of 11 Thymus species was assessed using molecular and morphological markers. Essential oil content and morphological traits were also investigated during two agronomic years. The result of the analysis of variance showed considerable differences among morphological traits. In the first and second years, the essential oil content of the species varied from 0.63 to 1.94% and 0.86 to 2.34%, respectively. T. vulgaris and T. migricus showed the highest essential oil content in two agronomic years. In this research, nine ISSR primers were also used to amplify 151 polymorphic bands in 77 accessions belonging to 11 Thymus species. Cluster and principal component (PCA) analyses classified the species in three major groups. Among the species, T. vulgaris and T. fedtschenkoi presented relatively higher genetic distance in comparison with other species. Analysis of molecular variance (AMOVA) revealed that 72.34% of the total variation was belonged to within-species variation, while 27.66% was associated among the species. High gene flow (Nm = 1.11) and genetic differentiation (Gst = 0.31) were also observed among the species. T. transcaspicus exhibited the highest genetic variation (0.19), polymorphism % (57.69%), and Shannon index (0.29). The STRUCTURE analysis also showed a high admixture of Thymus species that might be originated from a high rate of natural hybridization. Finally, based on molecular and morphological information, T. vulgaris and T. carmanicus can be suggested as good candidate species for further breeding programs in Thymus species.
Collapse
Affiliation(s)
- Danial Sarfaraz
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mohammad Reza Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| |
Collapse
|