1
|
Fu Y, Xu H, Bao Y, Wang J, Liu X, Huang Q. Unveiling the hidden potential: Above-ground parts of Paris yunnanensis Franch. Is promise as an anti-acne therapeutic beyond traditional medicinal sites. Fitoterapia 2024; 178:106179. [PMID: 39128555 DOI: 10.1016/j.fitote.2024.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The dried rhizomes of Paris yunnanensis Franch. have been extensively utilized in traditional Chinese medicine as hemostatic, antitumor, and antimicrobial agents. An examination of classical texts and renowned Chinese medical formulations showcased its efficacy in acne treatment. Presently, there is a significant scarcity of Paris resources. Consider directing attention towards the non-medicinal parts of Paris to mitigate the strain on medicinal resources within this realm. To address these resource limitations, this study investigated the bioactivity and pharmacodynamics of the above-ground parts of Paris (AGPP). A synergistic approach integrating network pharmacology, molecular docking (in silico validation), and animal experimentation (in vivo validation) was employed to elucidate the potential mechanisms underlying the efficacy of AGPP against acne vulgaris in this study. The active constituents in AGPP extracts were identified via UHPLC-Q-Orbitrap HRMS analysis, with their targets extracted for network pharmacological analysis. KEGG pathway analysis unveiled potential therapeutic mechanisms, validated through molecular docking and rat auricular acne model experiments. Comprehensive chemical characterization revealed fifty constituents, including steroidal saponins, flavonoids, amino acids, organic acids, phytohormones, phenolic acids, and alkaloids. Diosgenin, Quercetin, Kaempferol, Ecdysone, and α-linolenic acid were identified as main constituents with acne-treating potential. Core targets included SRC, MAPK3, and MAPK1, with key signaling pathways implicated. Histologically, AGPP mitigated acne-induced follicular dilatation and inflammation, inhibiting inflammatory cytokine production (IL-6, IL-1β, TNF-α). This study offers insight into AGPP's mechanism for acne treatment, laying groundwork for Paris development and drug discovery.
Collapse
Affiliation(s)
- Yue Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Huiyuan Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Yuchen Bao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Jin Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Xianwu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhang D, Tian X, Wang Y, Liu F, Zhang J, Wang H, Zhang N, Yan T, Lin C, Shi Z, Liu R, Jiang S. Polyphyllin I ameliorates gefitinib resistance and inhibits the VEGF/VEGFR2/p38 pathway by targeting HIF-1a in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155690. [PMID: 38761523 DOI: 10.1016/j.phymed.2024.155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 μM). Significantly, treatment with PPI at 1.0 μM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.
Collapse
Affiliation(s)
- Dengtian Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Youzhi Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Ni Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
3
|
Singh Bisht S, Meena RK, Bhandari MS, Pal Singh P, Sharma U, Bisht A, Verma PK. Exploring Steroidal Saponin Composition and Morphometric Characteristics of Rhizomes from Trillium govanianum Wall. ex D. Don: Inference for Medicinal Properties and Genetic Stock Improvement. Chem Biodivers 2024; 21:e202400588. [PMID: 38651315 DOI: 10.1002/cbdv.202400588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.
Collapse
Affiliation(s)
- Surendra Singh Bisht
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| | - Rajendra K Meena
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, 248 195, India
| | - Maneesh S Bhandari
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, 248 195, India
| | - Prithvi Pal Singh
- C-H Activation and Phytochemistry Lab, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, India
| | - Aman Bisht
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| | - Praveen K Verma
- Botany Division, ICFRE-Forest Research Institute, 248006, Dehradun, India
| |
Collapse
|
4
|
Gao XM, Wang X, Ma WS, Yang Y, Tang LP, Yang B. Comparative metabolome profiling of Paris polyphylla var. yunnanensis cultivars and Paris luquanensis and their biological activity in zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117272. [PMID: 37820995 DOI: 10.1016/j.jep.2023.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla var. Yunnanensis (Franch.) Hand.-Mazz., a perennial medicinal herb commonly known as "Chonglou" in Chinese, is mainly effective against innominate toxin swelling, insect sting, snake bite, traumatic injuries and various inflammatory. It is also recorded with mild toxicity. The rare species Paris luquanensis H. Li has been also used as folk medicine in Yunnan province for the same effects. Compared with P. polyphylla var. Yunnanensis (35-100 cm in height), this species has variegated leaves, and grows slower and is therefore shorter (6-23 cm in height). There are a number of different cultivars based on the shape of the petal and the height of Paris plant. However, currently, investigations into the differences of the chemical profiling of these cultivars are lacking. AIM OF THE STUDY This study aims to: (1) examine metabolites variations in Paris polyphylla var. Yunnanensis cultivars and Paris luquanensis; (2) investigate the different metabolite accumulation patterns between rhizomes and leaves and provide more useful information for the application of P. polyphylla var. Yunnanensis leaves; (3) compare in vivo effects on the recruitment of reactive oxygen species (ROS) and Neutrophils and toxic effects in zebrafish model between leaves and rhizomes of P. polyphylla var. Yunnanensis and P. luquanensis. MATERIALS AND METHODS The change patterns of metabolites in the leaves and rhizomes of four P. polyphylla var. Yunnanensis cultivars and one P. luquanensis cultivar were analyzed using an UPLC-ESI-MS/MS system. The total phenolic acid, total flavonoid, total saponin components and in vitro antioxidant activities were determined by spectrophotometric methods. The in vivo toxicity and their effects on the recruitment of ROS and neutrophils in zebrafish model were performed. RESULTS The widely targeted metabolomics method detected 695 metabolites in tested samples and classified as 15 known classes according to structures of the metabolites. By overall-comparing the SDMs discerned between leaves and rhizomes of each samples, 161 metabolites were substantially altered in all the cultivars. There are 62 and 64 SDMs showing constitutive differential accumulation between leaves and rhizomes of P. polyphylla var. Yunnanensis (samples A-D) and P. luquanensis (sample E), respectively. The levels of TSC, TPC and TFC decreased significantly in leaves as compared to rhizomes for all cultivars, with the exception of TPC in cultivar A, which is almost the same in leave and rhizome. The DPPH scavenging property and FRAP values of rhizomes are higher than those of leaves for all cultivars. However, there is no distinct different between leaves and rhizomes of different sample extracts for in vivo effects on the recruitment of ROS and neutrophils in zebrafish model. BL extracts showed high toxicity to the developing embryos. CONCLUSION As far as we are concerned, this study analyzes the P. polyphylla var. Yunnanensis and P. luquanensis variegation from the perspective of the metabolites pattern for the first time. The results give a valuable insight into the specie metabolic profiling and in vivo anti-oxidant, anti-inflammatory and toxic effects of these Paris plants.
Collapse
Affiliation(s)
- Xue Mei Gao
- The Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, PR China.
| | - Xin Wang
- The Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, PR China
| | - Wei Si Ma
- The Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, PR China
| | - Yan Yang
- The Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, PR China
| | - Li Ping Tang
- The Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, PR China
| | - Bin Yang
- The Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, PR China.
| |
Collapse
|
5
|
Zhang Q, Chang S, Yang Y, Xi C, Dong Y, Liu L, He Y, Liu Y, Cai B, Liu T. Endophyte-inoculated rhizomes of Paris polyphylla improve polyphyllin biosynthesis and yield: a transcriptomic analysis of the underlying mechanism. Front Microbiol 2023; 14:1261140. [PMID: 38029197 PMCID: PMC10643526 DOI: 10.3389/fmicb.2023.1261140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Polyphyllin from Paris polyphylla var. yunnanensis exhibits anti-inflammatory, analgesic, antibacterial, and antiviral properties. However, the current production of polyphyllin can barely meet market demand. To improve the content of polyphyllin produced by P. polyphylla, two endophyte strains, Bacillus cereus LgD2 and Fusarium oxysporum TPB, were isolated from Paris fargesii Franch. and inoculated in the roots of P. polyphylla. Both symbiotic strains significantly promoted the accumulation of saponins in P. polyphylla. Methods The content of polyphyllin in rhizomes of P. polyphylla treated with TPB with LgD2 strain was determined using High Performance Liquid Chromatography and the expressed genes were analyzed by RNA-seq. Gene Ontology and Kyoto Encyclopedia of Genes annotations were performed on the differentially expressed genes, a clustering tree of UDP-glycosyltransferase (UGT) and cytochrome P450 (CYP450) gene families was constructed, and UGT and CYP450 involved in the biosynthesis of polyphyllin were predicted using weighted correlation network analysis (WGCNA). Results RNA-seq and qRT-PCR analyses showed that endophytic inoculation did not promote polyphyllin accumulation by enhancing the upstream terpene biosynthesis pathway, but probably by up-regulating the downstream CYP450 and UGT genes associated with polyphyllin biosynthesis. Genomes enrichment analyses of differentially expressed genes indicated that inoculation with LgD2 and TPB played a positive role in promoting the defense against pathogenic bacteria, enhancing the biosynthesis of carbohydrates, attenuating the process of nitrogen metabolism, and maintaining the equilibrium of the redox reaction homeostasis, potentially indirectly enhancing the polyphyllin yield of P. polyphylla. By combining differentially expressed genes screening, WGCNA, and phylogenetic tree analyses, 17 CYP450 and 2 UGT candidate genes involved in the biosynthesis of polyphyllin I, polyphyllin II, polyphyllin VII, polyphyllin D, and polyphyllin H were identified. These results suggest that endophytes probably effectively promote the accumulation of polyphyllin by regulating key downstream genes in biosynthetic pathways. Discussion This study provides a new approach for investigating the regulatory mechanisms of endophytes that promote the production and accumulation of polyphyllin in P. polyphylla, providing a basis for further elucidating the mechanisms of plant-endophyte interactions.
Collapse
Affiliation(s)
- Qing Zhang
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Sheng Chang
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Ying Yang
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Congfang Xi
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yumei Dong
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Lufeng Liu
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yunchao He
- Lushui City Katma Township People's Government Agricultural and Rural Integrated Service Center, Lushui, Yunnan, China
| | - Yu Liu
- Shenzhen TCM Hospital, Shenzhen, China
| | - Bo Cai
- Center of Yunnan Zhongyan Industry Co., Ltd., Kunming, China
| | - Tao Liu
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Wen F, Chen S, Wang Y, Wu Q, Yan J, Pei J, Zhou T. The synthesis of Paris saponin VII mainly occurs in leaves and is promoted by light intensity. FRONTIERS IN PLANT SCIENCE 2023; 14:1199215. [PMID: 37575916 PMCID: PMC10420111 DOI: 10.3389/fpls.2023.1199215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Unraveling the specific organs and tissues involved in saponin synthesis, as well as the light regulatory mechanisms, is crucial for improving the quality of artificially cultivated medicinal materials of Paris plants. Paris saponin VII (PS VII), a high-value active ingredient, is found in almost all organs of Paris plant species. In this study, we focused on Paris polyphylla var. yunnanensis (Franch.) Hand. - Mzt. (PPY) and found that PS VII synthesis predominantly occurs in leaves and is increased by high light intensity. This intriguing discovery has unveiled the potential for manipulating non-traditional medicinal organ leaves to improve the quality of medicinal organ rhizomes. The analysis of the impact of organ differences on saponin concentration in P. polyphylla var. chinensis (Franch.) Hara (PPC), P. fargesii Franch. (PF), and PPY revealed consistency among the three Paris species and was mainly dominated by PS VII. Notably, the leaves and stems exhibited much higher proportions of PS VII than other organs, accounting for 80-90% of the four main saponins. Among the three Paris species, PPY had the highest concentration of PS VII and was selected for subsequent experiments. Further investigations on saponin subcellular localization, temporal variation, and stem wound fluid composition demonstrated that PS VII is synthesized in mesophyll cells, released into the intercellular space through exocytosis, and then transported to the rhizome via vascular tissue. These findings confirm the significant role of leaves in PS VII synthesis. Additionally, a 13C-glucose feeding to trace PS VII biosynthesis revealed that only PS VII in the leaves exhibited incorporation of the labeled carbon, despite conducting 13C-glucose feeding in leaves, stems, rhizomes, and roots. Thus, the leaves are indeed the primary organ for PS VII synthesis in PPY. Furthermore, compared with plants under 100 μmol m-2 s-1, plants under 400 μmol m-2 s-1 exhibited a higher PS VII concentration, particularly in the upper epidermal cells of the leaves. We propose that high light intensity promotes PS VII synthesis in leaves through three mechanisms: (1) increased availability of substrates for saponin synthesis; (2) protection of leaves from high light damage through enhanced saponin synthesis; and (3) enhanced compartmentalization of saponins within the leaves, which in turn feedback regulates saponin synthesis.
Collapse
Affiliation(s)
- Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Afifah IQ, Wibowo I, Faizal A. A newly identified β-amyrin synthase gene hypothetically involved in oleanane-saponin biosynthesis from Talinum paniculatum (Jacq.) Gaertn. Heliyon 2023; 9:e17707. [PMID: 37449131 PMCID: PMC10336583 DOI: 10.1016/j.heliyon.2023.e17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Talinum paniculatum or Javanese ginseng in Indonesia is a plant widely used as a traditional medicine. The genus Talinum produces oleanane-type saponins, such as talinumoside I. The first aim of this study was to isolate the probable gene encoding β-amyrin synthase (bAS), a key enzyme involved in the cyclization of 2,3-oxidosqualene producing the backbone of the oleanane-type saponin β-amyrin and characterize the gene sequence and the predicted protein sequence using in silico approach. The second aim was to analyze the correlation between the TpbAS gene expression level and saponin production in various plant organs. Thus, TpbAS was isolated using degenerate primers and PCR 5'/3'-Rapid Amplification of cDNA Ends (RACE), then the gene sequence and the predicted protein were in silico analyzed using various programs. TpbAS expression level was analyzed using reverse transcriptase PCR (RT-PCR), and saponin content was measured using a spectrophotometer. The results showed that the full-length TpbAS gene consists of 2298 base pairs encoding for a 765-amino acid protein. From in silico study, the (GA)n sequence was identified in the 5'-untranslated regions and predicted to be a candidate of the gene expression modulator. In addition, functional RNA motifs and sites analysis predicted the presence of exon splicing enhancers and silencers within the coding sequence and miRNA target sites candidate. Amino acid sequence analysis showed DCTAE, QW, and WCYCR motifs that were conserved in all classes of oxidosqualene cyclase enzymes. Phylogenetic tree analysis showed that TpbAS is closely related to other plant oxidosqualene cyclase groups. Analysis of TpbAS expression and saponin content indicated that saponin is mainly synthesized and accumulated in the leaves. Taken together, these findings will assist in increasing the saponin content through a metabolic engineering approach.
Collapse
Affiliation(s)
- Ika Qurrotul Afifah
- Chemistry Department, Faculty of Science and Technology, UIN Sunan Kalijaga Yogyakarta, Yogyakarta, 55281, Indonesia
| | - Indra Wibowo
- Physiology, Animal Development, and Biomedical Sciences Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
8
|
Development, characterisation, and in vitro anti-tumor effect of self-microemulsifying drug delivery system containing polyphyllin I. Drug Deliv Transl Res 2023; 13:356-370. [PMID: 35877046 DOI: 10.1007/s13346-022-01212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 01/01/2023]
Abstract
Polyphyllin I (PPI), an effective active ingredient in Paris polyphylla, has a diverse set of pharmacological properties. However, due to its poor solubility and oral absorption, its application and development are limited. In the study, we were committed to improving the solubility of PPI by developing a self-microemulsifying drug delivery system of PPI (PPI-SMEDDS), screening the best preparation process, and evaluating the quality and the in vivo pharmacokinetics of PPI, and PPI-SMEDDS following oral administration to rats were also studied. In addition, the pharmacological activities against human lung adenocarcinoma cell A549 in vitro were assessed. The best formulation had 15.89% ethyl oleate, 47.38% Cremophor RH40, and 36.73% 1,2 propylene glycol. The produced PPI-SMEDDS was clear and transparent, with an average particle size of 24.51 nm and a zeta potential of -17.54 ± 0.51 mV. In vitro, the cumulative release rate of PPI-SMEDDS was nearly 80% within 2 h. PPI-SMEDDS had a substantially greater area under the curve than PPI following oral treatment in rats, and the relative bioavailability of PPI in rats was 278.99%. More importantly, the anti-tumor effect of PPI-SMEDDS in vitro was significantly greater than that of PPI. These findings suggested that PPI-SMEDDS has the potential to improve the solubility, oral bioavailability of PPI, and anti-tumor effect, laying the groundwork for future research on the new PPI dosage form.
Collapse
|
9
|
Hou L, Zhang F, Yuan X, Li S, Tian W, Tian W, Li J. Comparative transcriptome analysis reveals key genes for polyphyllin difference in five Paris species. PHYSIOLOGIA PLANTARUM 2022; 174:e13810. [PMID: 36326141 DOI: 10.1111/ppl.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Lixiu Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Furui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xincheng Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weijun Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Weirong Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Gao X, Su Q, Li J, Yang W, Yao B, Guo J, Li S, Liu C. RNA-Seq analysis reveals the important co-expressed genes associated with polyphyllin biosynthesis during the developmental stages of Paris polyphylla. BMC Genomics 2022; 23:559. [PMID: 35931959 PMCID: PMC9354290 DOI: 10.1186/s12864-022-08792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Plants synthesize metabolites to adapt to a continuously changing environment. Metabolite biosynthesis often occurs in response to the tissue-specific combinatorial developmental cues that are transcriptionally regulated. Polyphyllins are the major bioactive components in Paris species that demonstrate hemostatic, anti-inflammatory and antitumor effects and have considerable market demands. However, the mechanisms underlying polyphyllin biosynthesis and regulation during plant development have not been fully elucidated. Results Tissue samples of P. polyphylla var. yunnanensis during the four dominant developmental stages were collected and investigated using high-performance liquid chromatography and RNA sequencing. Polyphyllin concentrations in the different tissues were found to be highly dynamic across developmental stages. Specifically, decreasing trends in polyphyllin concentration were observed in the aerial vegetative tissues, whereas an increasing trend was observed in the rhizomes. Consistent with the aforementioned polyphyllin concentration trends, different patterns of spatiotemporal gene expression in the vegetative tissues were found to be closely related with polyphyllin biosynthesis. Additionally, molecular dissection of the pathway components revealed 137 candidate genes involved in the upstream pathway of polyphyllin backbone biosynthesis. Furthermore, gene co-expression network analysis revealed 74 transcription factor genes and one transporter gene associated with polyphyllin biosynthesis and allocation. Conclusions Our findings outline the framework for understanding the biosynthesis and accumulation of polyphyllins during plant development and contribute to future research in elucidating the molecular mechanism underlying polyphyllin regulation and accumulation in P. polyphylla. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08792-2.
Collapse
Affiliation(s)
- Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Qixuan Su
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jing Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Mengla, Yunnan, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
11
|
Comparative Transcriptome and Phytochemical Analysis Provides Insight into Triterpene Saponin Biosynthesis in Seeds and Flowers of the Tea Plant (Camellia sinensis). Metabolites 2022; 12:metabo12030204. [PMID: 35323647 PMCID: PMC8949954 DOI: 10.3390/metabo12030204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
Triterpene saponins exhibit various biological and pharmacological activities. However, the knowledge on saponin biosynthesis in tea plants (Camellia sinensis L.) is still limited. In this work, tea flower and seed samples at different developmental stages and leaves were collected and analyzed with UPLC-PDA-MS and RNA sequencing for saponin determination and transcriptome comparison. The saponin content reached around 19% in the freshly mature seeds and 7% in the green flower buds, and decreased with the fruit ripeness and flower blooming. Almost no saponins were detected in leaf samples. PCA and KEGG analysis suggested that the gene expression pattern and secondary metabolism in TF1 and TS2 vs. leaf samples were significantly different. Weighted gene coexpression network analysis (WGCNA) uncovered two modules related to saponin content. The mevalonate (MVA) instead of 2-C-methyl-d-erythritol-4-phospate (MEP) pathway was responsible for saponin accumulation in tea plants, and 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), diphosphomevalonate decarboxylase (MVD) and isopentenyl diphosphate isomerase (IDI) may be the key enzymes involved in saponin biosynthesis in tea seeds and flowers. Moreover, ten transcription factors (TFs) were predicted to regulate saponin biosynthesis in the tea plant. Taken together, our study provides a global insight into the saponin biosynthesis and accumulation in the tea plant.
Collapse
|
12
|
Zhao J, Sun C, Shi F, Ma S, Zheng J, Du X, Zhang L. Comparative transcriptome analysis reveals sesquiterpenoid biosynthesis among 1-, 2- and 3-year old Atractylodes chinensis. BMC PLANT BIOLOGY 2021; 21:354. [PMID: 34315414 PMCID: PMC8314494 DOI: 10.1186/s12870-021-03131-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atractylodes chinensis (DC.) Koidz is a well-known medicinal plant containing the major bioactive compound, atractylodin, a sesquiterpenoid. High-performance liquid chromatography (HPLC) analysis demonstrated that atractylodin was most abundant in 3-year old A. chinensis rhizome, compared with those from 1- and 2-year old rhizomes, however, the molecular mechanisms underlying accumulation of atractylodin in rhizomes are poorly understood. RESULTS In this study, we characterized the transcriptomes from rhizomes of 1-, 2- and 3-year old (Y1, Y2 and Y3, respectively) A. chinensis, to identify differentially expressed genes (DEGs). We identified 240, 169 and 131 unigenes encoding the enzyme genes in the mevalonate (MVA), methylerythritol phosphate (MEP), sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. To confirm the reliability of the RNA sequencing analysis, eleven key gene encoding factors involved in the sesquiterpenoid and triterpenoid biosynthetic pathway, as well as in pigment, amino acid, hormone and transcription factor functions, were selected for quantitative real time PCR (qRT-PCR) analysis. The results demonstrated similar expression patterns to those determined by RNA sequencing, with a Pearson's correlation coefficient of 0.9 between qRT-PCR and RNA-seq data. Differential gene expression analysis of rhizomes from different ages revealed 52 genes related to sesquiterpenoid and triterpenoid biosynthesis. Among these, seven DEGs were identified in Y1 vs Y2, Y1 vs Y3 and Y2 vs Y3, of which five encoded four key enzymes, squalene/phytoene synthase (SS), squalene-hopene cyclase (SHC), squalene epoxidase (SE) and dammarenediol II synthase (DS). These four enzymes directly related to squalene biosynthesis and subsequent catalytic action. To validate the result of these seven DEGs, qRT-PCR was performed and indicated most of them displayed lower relative expression in 3-year old rhizome, similar to transcriptomic analysis. CONCLUSION The enzymes SS, SHC, SE and DS down-regulated expression in 3-year old rhizome. This data corresponded to the higher content of sesquiterpenoid in 3-year old rhizome, and confirmed by qRT-PCR. The results of comparative transcriptome analysis and identified key enzyme genes laid a solid foundation for investigation of production sesquiterpenoid in A. chinensis.
Collapse
Affiliation(s)
- Jianhua Zhao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| | - Chengzhen Sun
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| | - Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| | - Shanshan Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| | - Jinshuang Zheng
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China.
| | - Xin Du
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| | - Liping Zhang
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
| |
Collapse
|