1
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA, Fawzy MS, Shehata SA. Neurotoxic mechanisms of dexamethasone in SH-SY5Y neuroblastoma cells: Insights into bioenergetics, oxidative stress, and apoptosis. Steroids 2024; 212:109514. [PMID: 39303897 DOI: 10.1016/j.steroids.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Despite the known therapeutic uses of dexamethasone (DEX), the specific mechanisms underlying its neurotoxic effects in neuronal cells, particularly in undifferentiated human neuroblastoma (SH-SY5Y) cells, remain inadequately understood. This study aims to elucidate these mechanisms, emphasizing bioenergetics, oxidative stress, and apoptosis, thereby providing novel insights into the cellular vulnerabilities induced by chronic DEX exposure. The findings revealed significant reductions in cell viability, altered membrane integrity with LDH leakage, decreased intracellular ATP production, and the electron transport chain complexes I and III activity inhibition. DEX significantly increased the release of the reactive species and peroxidation of lipids, as well as of Nrf2 expression. At the same time, it simultaneously led to a decline in the activities of the antioxidant catalase and superoxide dismutase enzymes, along with a depletion of glutathione reserves. The apoptosis process was exhibited by a significant elevation of caspases 3 and 8 activities with overexpression of mRNA BAX, inhibition of BCL-2, and a significant upregulation of the BAX/BCL-2 ratio. Assessment of neuronal development genes (GAP43, CAMK2A, CAMK2B, TUBB3, and Wnts) by quantitative PCR assay showed increased expression of CAMK2A, CAMK2B, and Wnt3a with a significant reduction in GAP43 mRNA levels. Collectively, this study proved that DEX was cytotoxic to SH-SY5Y via bioenergetic disruption, mitochondrial dysfunction, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Shaimaa A Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
3
|
Akbari-Gharalari N, Ghahremani-Nasab M, Naderi R, Aliyari-Serej Z, Karimipour M, Shahabi P, Ebrahimi-Kalan A. Improvement of spinal cord injury symptoms by targeting the Bax/Bcl2 pathway and modulating TNF-α/IL-10 using Platelet-Rich Plasma exosomes loaded with dexamethasone. AIMS Neurosci 2023; 10:332-353. [PMID: 38188010 PMCID: PMC10767060 DOI: 10.3934/neuroscience.2023026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that results in impaired sensory and motor function due to the limited self-regenerative ability of the spinal cord. To address this issue, combination therapy has been proposed as an effective treatment strategy for SCI regeneration. In this study, Platelet-Rich Plasma (PRP)-derived exosomes loaded with dexamethasone were utilized in a mouse model of SCI compression. PRP-derived exosomes loaded with dexamethasone (Dex) were prepared using ultracentrifugation and sonication methods and were administered to the mice via intravenous injection. Following a four-week duration, behavioral assessments were administered to assess functional recuperation, and diverse metrics encompassing the expression of genes associated with apoptosis and antiapoptosis, serum cytokine concentrations and tissue sampling were subjected to thorough examination. The results of this study demonstrated that mice treated with PRP-derived exosomes loaded with Dex (ExoDex) exhibited altered levels of TNF-α and IL-10, along with decreased Bax and increased Bcl2 expression in comparison to the model group. Furthermore, intravenously injected ExoDex reduced the size of the lesion site, lymphocyte infiltration, vacuolation, cavity size and tissue disorganization while also improving locomotor recovery. We propose that the utilization of exosome-loaded Dex therapy holds potential as a promising and clinically relevant approach for injured spinal cord repair. However, further extensive research is warranted in this domain to validate and substantiate the outcomes presented in this study.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Aliyari-Serej
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Sun XC, Wang H, Ma X, Xia HF. Application of Human Umbilical Cord Mesenchymal Stem Cells in Rat Spinal Cord Injury Model. ASAIO J 2023; 69:e256-e264. [PMID: 37039820 DOI: 10.1097/mat.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is a hot topic in clinic. In this study, female rats were selected and randomly divided into four groups (normal, sham, SCI, and mesenchymal stem cells [MSCs] groups). Hemostatic forceps were used to clamp the spinal cord for 1 min to establish the SCI animal model in rats. The levels of proinflammatory factors in the blood of each group were compared 4 h after operation. The motor function of hind limb was estimated by Basso, Beattie & Bresnahan Locomotor rating scale (BBB scale) at 3 months after surgery, the spinal cord tissue from the experimental area was obtained and stained histologically and immunohistochemically. Basso, Beattie & Bresnahan Locomotor rating scale results indicated that human umbilical cord (HUC) MSCs transplantation could improve the walking ability in rats with the SCI. Human umbilical cord mesenchymal stem cells substantially upregulated the secretion of anti-inflammatory factors and downregulated the secretion of proinflammatory factors, and promoted the repair of the SCI and inhibited the increase of glial cells induced by the SCI. Human umbilical cord mesenchymal stem cells transplantation can partially recovered the motor ability of rats with the SCI through promoting the regeneration of nerve cell and the expression of neural related genes, and inhibiting inflammatory reaction.
Collapse
Affiliation(s)
- Xue-Cheng Sun
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Hu Wang
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Ma
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Fei Xia
- From the Reproductive and Genetic Center, NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
α-Cyperone Improves Rat Spinal Cord Tissue Damage via Akt/Nrf2 and NF-κB Pathways. J Surg Res 2022; 276:331-339. [DOI: 10.1016/j.jss.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
6
|
Kwiecien JM. Barriers to axonal regeneration after spinal cord injury: a current perspective. Neural Regen Res 2022; 17:85-86. [PMID: 34100432 PMCID: PMC8451569 DOI: 10.4103/1673-5374.314299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222413672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| |
Collapse
|
8
|
Mian SY, Honey JR, Carnicer-Lombarte A, Barone DG. Large Animal Studies to Reduce the Foreign Body Reaction in Brain-Computer Interfaces: A Systematic Review. BIOSENSORS 2021; 11:275. [PMID: 34436077 PMCID: PMC8392711 DOI: 10.3390/bios11080275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023]
Abstract
Brain-computer interfaces (BCI) are reliant on the interface between electrodes and neurons to function. The foreign body reaction (FBR) that occurs in response to electrodes in the brain alters this interface and may pollute detected signals, ultimately impeding BCI function. The size of the FBR is influenced by several key factors explored in this review; namely, (a) the size of the animal tested, (b) anatomical location of the BCI, (c) the electrode morphology and coating, (d) the mechanics of electrode insertion, and (e) pharmacological modification (e.g., drug eluting electrodes). Trialing methods to reduce FBR in vivo, particularly in large models, is important to enable further translation in humans, and we systematically reviewed the literature to this effect. The OVID, MEDLINE, EMBASE, SCOPUS and Scholar databases were searched. Compiled results were analysed qualitatively. Out of 8388 yielded articles, 13 were included for analysis, with most excluded studies experimenting on murine models. Cats, rabbits, and a variety of breeds of minipig/marmoset were trialed. On average, over 30% reduction in inflammatory cells of FBR on post mortem histology was noted across intervention groups. Similar strategies to those used in rodent models, including tip modification and flexible and sinusoidal electrode configurations, all produced good effects in histology; however, a notable absence of trials examining the effect on BCI end-function was noted. Future studies should assess whether the reduction in FBR correlates to an improvement in the functional effect of the intended BCI.
Collapse
Affiliation(s)
- Shan Yasin Mian
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Jonathan Roy Honey
- School of Clinical Medicine, University of Cambridge, Cambridge CB3 0DF, UK;
| | | | - Damiano Giuseppe Barone
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB3 0DF, UK;
| |
Collapse
|
9
|
Neurologic and Histologic Tests Used to Measure Neuroprotective Effectiveness of Virus-Derived Immune-Modulating Proteins. Methods Mol Biol 2021. [PMID: 33108666 DOI: 10.1007/978-1-0716-1012-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Severe inflammatory disease initiated by neurotrauma and stroke is of primary concern in these intractable pathologies as noted in recent studies and understanding of the pathogenesis of spinal cord injury (SCI) in the rat model. Successful anti-inflammatory treatments should result in neuroprotection and limit the loss of neurological function to injury caused by the initial damage. Continuous subdural infusion offers direct access to the cavity of injury (COI) that forms after balloon crush SCI deep in the spinal cord. Some anti-inflammatory compounds are not likely capable of crossing the blood-spinal cord barrier. Subdural infusion of myxoma virus-derived Serp-1, an anti-thrombotic/anti-thrombolytic, and also of M-T7, a chemokine inhibitor, improved the locomotor scores and pain sensation scores as well as reduced the numbers of macrophages in the COI by 50 and 80%, respectively, while intraperitoneal infusion of either protein had little effect. Injection of a chitosan hydrogel loaded with Serp-1 into the dorsal spinal column crush also resulted in improved neurological deficits and in reduction of the size of the crush lesion 4 weeks after injury. While neurological scores in a simplified hind-end (HE) locomotor test together with a toe-pinch withdrawal test demonstrated improvement in all balloon crush injury and dorsal spinal crush injury rats, a severe inflammation is induced by the injury indicating additional damage to the spinal cord. Thus neurological function testing can be contradictory, rather than corresponding, to the pathogenesis of SCI. The count of macrophages in the COI offers a precise, reliable method of measuring the effectiveness of a neuroprotective treatment of SCI in preclinical studies.
Collapse
|
10
|
Kwiecien JM, Dąbrowski W, Yaron JR, Zhang L, Delaney KH, Lucas AR. The Role of Astrogliosis in Formation of the Syrinx in Spinal Cord Injury. Curr Neuropharmacol 2021; 19:294-303. [PMID: 32691715 PMCID: PMC8033977 DOI: 10.2174/1570159x18666200720225222] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
A massive localized trauma to the spinal cord results in complex pathologic events driven by necrosis and vascular damage which in turn leads to hemorrhage and edema. Severe, destructive and very protracted inflammatory response is characterized by infiltration by phagocytic macrophages of a site of injury which is converted into a cavity of injury (COI) surrounded by astroglial reaction mounted by the spinal cord. The tissue response to the spinal cord injury (SCI) has been poorly understood but the final outcome appears to be a mature syrinx filled with the cerebrospinal fluid with related neural tissue loss and permanent neurologic deficits. This paper reviews known pathologic mechanisms involved in the formation of the COI after SCI and discusses the integrative role of reactive astrogliosis in mechanisms involved in the removal of edema after the injury. A large proportion of edema fluid originating from the trauma and then from vasogenic edema related to persistent severe inflammation, may be moved into the COI in an active process involving astrogliosis and specifically over-expressed aquaporins.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wojciech Dąbrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, ul. Jaczewskiego 8, Lublin 20-090 Poland
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
11
|
Roberson SW, Patel MB, Dabrowski W, Ely EW, Pakulski C, Kotfis K. Challenges of Delirium Management in Patients with Traumatic Brain Injury: From Pathophysiology to Clinical Practice. Curr Neuropharmacol 2021; 19:1519-1544. [PMID: 33463474 PMCID: PMC8762177 DOI: 10.2174/1570159x19666210119153839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) can initiate a very complex disease of the central nervous system (CNS), starting with the primary pathology of the inciting trauma and subsequent inflammatory and CNS tissue response. Delirium has long been regarded as an almost inevitable consequence of moderate to severe TBI, but more recently has been recognized as an organ dysfunction syndrome with potentially mitigating interventions. The diagnosis of delirium is independently associated with prolonged hospitalization, increased mortality and worse cognitive outcome across critically ill populations. Investigation of the unique problems and management challenges of TBI patients is needed to reduce the burden of delirium in this population. In this narrative review, possible etiologic mechanisms behind post-traumatic delirium are discussed, including primary injury to structures mediating arousal and attention and secondary injury due to progressive inflammatory destruction of the brain parenchyma. Other potential etiologic contributors include dysregulation of neurotransmission due to intravenous sedatives, seizures, organ failure, sleep cycle disruption or other delirium risk factors. Delirium screening can be accomplished in TBI patients and the presence of delirium portends worse outcomes. There is evidence that multi-component care bundles including an analgesia-prioritized sedation algorithm, regular spontaneous awakening and breathing trials, protocolized delirium assessment, early mobility and family engagement can reduce the burden of ICU delirium. The aim of this review is to summarize the approach to delirium in TBI patients with an emphasis on pathogenesis and management. Emerging CNS-active drug therapies that show promise in preclinical studies are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Katarzyna Kotfis
- Address correspondence to this author at the Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland; E-mail:
| |
Collapse
|
12
|
Kwiecien JM. The Pathogenesis of Neurotrauma Indicates Targets for Neuroprotective Therapies. Curr Neuropharmacol 2021; 19:1191-1201. [PMID: 33550977 PMCID: PMC8719295 DOI: 10.2174/1570159x19666210125153308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 01/24/2021] [Indexed: 11/22/2022] Open
Abstract
The spinal cord injury (SCI) initiates an extraordinarily protracted disease with 3 phases; acute, inflammatory, and resolution that are restricted to the cavity of injury (COI) or arachnoiditis by a unique CNS reaction against the severity of destructive inflammation. While the severity of inflammation involving the white matter is fueled by a potently immunogenic activity of damaged myelin, its sequestration in the COI and its continuity with the cerebrospinal fluid of the subdural space allow anti-inflammatory therapeutics infused subdurally to inhibit phagocytic macrophage infiltration and thus provide neuroprotection. The role of astrogliosis in containing and ultimately in eliminating severe destructive inflammation post-trauma appears obvious but is not yet sufficiently understood to use in therapeutic neuroprotective and neuroregenerative strategies. An apparent antiinflammatory activity of reactive astrocytes is paralleled by their active role in removing excess edema fluid in blood-brain barrier damaged by inflammation. Recently elucidated pathogenesis of neurotrauma, including SCI, traumatic brain injury (TBI), and stroke, calls for the following principal therapeutic steps in its treatment leading to the recovery of neurologic function: (1) inhibition and elimination of destructive inflammation from the COI with accompanying reduction of vasogenic edema, (2) insertion into the COI of a functional bridge supporting the crossing of regenerating axons, (3) enabling regeneration of axons to their original synaptic targets by temporary safe removal of myelin in targeted areas of white matter, (4) in vivo, systematic monitoring of the consecutive therapeutic steps. The focus of this paper is on therapeutic step 1.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Room HSC 1U22D, 1280 Main Street West, Hamilton, ON, L4S 4K1, Canada
| |
Collapse
|
13
|
Kwiecien JM, Dabrowski W, Kwiecien-Delaney BJ, Kwiecien-Delaney CJ, Siwicka-Gieroba D, Yaron JR, Zhang L, Delaney KH, Lucas AR. Neuroprotective Effect of Subdural Infusion of Serp-1 in Spinal Cord Trauma. Biomedicines 2020; 8:E372. [PMID: 32977430 PMCID: PMC7598159 DOI: 10.3390/biomedicines8100372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) initiates a severe, destructive inflammation with pro-inflammatory, CD68+/CD163-, phagocytic macrophages infiltrating the area of necrosis and hemorrhage by day 3 and persisting for the next 16 weeks. Inhibition of macrophage infiltration of the site of necrosis that is converted into a cavity of injury (COI) during the first week post-SCI, should limit inflammatory damage, shorten its duration and result in neuroprotection. By sustained subdural infusion we administered Serp-1, a Myxoma virus-derived immunomodulatory protein previously shown to improve neurologic deficits and inhibit macrophage infiltration in the COI in rats with the balloon crush SCI. Firstly, in a 7 day long study, we determined that the optimal dose for macrophage inhibition was 0.2 mg/week. Then, we demonstrated that a continuous subdural infusion of Serp-1 for 8 weeks resulted in consistently accelerated lowering of pro-inflammatory macrophages in the COI and in their almost complete elimination similar to that previously observed at 16 weeks in untreated SCI rats. The macrophage count in the COI is a quantitative test directly related to the severity of destructive inflammation initiated by the SCI. This test has consistently demonstrated anti-inflammatory effect of Serp-1 interpreted as neuroprotection, the first and necessary step in a therapeutic strategy in neurotrauma.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-090 Lublin, Poland; (W.D.); (D.S.-G.)
| | | | | | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-090 Lublin, Poland; (W.D.); (D.S.-G.)
| | - Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (L.Z.); (A.R.L.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (L.Z.); (A.R.L.)
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (L.Z.); (A.R.L.)
| |
Collapse
|
14
|
Kwiecien JM, Zhang L, Yaron JR, Schutz LN, Kwiecien-Delaney CJ, Awo EA, Burgin M, Dabrowski W, Lucas AR. Local Serpin Treatment via Chitosan-Collagen Hydrogel after Spinal Cord Injury Reduces Tissue Damage and Improves Neurologic Function. J Clin Med 2020; 9:E1221. [PMID: 32340262 PMCID: PMC7230793 DOI: 10.3390/jcm9041221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | | | - Enkidia A. Awo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| |
Collapse
|
15
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
16
|
Kwiecien JM, Dabrowski W, Dąbrowska-Bouta B, Sulkowski G, Oakden W, Kwiecien-Delaney CJ, Yaron JR, Zhang L, Schutz L, Marzec-Kotarska B, Stanisz GJ, Karis JP, Struzynska L, Lucas AR. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS One 2020; 15:e0226584. [PMID: 32191733 PMCID: PMC7081990 DOI: 10.1371/journal.pone.0226584] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of spinal cord injury (SCI) remains poorly understood and treatment remains limited. Emerging evidence indicates that post-SCI inflammation is severe but the role of reactive astrogliosis not well understood given its implication in ongoing inflammation as damaging or neuroprotective. We have completed an extensive systematic study with MRI, histopathology, proteomics and ELISA analyses designed to further define the severe protracted and damaging inflammation after SCI in a rat model. We have identified 3 distinct phases of SCI: acute (first 2 days), inflammatory (starting day 3) and resolution (>3 months) in 16 weeks follow up. Actively phagocytizing, CD68+/CD163- macrophages infiltrate myelin-rich necrotic areas converting them into cavities of injury (COI) when deep in the spinal cord. Alternatively, superficial SCI areas are infiltrated by granulomatous tissue, or arachnoiditis where glial cells are obliterated. In the COI, CD68+/CD163- macrophage numbers reach a maximum in the first 4 weeks and then decline. Myelin phagocytosis is present at 16 weeks indicating ongoing inflammatory damage. The COI and arachnoiditis are defined by a wall of progressively hypertrophied astrocytes. MR imaging indicates persistent spinal cord edema that is linked to the severity of inflammation. Microhemorrhages in the spinal cord around the lesion are eliminated, presumably by reactive astrocytes within the first week post-injury. Acutely increased levels of TNF-alpha, IL-1beta, IFN-gamma and other pro-inflammatory cytokines, chemokines and proteases decrease and anti-inflammatory cytokines increase in later phases. In this study we elucidated a number of fundamental mechanisms in pathogenesis of SCI and have demonstrated a close association between progressive astrogliosis and reduction in the severity of inflammation.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Jordan R. Yaron
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Liqiang Zhang
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Lauren Schutz
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | | | - Greg J. Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John P. Karis
- Department of Neuroradiology, Barrow Neurological Institute, Dignity Health St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Lidia Struzynska
- Laboratory of Pathoneurochemistry, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Alexandra R. Lucas
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
17
|
Yaron JR, Kwiecien JM, Zhang L, Ambadapadi S, Wakefield DN, Clapp WL, Dabrowski W, Burgin M, Munk BH, McFadden G, Chen H, Lucas AR. Modifying the Organ Matrix Pre-engraftment: A New Transplant Paradigm? Trends Mol Med 2019; 25:626-639. [DOI: 10.1016/j.molmed.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
|
18
|
Abstract
As the systematic work on the pathogenesis of the white matter injury in the spinal cord models progresses, it becomes obvious that a severe and extraordinarily protracted, destructive inflammation follows the initial injury. Appropriate anti-inflammatory therapies of sufficient duration should not only inhibit but also lead to the elimination of this destructive inflammation, thus resulting in neuroprotection of the spinal cord tissue and a greater preservation of the neurologic function. While dexamethasone, a powerful, anti-inflammatory steroid analog administered continuously by subdural infusion for 7 days inhibited severe macrophage infiltration in the cavity of injury, the dose used was remarkably toxic. A 2-week-long infusion of lower doses of dexamethasone resulted in dose-dependent inhibition of macrophage infiltration and was better tolerated by the rats, but it became evident that a much longer duration of subdural administration of a powerful anti-inflammatory drug is required to eliminate myelin-rich, necrotic debris from the cavity and synthetic steroids such as dexamethasone, and methylprednisolone may be too toxic for this application. Therefore, nontoxic but powerful anti-inflammatory compounds are required for neuroprotective treatment of the spinal cord injury (SCI) and also brain trauma and stroke where the massive injury to the white matter occurs. Serpins have been associated with neurological damage. The mammalian serpin neuroserpin (SERPINI1) is reported to act in a protective manner after cerebrospinal infarction. The serine protease, tissue-type plasminogen activator (tPA), and the serpin plasminogen activator inhibitor (PAI-1, SERPINE1) are both upregulated at sites of central nervous system damage. In preliminary studies, subdural infusion of the myxomaviral serpin, Serp-1, resulted in the powerful inhibition of the macrophage infiltration of the cavity of injury, comparable to the inhibition by high dose of dexamethasone that has proven to be unduly toxic. Nontoxic, yet powerful neuroprotective, anti-inflammatory effects of Serp-1 may indicate this serpin protein as a potential attractive compound to treat SCI and similar syndromes involving massive injury to the white matter such as brain trauma and stroke. Novel methods of drug delivery, chronic subdural infusion, and novel analytic methods to measure the effectiveness of the neuroprotective serpin treatments are discussed in this chapter.
Collapse
Affiliation(s)
- Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
19
|
Suwanjang W, Wu KLH, Prachayasittikul S, Chetsawang B, Charngkaew K. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem Res 2019; 44:1567-1581. [PMID: 30888577 DOI: 10.1007/s11064-019-02779-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 73170, Nakhonpathom, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, 10700, Bangkok, Thailand
| |
Collapse
|
20
|
Wang Y, Wu M, Gu L, Li X, He J, Zhou L, Tong A, Shi J, Zhu H, Xu J, Guo G. Effective improvement of the neuroprotective activity after spinal cord injury by synergistic effect of glucocorticoid with biodegradable amphipathic nanomicelles. Drug Deliv 2017; 24:391-401. [PMID: 28165815 PMCID: PMC8241193 DOI: 10.1080/10717544.2016.1256003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 02/05/2023] Open
Abstract
Dexamethasone acetate (DA) produces neuroprotective effects by inhibiting lipid peroxidation and inflammation by reducing cytokine release and expression. However, its clinical application is limited by its hydrophobicity, low biocompatibility and numerous side effects when using large dosage. Therefore, improving DA's water solubility, biocompatibility and reducing its side effects are important goals that will improve its clinical utility. The objective of this study is to use a biodegradable polymer as the delivery vehicle for DA to achieve the synergism between inhibiting lipid peroxidation and inflammation effects of the hydrophobic-loaded drugs and the amphipathic delivery vehicle. We successfully prepared DA-loaded polymeric micelles (DA/MPEG-PCL micelles) with monodispersed and approximately 25 nm in diameter, and released DA over an extended period in vitro. Additionally, in the hemisection spinal cord injury (SCI) model, DA micelles were more effective in promoting hindlimb functional recover, reducing glial scar and cyst formation in injured site, decreasing neuron lose and promoting axon regeneration. Therefore, our data suggest that DA/MPEG-PCL micelles have the potential to be applied clinically in SCI therapy.
Collapse
Affiliation(s)
- YueLong Wang
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Min Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, PR China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, PR China
| | - XiaoLing Li
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - LiangXue Zhou
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China, and
| | - HongYan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - JianGuo Xu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| |
Collapse
|
21
|
Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 2017; 108:159-172. [PMID: 28844788 DOI: 10.1016/j.nbd.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by active immunization of C57BL/6 mice with peptide from myelin oligodendrocyte protein (MOG35-55), is a neuroinflammatory, demyelinating disease widely recognized as an animal model of multiple sclerosis (MS). Typically, EAE presents with an ascending course of paralysis, and inflammation that is predominantly localized to the spinal cord. Recent studies have further indicated that inflammation - in both MS and EAE - might initiate within the meninges and propagate from there to the underlying parenchyma. However, the patterns of inflammation within the respective meningeal and parenchymal compartments along the length of the spinal cord, and the progression with which these patterns develop during EAE, have yet to be detailed. Such analysis could hold key to identifying factors critical for spreading, as well as constraining, inflammation along the neuraxis. To address this issue, high-resolution 3-dimensional (3D) confocal microscopy was performed to visualize, in detail, the sequence of leukocyte infiltration at distinct regions of the spinal cord. High quality virtual slide scanning for imaging the entire spinal cord using epifluorescence was further conducted to highlight the directionality and relative degree of inflammation. Meningeal inflammation was found to precede parenchymal inflammation at all levels of the spinal cord, but did not develop equally or simultaneously throughout the subarachnoid space (SAS) of the meninges. Instead, meningeal inflammation was initially most obvious in the caudal SAS, from which it progressed to the immediate underlying parenchyma, paralleling the first signs of clinical disease in the tail and hind limbs. Meningeal inflammation could then be seen to extend in the caudal-to-rostral direction, followed by a similar, but delayed, trajectory of parenchymal inflammation. To additionally determine whether the course of ascending paralysis and leukocyte infiltration during EAE is reflected in differences in inflammatory gene expression by meningeal and parenchymal microvessels along the spinal cord, laser capture microdissection (LCM) coupled with gene expression profiling was performed. Expression profiles varied between these respective vessel populations at both the cervical and caudal levels of the spinal cord during disease progression, and within each vessel population at different levels of the cord at a given time during disease. These results reinforce a significant role for the meninges in the development and propagation of central nervous system inflammation associated with MS and EAE.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Peter Chianchiano
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
22
|
Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury. Pharmaceuticals (Basel) 2017; 10:ph10030063. [PMID: 28678209 PMCID: PMC5620607 DOI: 10.3390/ph10030063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/13/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
The complex pathophysiology of spinal cord injury (SCI) may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. A primary mechanical injury in the spinal cord triggers a cascade of secondary events, which are involved in SCI instauration and progression. The aim of the present review is to provide an overview of the therapeutic neuro-protective and neuro-regenerative approaches, which involve the use of nanofibers as local drug delivery systems. Drugs released by nanofibers aim at preventing the cascade of secondary damage (neuro-protection), whereas nanofibrous structures are intended to re-establish neuronal connectivity through axonal sprouting (neuro-regeneration) promotion, in order to achieve a rapid functional recovery of spinal cord.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | | | | | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Atoufi Z, Zarrintaj P, Motlagh GH, Amiri A, Bagher Z, Kamrava SK. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1617-1638. [DOI: 10.1080/09205063.2017.1340044] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhale Atoufi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ghodratollah Hashemi Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Anahita Amiri
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Bagher
- ENT-Head and Neck Research Center and Department, Rasoul Akram Hospital, Iran University of Medical Sciences & Health Services, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT-Head and Neck Research Center and Department, Rasoul Akram Hospital, Iran University of Medical Sciences & Health Services, Tehran, Iran
| |
Collapse
|