1
|
Shen XY, Huang J, Chen LL, Sha MT, Gao J, Xin H. Blocking lactate regulation of the Grhl2/SLC31A1 axis inhibits trophoblast cuproptosis and preeclampsia development. J Assist Reprod Genet 2024:10.1007/s10815-024-03256-w. [PMID: 39287710 DOI: 10.1007/s10815-024-03256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE Abnormal cell death due to superficial trophoblast dysfunction caused by placental hypoxia plays a vital role in the development of preeclampsia (PE). Lactic acid stimulates gene transcription in chromatin through lactate modification of histone lysine. Nevertheless, the content and function of lactate in PE development remains largely unclear. METHODS The contents of lactic acid and copper in 30 PE and 30 normal placentas were determined by kit colorimetry. Real-time quantitative fluorescent PCR (qRT-PCR) and Western blot were used to detect the expression of SLC31A1 in cells and tissues. Cell proliferation, apoptosis, and invasion were detected by cell counting kit 8 (CCK-8), MTS assay, colony formation assay, and Transwell assay. The transcriptional regulation between Grhl2 and SLC31A was verified by the luciferase reporter gene method and ChIP. The H3K18la modification level was detected by ChIP-PCR. RESULTS Herein, we detected increased lactic acid levels in the PE placental tissue, which inhibit the proliferation and invasion of trophoblasts. Interestingly, lactic acid increases intracellular copper content by enhancing the expression of SLC31A1, a key protein of copper ion transporters. Lentivirus knockdown of SLC31A1 blocked the lactate-induced proliferation and invasion of trophoblasts by inhibiting cell cuproptosis. Mechanically, we identified that Grhl2 mediated SLC31A1 expression through transcription and participated in SLC31A1-inhibited proliferation, invasion, and cuproptosis of trophoblasts. Furthermore, the high lactate content increased Grhl2 expression by enhancing lactate modification of histone H3K18 in the Grhl2 promoter region. CONCLUSIONS Blocking the lactate-regulated Grhl2/SLC31A1 axis and trophoblastic cuproptosis may be a potential approach to prevent and treat PE.
Collapse
Affiliation(s)
- Xue-Yan Shen
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China.
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China.
| | - Jing Huang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Li-Li Chen
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Man-Ting Sha
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China
| | - Jing Gao
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China.
| |
Collapse
|
2
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023; 30:2184315. [PMID: 36883905 PMCID: PMC10003143 DOI: 10.1080/10717544.2023.2184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
Affiliation(s)
- Miao Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
3
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
4
|
Yan K, He Q, Lin D, Liang J, Chen J, Xie Z, Chen Z. Promotion of NAD + recycling by the hypoxia-induced shift in the lactate dehydrogenase isozyme profile reduces the senescence of human bone marrow-derived endothelial progenitor cells. Free Radic Biol Med 2023; 208:88-102. [PMID: 37536460 DOI: 10.1016/j.freeradbiomed.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.
Collapse
Affiliation(s)
- Kaihao Yan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiwei He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongni Lin
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianli Liang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junxiong Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zijing Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenzhou Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
5
|
Liu Z, Yu Y, Zhang X, Wang C, Pei J, Gu W. Transcriptomic profiling in hypoxia-induced trophoblast cells for preeclampsia. Placenta 2023; 136:8-17. [PMID: 37001424 DOI: 10.1016/j.placenta.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
This study aimed to identify the expression profile of mRNAs and analyze the associated pathways in hypoxia-induced trophoblast cells to understand the effect of hypoxia on the pathophysiology of preeclampsia (PE). We downloaded two gene expression datasets (GSE47187 and GSE60432) from the Gene Expression Omnibus (GEO) datasets to identify altered transcriptomes. GEO2R, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks were used to reveal the functional roles and regulatory networks of the differentially expressed genes (DEGs). In total, 224 DEGs (91 upregulated and 133 downregulated) were identified, and the "HIF-1 signaling pathway" was activated in placentas from patients with PE. We validated the expression levels of five proteins in the plasma of NP and PE patients during early or late pregnancy using western blotting. In primary trophoblast cells cultured under hypoxic conditions, 754 DEGs were identified, including 362 upregulated and 392 downregulated genes. These DEGs were associated with the "HIF-1signaling pathway," "response to hypoxia," and several glucose metabolism pathways. In addition, a PPI network was constructed, and an important module, including 18 hub genes, was identified. Finally, we validated 18 hub genes using qRT-PCR. Furthermore, we performed microarray profiling of hypoxia-treated HTR8/SVneo cells (immortalized human first-trimester extravillous trophoblast cells) to validate the DEGs and pathways identified in hypoxia-induced primary trophoblast cells. Our results stress the differential expression profiles of mRNAs in hypoxia-induced trophoblast cells, which provide potential pathophysiological mechanisms for preeclampsia.
Collapse
|
6
|
Martínez N, Damiano AE. Aquaporins in Fetal Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:251-266. [PMID: 36717499 DOI: 10.1007/978-981-19-7415-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water homeostasis is essential for fetal growth, and it depends on the successful development of the placenta. Many aquaporins (AQPs) were identified from blastocyst stages to term placenta. In the last years, cytokines, hormones, second messengers, intracellular pH, and membrane proteins were found to regulate their expression and function in the human placenta and fetal membranes. Accumulated data suggest that these proteins may be involved not only in the maintenance of the amniotic fluid volume homeostasis but also in the development of the placenta and fetal organs. In this sense, dysregulation of placental AQPs is associated with gestational disorders. Thus, current evidence shows that AQPs may collaborate in cellular events including trophoblast migration and apoptosis. In addition, aquaglyceroporins are involved in energy metabolism as well as urea elimination across the placenta. In the last year, the presence of AQP9 in trophoblast mitochondria opened new hypotheses about its role in pregnancy. However, much further work is needed to understand the importance of these proteins in human pregnancies.
Collapse
Affiliation(s)
- Nora Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-CONICET-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-CONICET-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Cátedra de Biología Celulary Molecular, Departamento de Ciencias Biológicas. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Zhang X, Chen Y, Sun D, Zhu X, Ying X, Yao Y, Fei W, Zheng C. Emerging pharmacologic interventions for pre-eclampsia treatment. Expert Opin Ther Targets 2022; 26:739-759. [PMID: 36223503 DOI: 10.1080/14728222.2022.2134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pre-eclampsia is a serious pregnancy complication and a major global concern for the mortality of both mother and fetus. Existing symptomatic treatments do not delay disease progression; thus, timely delivery of the baby is the most effective measure. However, the risk of various maternal and fetal injuries remains. AREAS COVERED In this review, we summarize the potential strategies for pharmacologic interventions in pre-eclamptic therapy. Specifically, we discuss the pathophysiological process of various effective candidate therapeutics that act on potential pathways and molecular targets to inhibit key stages of the disease. We refer to this pathogenesis-focused drug discovery model as a pathogenesis-target-drug (P-T-D) strategy. Finally, we discuss the introduction of nanotechnologies to improve the safety and efficacy of therapeutics via their specific placental targeting ability and placental retention effects. EXPERT OPINION Despite the active development of novel pharmacological treatments based on our current knowledge of pre-eclamptic pathogenesis, investigations are still in the early phase. Thus, further exploration of the pathological mechanisms, integrated with the P-T-D strategy and novel nanosystems, could encourage the development of more effective and safer strategies. Such advances could lead to a shift from expectant management to mechanistic-based therapy for pre-eclampsia.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xia Ying
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
8
|
Heat stress of gilts around farrowing causes oxygen insufficiency in the umbilical cord and reduces piglet survival. Animal 2022; 16:100668. [DOI: 10.1016/j.animal.2022.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023] Open
|
9
|
Zhang J, Huang J, Lin X, Fei K, Xie Y, Peng Q, Li X, Xie L, Dai L, Zhang W. Phosphoglycerate mutase 5 promotes necroptosis in trophoblast cells through activation of dynamin-related protein 1 in early-onset preeclampsia. Am J Reprod Immunol 2022; 87:e13539. [PMID: 35304783 DOI: 10.1111/aji.13539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Placentae from patients with preeclampsia have increased susceptibility to necroptosis and phosphoglycerate mutase 5 (PGAM5) plays a role in many necrosis pathways. We determined whether PGAM5 promotes necroptosis of trophoblast cells and the underlying mechanisms in this study. METHODS The injury model was established by treating JEG3 cells with hypoxia for 24 h. The functional measurements were assessed by the cell counting kit-8, propidium iodide (PI)/Annexin V staining, JC-1 staining and firefly luciferase ATP assay. The expression of proteins in human placentae and JEG3 cells was measured Western blot. PGAM5 was knocked down to study its role in hypoxia-induced necroptosis. RESULTS The placentae from patients with preeclampsia showed up-regulation of PGAM5 and decreased levels of p-Drp1-S637, accompanied by increased necroptosis-relevant proteins expression. The expression of PGAM5 in JEG3 cells was up-regulated under hypoxia, which promoted dephosphorylation of Drp1 at Serine 637 residue, mitochondrial dysfunction (elevated ROS level and reduced mitochondrial membrane potential and ATP content) and cellular necroptosis (increased PI+ /Annexin V+ cells and decreased cell viability), accompanied by increased expression of necroptosis-relevant proteins; knockdown of PGAM5 attenuated these phenomena. CONCLUSIONS Our results indicate that PGAM5 can promote necroptosis in trophoblast cells through, at least in part, activation of Drp1. It may be used as a new therapeutic target to prevent trophoblast dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Jiejie Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiu Lin
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Kuilin Fei
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yingming Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaozhen Peng
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangqun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| |
Collapse
|
10
|
Hypoxia regulates fibrosis-related genes via histone lactylation in the placentas of patients with preeclampsia. J Hypertens 2022; 40:1189-1198. [PMID: 35703881 DOI: 10.1097/hjh.0000000000003129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Histone lactylation, a novel epigenetic modification induced by hypoxia and lactate, plays an important role in regulating gene expression. However, the role of histone lactylation in the pathogenesis of preeclampsia remains unknown. METHODS Placentas from preeclamptic patients and control pregnant women were collected for protein immunoassay to detect the expression level of histone lactylation, and two trophoblast cell lines were used to simulate the effect of histone lactylation on genes. RESULTS We found that lactate and histone lactylation levels were increased in preeclamptic placentas. In vitro, hypoxia was demonstrated to induce histone lactylation by promoting the production of lactate in human-trophoblast-derived cell line (HTR-8/SVneo) and human first-trimester extravillous trophoblast cell line (TEV-1) cells. In addition, 152 genes were found to be upregulated by both hypoxia exposure and sodium l-lactate treatment in HTR-8/SVneo cells. These genes were mainly enriched in the pathways including the response to hypoxia, cell migration and focal adhesion. Among the 152 genes, nine were upregulated in preeclamptic placentas. Most noteworthy, two upregulated fibrosis-related genes, FN1 and SERPINE1, were promoted by hypoxia through histone lactylation mediated by the production of lactate. CONCLUSIONS The present study demonstrated the elevated levels of histone lactylation in preeclamptic placentas and identified fibrosis-related genes that were promoted by histone lactylation induced by hypoxia in trophoblast cells, which provides novel insights into the mechanism of placental dysfunction in preeclampsia.
Collapse
|
11
|
McClements L, Richards C, Patel N, Chen H, Sesperez K, Bubb KJ, Karlstaedt A, Aksentijevic D. Impact of reduced uterine perfusion pressure model of preeclampsia on metabolism of placenta, maternal and fetal hearts. Sci Rep 2022; 12:1111. [PMID: 35064159 PMCID: PMC8782944 DOI: 10.1038/s41598-022-05120-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a cardiovascular pregnancy complication characterised by new onset hypertension and organ damage or intrauterine growth restriction. It is one of the leading causes of maternal and fetal mortality in pregnancy globally. Short of pre-term delivery of the fetus and placenta, treatment options are limited. Consequently, preeclampsia leads to increased cardiovascular disease risk in both mothers and offspring later in life. Here we aim to examine the impact of the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia on the maternal cardiovascular system, placental and fetal heart metabolism. The surgical RUPP model was induced in pregnant rats by applying silver clips around the aorta and uterine arteries on gestational day 14, resulting in ~ 40% uterine blood flow reduction. The experiment was terminated on gestational day 19 and metabolomic profile of placentae, maternal and fetal hearts analysed using high-resolution 1H NMR spectroscopy. Impairment of uterine perfusion in RUPP rats caused placental and cardiac hypoxia and a series of metabolic adaptations: altered energetics, carbohydrate, lipid and amino acid metabolism of placentae and maternal hearts. Comparatively, the fetal metabolic phenotype was mildly affected. Nevertheless, long-term effects of these changes in both mothers and the offspring should be investigated further in the future.
Collapse
Affiliation(s)
- Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nikayla Patel
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hao Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kristen J Bubb
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA, 127 San Vincente Blvd, 90048
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Sun J, Song B, Ban Y, Ma C, Sun J, Ai D, Nan Z, Wang L, Qu X. Whole transcriptome analysis of trophoblasts under hypoxia. Placenta 2021; 117:13-20. [PMID: 34768163 DOI: 10.1016/j.placenta.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A physiological hypoxia environment exists at maternal-fetal interface during early pregnancy. In addition, there is a pathological hypoxic microenvironment in patients with preeclampsia. Therefore, investigating the hypoxic adaptation and the effects of hypoxia on trophoblasts transcriptome is helpful to better understand the function and regulatory mechanism of trophoblasts at the maternal-fetal interface. METHODS Trophoblast cell line HTR-8/SVneo was cultured under normoxia and hypoxia for 24 h, the full transcriptome was analyzed via RNA-Seq. GO and KEGG enrichment were performed on differentially expressed mRNA, adjacent genes of differentially expressed lncRNA, host genes of differentially expressed circRNA and target genes of differential expressed miRNA. RESULTS The results showed that hypoxia differentially regulated 373 mRNAs, 334 lncRNAs, 71 circRNAs and 33 miRNAs. GO and KEGG enrichment showed that hypoxia negatively regulated TLR3 and PI3K-Akt signaling pathways. Consistently, we found hypoxia significantly inhibited TLR3 agonist-induced cytokines expression and the phosphorylation of Akt and mTOR. DISCUSSION Our study obtained the full transcriptome data and potential regulatory network of trophoblasts under hypoxia, providing supportive data for revealing the function of trophoblasts.
Collapse
Affiliation(s)
- Jintang Sun
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Bingfeng Song
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chao Ma
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jia Sun
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Dan Ai
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaodi Nan
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lijie Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Markovic S, Roussel T, Neeman M, Frydman L. Deuterium Magnetic Resonance Imaging and the Discrimination of Fetoplacental Metabolism in Normal and L-NAME-Induced Preeclamptic Mice. Metabolites 2021; 11:metabo11060376. [PMID: 34200839 PMCID: PMC8230481 DOI: 10.3390/metabo11060376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recent magnetic resonance studies in healthy and cancerous organs have concluded that deuterated metabolites possess highly desirable properties for mapping non-invasively and, as they happen, characterizing glycolysis and other biochemical processes in animals and humans. A promising avenue of this deuterium metabolic imaging (DMI) approach involves looking at the fate of externally administered 2H6,6′-glucose, as it is taken up and metabolized into different products as a function of time. This study employs deuterium magnetic resonance to follow the metabolism of wildtype and preeclamptic pregnant mice models, focusing on maternal and fetoplacental organs over ≈2 h post-injection. 2H6,6′-glucose uptake was observed in the placenta and in specific downstream organs such as the fetal heart and liver. Main metabolic products included 2H3,3′-lactate and 2H-water, which were produced in individual fetoplacental organs with distinct time traces. Glucose uptake in the organs of most preeclamptic animals appeared more elevated than in the control mice (p = 0.02); also higher was the production of 2H-water arising from this glucose. However, the most notable differences arose in the 2H3,3′-lactate concentration, which was ca. two-fold more abundant in the placenta (p = 0.005) and in the fetal (p = 0.01) organs of preeclamptic-like animals, than in control mice. This is consistent with literature reports about hypoxic conditions arising in preeclamptic and growth-restricted pregnancies, which could lead to an enhancement in anaerobic glycolysis. Overall, the present measurements suggest that DMI, a minimally invasive approach, may offer new ways of studying and characterizing health and disease in mammalian pregnancies, including humans.
Collapse
Affiliation(s)
- Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Tangi Roussel
- Center for Magnetic Resonance in Biology and Medicine, 13385 Marseille, France;
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Correspondence: ; Tel.: +972-8934-4093
| |
Collapse
|
14
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Schmidt JK, Keding LT, Block LN, Wiepz GJ, Koenig MR, Meyer MG, Dusek BM, Kroner KM, Bertogliat MJ, Kallio AR, Mean KD, Golos TG. Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming. Sci Rep 2020; 10:19159. [PMID: 33154556 PMCID: PMC7644694 DOI: 10.1038/s41598-020-76313-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSCs) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first and second trimester placental villous cytotrophoblasts followed by culture in TSC medium to maintain cellular proliferation. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was > 4000-fold higher in ST culture media compared to TSC media. The secretion of chorionic gonadotropin by TSC-derived ST reflects a reprogramming of macaque TSCs to an earlier pregnancy phenotype. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and the macaque placental nonclassical MHC class I molecule, Mamu-AG. Extravillous trophoblasts (EVTs) were derived that express macaque EVT markers Mamu-AG and CD56, and also secrete high levels of MMP2. Our analyses of macaque TSCs suggests that these cells represent a proliferative, self-renewing population capable of differentiating to STs and EVTs in vitro thereby establishing an experimental model of primate placentation.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Logan T Keding
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany M Dusek
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kamryn M Kroner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mario J Bertogliat
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Avery R Kallio
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine D Mean
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Ye L, Shi MD, Zhang YP, Zhang JS, Zhu CR, Zhou R. Risk factors and pregnancy outcomes associated with retinopathy in patients presenting with severe preeclampsia: A retrospective cohort study. Medicine (Baltimore) 2020; 99:e19349. [PMID: 32176056 PMCID: PMC7220307 DOI: 10.1097/md.0000000000019349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The visual system was reported to be affected in over half of patients with preeclampsia (PE), though fundus examination was performed only among patients complaining of visual symptoms. Delayed diagnosis and treatment of PE-related retinopathy may lead to permanent visual impairment. Therefore, we hypothesize that some clinical or laboratory parameters could predict severity of retinal damage.The aim of the study was to explore the risk factors for retinopathy in severe preeclampsia (sPE) and investigate pregnancy outcomes with different degrees of retinopathy.This retrospective cohort study included women with sPE who underwent ophthalmoscopy and delivered after admission to West China Second University Hospital, between June 2013 and December 2016. Clinical and laboratory characteristics were retrieved from medical records. Patients confirmed with retinopathy were followed up with telephones. Multiple logistic regression analysis was performed to identify risk factors of PE-related retinopathy.Five hundred thirty-four patients were included, of which 17.6% having stage-1/2 retinopathy, 14.6% having stage-3/4 retinopathy, and 67.8% having normal retina. Compared with patients without retinopathy, patients with stage 3/4 retinopathy were more likely to have preterm-birth and low-birth-weight babies. Significant risk factors for stage 3/4 retinopathy in sPE included severe hypertension (odds ratio [OR] 2.24, 95% confidence interval [CI]: 1.10-4.56), elevated white blood cell (WBC) counts (OR 1.88, 95% CI: 1.05-3.35), decreased platelet counts (OR 2.12, 95% CI: 1.07-4.48), lactate dehydrogenase (LDH) concentration of >800 IU/L (OR 2.31, 95% CI: 1.05-5.06), low hemoglobin (HGB) concentrations of <110 g/L (OR 3.73, 95% CI: 1.21-11.47), 24-hour proteinuria of 2 to 5 g (OR 6.39, 95% CI: 2.84-14.39), and >5 g (OR 8.66, 95% CI: 3.67-20.44).This study confirms the association between retinopathy and preterm-birth and low-birth weight in sPE. The risk factors for severe PE-related retinopathy, including severe hypertension, platelet and WBC count, HGB and LDH concentration, and proteinuria, are associated with the development of retinopathy. Routine and repeated fundus examination is recommended for maternal monitoring in sPE.
Collapse
Affiliation(s)
- Lei Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education
| | - Meng-dan Shi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education
| | - Yan-ping Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education
| | - Jia-shuo Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education
| | - Cai-rong Zhu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, PR China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education
| |
Collapse
|
17
|
Ma LN, Huang XB, Muyayalo KP, Mor G, Liao AH. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol 2020; 11:279. [PMID: 32180770 PMCID: PMC7057764 DOI: 10.3389/fimmu.2020.00279] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a recognized feature shared by tumors, leading to the accumulation of lactic acid in their local microenvironments. Like the tumors, the blastocysts, placenta, trophoblasts and decidual immune cells can also produce a large amount of lactic acid through aerobic glycolysis during the early pregnancy. Moreover, the placenta expresses the transporters of the lactic acid. While several studies have described the role of lactic acid in the tumor microenvironment, especially lactic acid's modulation of immune cells, the role of lactic acid produced during pregnancy is still unclear. In this paper, we reviewed the scientific evidence detailing the effects of lactic acid in the tumor microenvironment. Based on the influence of the lactic acid on immune cells and tumors, we proposed that lactic acid released in the unique uterine environment could have similar effects on the trophoblast cells and immune cells during the early pregnancy.
Collapse
Affiliation(s)
- Li-Na Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Peguero A, Parra RA, Carrillo SP, Rojas-Suarez J, Figueras F. Association of plasma lactate concentration at admission of severe preeclampsia to maternal complications. Pregnancy Hypertens 2019; 17:89-93. [PMID: 31487663 DOI: 10.1016/j.preghy.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To evaluate in women with severe preeclampsia the association of lactate concentration at admission with maternal complications. METHODS A prospective cohort was created of women with severe preeclampsia consecutively admitted to an Obstetrical High-Dependency Unit. Plasma lactate concentration was measured at admission and its association to maternal complication was evaluated. RESULTS A total of 100 women were included, of which 30 (30%) had a maternal complication. The mean lactate plasma concentration in this group was significantly higher than in those uncomplicated cases (2.38 vs 3.1 mmol/L; p < 0.01). A total of 37 (37%) women had lactate concentrations at >3 mmol/L, which was associated to higher incidence of maternal complications (19% vs. 48.6%; p = 0.002; OR 4.03 [95% CI 1.64-9.9]). This association remained independent of other standard severity criteria (OR 3.89; 95%CI 1.22-12.4; p = 0.022). CONCLUSION Increased plasma lactate concentrations at admission in women with severe preeclampsia are independently associated to maternal complications.
Collapse
Affiliation(s)
- Anna Peguero
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia Fetal i+D Fetal Medicine Research Center, Barcelona, Catalonia, Spain
| | - Rafael Alonso Parra
- Obstetrical High-Dependency Unit; E.S.E. Hospital San Rafael de Facatativa, Colombia
| | - Sara Paola Carrillo
- Obstetrical High-Dependency Unit; E.S.E. Hospital San Rafael de Facatativa, Colombia
| | - Jose Rojas-Suarez
- Obstetrics, Gynecology and Critical Care Departments, Universidad de Cartagena, Colombia
| | - Francesc Figueras
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia Fetal i+D Fetal Medicine Research Center, Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Koutelou E, Wang L, Schibler AC, Chao HP, Kuang X, Lin K, Lu Y, Shen J, Jeter CR, Salinger A, Wilson M, Chen YC, Atanassov BS, Tang DG, Dent SYR. USP22 controls multiple signaling pathways that are essential for vasculature formation in the mouse placenta. Development 2019; 146:dev.174037. [PMID: 30718289 DOI: 10.1242/dev.174037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
USP22, a component of the SAGA complex, is overexpressed in highly aggressive cancers, but the normal functions of this deubiquitinase are not well defined. We determined that loss of USP22 in mice results in embryonic lethality due to defects in extra-embryonic placental tissues and failure to establish proper vascular interactions with the maternal circulatory system. These phenotypes arise from abnormal gene expression patterns that reflect defective kinase signaling, including TGFβ and several receptor tyrosine kinase pathways. USP22 deletion in endothelial cells and pericytes that are induced from embryonic stem cells also hinders these signaling cascades, with detrimental effects on cell survival and differentiation as well as on the ability to form vessels. Our findings provide new insights into the functions of USP22 during development that may offer clues to its role in disease states.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA .,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| | - Andria C Schibler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA.,Program in Genes and Development, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| | - Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Marenda Wilson
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Chun Chen
- MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA.,Program in Genes and Development, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyko S Atanassov
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA .,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
20
|
Sagrillo-Fagundes L, Assunção Salustiano EM, Ruano R, Markus RP, Vaillancourt C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res 2018; 65:e12520. [PMID: 30091210 DOI: 10.1111/jpi.12520] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
Abstract
Melatonin has been proposed as a possible treatment for the deleterious effects of hypoxia/reoxygenation (H/R), such as autophagy, inflammation, and apoptosis. Pathological pregnancies, such as preeclampsia, are associated with placental H/R, and decreased placental melatonin synthesis as well as lower melatonin levels in the placenta and maternal plasma. However, the effects of exogenous melatonin on inflammation and autophagy induced by pregnancy complications associated with H/R await investigation. This study aimed to determine as to whether melatonin protects human primary villous trophoblasts against H/R-induced autophagy, inflammation, and apoptosis. Human primary villous cytotrophoblasts were isolated and immunopurified from normal term placentas. These cells were then exposed or not to 1 mmol/L melatonin for 72 hour in normoxia (8% O2 ), thereby inducing differentiation into syncytiotrophoblast that was then exposed to H/R (0.5% O2 , for 4 hour) or normoxia. H/R decreased endogenous melatonin synthesis (by 68%) and interleukin (IL)-10 levels (by 72%), coupled to increased tumor necrosis factor (TNF) (by 114%), IL-6 (by 55%), and NFκB (by 399%), compared to normoxia. Melatonin treatment reversed the H/R effect, restoring IL-10, TNF, and IL-6 levels to those of the normoxia condition. Melatonin, as well as NFκB inhibition, enhanced autophagy activation, consequently increasing syncytiotrophoblast survival in H/R conditions. This study suggests that H/R, which is present in pregnancy complications, inhibits endogenous melatonin production, thereby contributing to reduced syncytiotrophoblast viability. Results indicate that exogenous melatonin treatment may afford protection against H/R-induced damage, thereby enhancing placental cell survival, and contributing to improved fetal outcomes.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- INRS-Institut Armand-Frappier and BioMed Research Centre, Laval, Quebec, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, Quebec, Canada
| | | | - Rodrigo Ruano
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier and BioMed Research Centre, Laval, Quebec, Canada
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
21
|
Mourino-Alvarez L, Baldan-Martin M, Sastre-Oliva T, Martin-Lorenzo M, Maroto AS, Corbacho-Alonso N, Rincon R, Martin-Rojas T, Lopez-Almodovar LF, Alvarez-Llamas G, Vivanco F, Padial LR, de la Cuesta F, Barderas MG. A comprehensive study of calcific aortic stenosis: from rabbit to human samples. Dis Model Mech 2018; 11:dmm.033423. [PMID: 29752279 PMCID: PMC6031362 DOI: 10.1242/dmm.033423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
The global incidence of calcific aortic stenosis (CAS) is increasing owing, in part, to a growing elderly population. The condition poses a great challenge to public health, because of the multiple comorbidities of these older patients. Using a rabbit model of CAS, we sought to characterize protein alterations associated with calcified valve tissue that can be ultimately measured in plasma as non-invasive biomarkers of CAS. Aortic valves from healthy and mild stenotic rabbits were analyzed by two-dimensional difference gel electrophoresis, and selected reaction monitoring was used to directly measure the differentially expressed proteins in plasma from the same rabbits to corroborate their potential as diagnostic indicators. Similar analyses were performed in plasma from human subjects, to examine the suitability of these diagnostic indicators for transfer to the clinical setting. Eight proteins were found to be differentially expressed in CAS tissue, but only three were also altered in plasma samples from rabbits and humans: transitional endoplasmic reticulum ATPase, tropomyosin α-1 chain and L-lactate dehydrogenase B chain. Results of receiver operating characteristic curves showed the discriminative power of the scores, which increased when the three proteins were analyzed as a panel. Our study shows that a molecular panel comprising three proteins related to osteoblastic differentiation could have utility as a serum CAS indicator and/or therapeutic target. Summary: Using a rabbit model of calcific aortic stenosis, we have defined a molecular panel of three proteins related to osteoblastic differentiation. Additionally, this panel has been confirmed in human samples.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Aroa Sanz Maroto
- Department of Immunology, IIS-Fundacion Jimenez Diaz, 28040 Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Raul Rincon
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Gloria Alvarez-Llamas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Fernando Vivanco
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Fernando de la Cuesta
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Maria Gonzalez Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| |
Collapse
|
22
|
Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, Albrecht C. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genomics 2018; 19:173. [PMID: 29499643 PMCID: PMC5833046 DOI: 10.1186/s12864-018-4518-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. Results In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Conclusions Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE. Electronic supplementary material The online version of this article (10.1186/s12864-018-4518-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Huang
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Pascale Anderle
- Swiss Institute of Bioinformatics and HSeT Foundation, Lausanne, Switzerland.,Sitem-insel AG, Bern, Switzerland
| | - Lu Hostettler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Marc U Baumann
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Edgar C Ontsouka
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland. .,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
23
|
Miranda-Gonçalves V, Granja S, Martinho O, Honavar M, Pojo M, Costa BM, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Reis RM, Baltazar F. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget 2018; 7:46335-46353. [PMID: 27331625 PMCID: PMC5216802 DOI: 10.18632/oncotarget.10114] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
Abstract
Background Glioblastomas (GBM) present a high cellular heterogeneity with conspicuous necrotic regions associated with hypoxia, which is related to tumor aggressiveness. GBM tumors exhibit high glycolytic metabolism with increased lactate production that is extruded to the tumor microenvironment through monocarboxylate transporters (MCTs). While hypoxia-mediated regulation of MCT4 has been characterized, the role of MCT1 is still controversial. Thus, we aimed to understand the role of hypoxia in the regulation of MCT expression and function in GBM, MCT1 in particular. Methods Expression of hypoxia- and glycolytic-related markers, as well as MCT1 and MCT4 isoforms was assessed in in vitro and in vivo orthotopic glioma models, and also in human GBM tissues by immunofluorescence/immunohistochemistry and Western blot. Following MCT1 inhibition, either pharmacologically with CHC (α-cyano-4-hydroxynnamic acid) or genetically with siRNAs, we assessed GBM cell viability, proliferation, metabolism, migration and invasion, under normoxia and hypoxia conditions. Results Hypoxia induced an increase in MCT1 plasma membrane expression in glioma cells, both in in vitro and in vivo models. Additionally, treatment with CHC and downregulation of MCT1 in glioma cells decreased lactate production, cell proliferation and invasion under hypoxia. Moreover, in the in vivo orthotopic model and in human GBM tissues, there was extensive co-expression of MCT1, but not MCT4, with the GBM hypoxia marker CAIX. Conclusion Hypoxia-induced MCT1 supports GBM glycolytic phenotype, being responsible for lactate efflux and an important mediator of cell survival and aggressiveness. Therefore, MCT1 constitutes a promising therapeutic target in GBM.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Mrinalini Honavar
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel M Pires
- Unit of Neuropathology, Centro Hospitalar do Porto, Porto, Portugal
| | - Célia Pinheiro
- Department of Neurosurgery, Centro Hospitalar do Porto, Porto, Portugal
| | | | - Gil Bebiano
- Hospital Dr. Nélio Mendonça, Funchal, Madeira, Portugal
| | - Paulo Costa
- Radiotherapy Service, Centro Hospitalar do Montijo, Setúbal, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
He N, Lim SJ, Moreira de Mello JC, Navarro I, Bialecka M, Salvatori DCF, van der Westerlaken LAJ, Pereira LV, Chuva de Sousa Lopes SM. At Term, XmO and XpO Mouse Placentas Show Differences in Glucose Metabolism in the Trophectoderm-Derived Outer Zone. Front Cell Dev Biol 2017; 5:63. [PMID: 28680878 PMCID: PMC5478694 DOI: 10.3389/fcell.2017.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic mouse model (39,XO) for human Turner Syndrome (45,XO) harboring either a single maternally inherited (Xm) or paternally inherited (Xp) chromosome show a pronounced difference in survival rate at term. However, a detailed comparison of XmO and XpO placentas to explain this difference is lacking. We aimed to investigate the morphological and molecular differences between XmO and XpO term mouse placentas. We observed that XpO placentas at term contained a significantly larger area of glycogen cells (GCs) in their outer zone, compared to XmO, XX, and XY placentas. In addition, the outer zone of XpO placentas showed higher expression levels of lactate dehydrogenase (Ldha) than XmO, XX, and XY placentas, suggestive of increased anaerobic glycolysis. In the labyrinth, we detected significantly lower expression level of trophectoderm (TE)-marker keratin 19 (Krt19) in XpO placentas than in XX placentas. The expression of other TE-markers was comparable as well as the area of TE-derived cells between XO and wild-type labyrinths. XpO placentas exhibited specific defects in the amount of GCs and glucose metabolism in the outer zone, suggestive of increased anaerobic glycolysis, as a consequence of having inherited a single Xp chromosome. In conclusion, the XpO genotype results in a more severe placental phenotype at term, with distinct abnormalities regarding glucose metabolism in the outer zone.
Collapse
Affiliation(s)
- Nannan He
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Shujing J Lim
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | | | - Injerreau Navarro
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Daniela C F Salvatori
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands.,Central Laboratory Animal Facility, Leiden University Medical CenterLeiden, Netherlands
| | | | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, University of São PauloSão Paulo, Brazil
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands.,Department for Reproductive Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
25
|
Luo S, Cao N, Tang Y, Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One 2017; 12:e0178549. [PMID: 28594854 PMCID: PMC5464566 DOI: 10.1371/journal.pone.0178549] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia is a leading cause of perinatal maternal–foetal mortality and morbidity. The aim of this study is to identify the key microRNAs and genes in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE84260 and the gene expression profile of GSE73374 from the Gene Expression Omnibus database. Differentially expressed miRNAs and genes were identified and compared to miRNA-target information from MiRWalk 2.0, and a total of 65 differentially expressed miRNAs (DEMIs), including 32 up-regulated miRNAs and 33 down-regulated miRNAs, and 91 differentially expressed genes (DEGs), including 83 up-regulated genes and 8 down-regulated genes, were identified. The pathway enrichment analyses of the DEMIs showed that the up-regulated DEMIs were enriched in the Hippo signalling pathway and MAPK signalling pathway, and the down-regulated DEMIs were enriched in HTLV-I infection and miRNAs in cancers. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses of the DEGs were performed using Multifaceted Analysis Tool for Human Transcriptome. The up-regulated DEGs were enriched in biological processes (BPs), including the response to cAMP, response to hydrogen peroxide and cell-cell adhesion mediated by integrin; no enrichment of down-regulated DEGs was identified. KEGG analysis showed that the up-regulated DEGs were enriched in the Hippo signalling pathway and pathways in cancer. A PPI network of the DEGs was constructed by using Cytoscape software, and FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and ZFP36 were identified as the hub genes. The current study illustrates a characteristic microRNA profile and gene profile in preeclampsia, which may contribute to the interpretation of the progression of preeclampsia and provide novel biomarkers and therapeutic targets for preeclampsia.
Collapse
Affiliation(s)
- Shouling Luo
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Huangpu Area, Shanghai, China
| | - Nannan Cao
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Yung HW, Alnæs-Katjavivi P, Jones CJP, El-Bacha T, Golic M, Staff AC, Burton GJ. Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 2016; 59:2240-50. [PMID: 27406815 PMCID: PMC5016560 DOI: 10.1007/s00125-016-4040-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/10/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro. METHODS Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose levels > 9.0 mmol/l following a 75 g oral glucose tolerance test and were treated with diet and insulin when necessary. Western blotting was used to assess markers of ER stress. To test the effects of hyperglycaemia on the generation of ER stress, a new trophoblast-like cell line, BeWo-NG, was generated by culturing in a physiological glucose concentration of 5.5 mmol/l (over 20 passages) before challenging with 10 or 20 mmol/l glucose. RESULTS All GDM patients were well-controlled (HbA1c 5.86 ± 0.55% or 40.64 ± 5.85 mmol/mol, n = 11). Low-grade ER stress was observed in the placental samples, with dilation of ER cisternae and increased phosphorylation of eukaryotic initiation factor 2 subunit α. Challenge of BeWo-NG with high glucose activated the same pathways, but this was as a result of acidosis of the culture medium rather than the glucose concentration per se. Addition of chemical chaperones 4-phenylbutyrate and tauroursodeoxycholic acid and vitamins C and E ameliorated the ER stress. CONCLUSIONS/INTERPRETATION This is the first report of placental ER stress in GDM patients. Chemical chaperones and antioxidant vitamins represent potential therapeutic interventions for GDM.
Collapse
Affiliation(s)
- Hong-Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Patji Alnæs-Katjavivi
- Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carolyn J P Jones
- Centre for Maternal and Fetal Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - Tatiana El-Bacha
- Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michaela Golic
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Obstetrics and Gynecology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne-Cathrine Staff
- Department of Obstetrics and Gynecology, Oslo University Hospital, Ullevål and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
27
|
Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080773. [PMID: 27490559 PMCID: PMC4997459 DOI: 10.3390/ijerph13080773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika’s heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.
Collapse
|
28
|
Sheibani S, Jones NK, Eid R, Gharib N, Arab NTT, Titorenko V, Vali H, Young PA, Greenwood MT. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast. FEMS Yeast Res 2015; 15:fov032. [DOI: 10.1093/femsyr/fov032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
|
29
|
Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect Immun 2015; 83:2531-41. [PMID: 25847960 DOI: 10.1128/iai.03075-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 01/04/2023] Open
Abstract
We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P < 0.0001). Thus, the difference in DO level was attributable to biofilm-induced oxygen demand rather than changes in oxygen diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing.
Collapse
|
30
|
Dave A, Maru L, Jain A. LDH (Lactate Dehydrogenase): A Biochemical Marker for the Prediction of Adverse Outcomes in Pre-eclampsia and Eclampsia. J Obstet Gynaecol India 2014; 66:23-9. [PMID: 26924903 DOI: 10.1007/s13224-014-0645-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of the study was to find out the role of Serum lactate dehydrogenase in prediction of adverse outcomes of PE & E i.e., severity of disease and occurrence of complications. MATERIALS AND METHODS This study was conducted in the Department of Obstetrics and Gynaecology, MGM Medical College, Indore. A total of 200 women were studied; they were divided into control (n = 100), severe pre-eclampsia (n = 32), eclampsia (n = 68). Demographic and hematological parameters were studied including LDH levels. RESULTS The incidence of severe pre-eclampsia-1.2 % & Eclampsia 2.7 %, PE & E patients were significantly younger, with low gravidity and parity. They had significantly increased systolic and diastolic pressure, liver enzymes, uric acid, urine albumin, and LDH levels. Serum urea and creatinine were normal in majority of cases. The symptoms and complications of PE along with perinatal mortality were increased significantly in patients with LDH >800 IU/l compared with those who had lower levels. Complications like Retinopathy, ARF, Abruptio, DIC, CVA, MODS, Shock were also associated with high level of serum LDH >800 IU/L. Low birth weight of babies was also associated with high level of serum LDH levels in PE & E patients. The incidence of poor perinatal outcome was higher in PE & E patients with high serum LDH level (>600 IU/L). CONCLUSION LDH is the earliest marker seen in blood during hypoxia and oxidative stress. It is a useful biochemical marker that reflects the severity of and the occurrence of complications of PE & E; these are preventable if identified at an earlier stage and adequately managed at a higher center. Test is easily available, so screening of all cases of PE & E with LDH levels must be made mandatory.
Collapse
Affiliation(s)
- Anupama Dave
- Department of Obstetrics and Gynaecology, M. Y. Hospital & MGM Medical College, 314, Saket Nagar, Indore, 452018 Madhya Pradesh India
| | - Laxmi Maru
- Department of Obstetrics and Gynaecology, M. Y. Hospital & MGM Medical College, 314, Saket Nagar, Indore, 452018 Madhya Pradesh India
| | - Astha Jain
- Department of Obstetrics and Gynaecology, M. Y. Hospital & MGM Medical College, 314, Saket Nagar, Indore, 452018 Madhya Pradesh India
| |
Collapse
|
31
|
Pemberton RM, Cox T, Tuffin R, Drago GA, Griffiths J, Pittson R, Johnson G, Xu J, Sage IC, Davies R, Jackson SK, Kenna G, Luxton R, Hart JP. Fabrication and evaluation of a micro(bio)sensor array chip for multiple parallel measurements of important cell biomarkers. SENSORS 2014; 14:20519-32. [PMID: 25360580 PMCID: PMC4279497 DOI: 10.3390/s141120519] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023]
Abstract
This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies.
Collapse
Affiliation(s)
- Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Timothy Cox
- QinetiQ Ltd., Malvern Technology Centre, Malvern, WR14 3PS, UK.
| | - Rachel Tuffin
- QinetiQ Ltd., Malvern Technology Centre, Malvern, WR14 3PS, UK.
| | - Guido A Drago
- Applied Enzyme Technology Ltd., Monmouth House, Mamhilad Park, Pontypool NP4 OHZ, UK.
| | - John Griffiths
- Uniscan Instruments Ltd., Sigma House, Burlow Rd., Buxton, Derbyshire SK17 9JB, UK.
| | - Robin Pittson
- Gwent Electronic Materials Ltd., Monmouth House, Mamhilad Park, Pontypool NP4 OHZ, UK.
| | - Graham Johnson
- Uniscan Instruments Ltd., Sigma House, Burlow Rd., Buxton, Derbyshire SK17 9JB, UK.
| | - Jinsheng Xu
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Ian C Sage
- QinetiQ Ltd., Malvern Technology Centre, Malvern, WR14 3PS, UK.
| | - Rhodri Davies
- QinetiQ Ltd., Malvern Technology Centre, Malvern, WR14 3PS, UK.
| | - Simon K Jackson
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Gerry Kenna
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TF, UK.
| | - Richard Luxton
- Institute of Biosensing Technology, University of the West of England, Bristol, BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
32
|
Lactate transporters in the context of prostate cancer metabolism: what do we know? Int J Mol Sci 2014; 15:18333-48. [PMID: 25314297 PMCID: PMC4227218 DOI: 10.3390/ijms151018333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolic changes during malignant transformation have been noted for many years in tumours. Otto Warburg first reported that cancer cells preferentially rely on glycolysis for energy production, even in the presence of oxygen, leading to the production of high levels of lactate. The crucial role of lactate efflux and exchange within the tumour microenvironment drew attention to monocarboxylate transporters (MCTs). MCTs have been recognized as promising targets in cancer therapy, and their expression was described in a large variety of tumours; however, studies showing how these isoforms contribute to the acquisition of the malignant phenotype are scarce and still unclear regarding prostate cancer. In this review, we focus on the role for MCTs in cell metabolism, supporting the development and progression of prostate cancer, and discuss the exploitation of the metabolic nature of prostate cancer for therapeutic and diagnostic purposes.
Collapse
|
33
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
34
|
Investigation into the potential for hypoxic interior of neoplasms to enhance HSPA expression in glioma. Mol Cell Biochem 2014; 394:53-8. [PMID: 24833466 DOI: 10.1007/s11010-014-2080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/03/2014] [Indexed: 01/11/2023]
Abstract
Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia. This study investigated the level of HSPA gene expression in human cell lines exposed to hypoxic conditions. Three human glioma cell lines were selected for this study, each representing different types of glioma (astrocytoma, oligodendroglioma and glioblastoma), with a normal human astrocyte cell line used as a control. HSPA RNA transcripts and proteins were examined in these samples using qRT-PCR, immunofluorescence and flow cytometry techniques. The average HSPA mRNA copy numbers detected in three glioma cell lines were approximately sixfold higher than in a normal astrocyte cell line. The expression of HSPA was induced in normal cell lines immediately after exposure to hypoxia with 33% of cells exhibiting expression. However, the effects of hypoxia on gene expression were marginal in glioma cells, due to the already increased levels of HSPA with both pre- and post-hypoxia samples showing expression in approximately 90% of cells. These results show that whilst the stress caused by both cancer and hypoxia induce HSPA expression the underlying imprint of tumourgenesis leads to sustained expression.
Collapse
|
35
|
Rosafio K, Pellerin L. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation. Glia 2013; 62:477-90. [PMID: 24375723 DOI: 10.1002/glia.22618] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 12/13/2022]
Abstract
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Collapse
Affiliation(s)
- Katia Rosafio
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
36
|
Goeden N, Bonnin A. Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy. Nat Protoc 2013; 8:66-74. [PMID: 23237830 PMCID: PMC5360402 DOI: 10.1038/nprot.2012.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ex vivo perfusion systems offer a reliable, reproducible method for studying acute physiological responses of an organ to various environmental manipulations. Unlike in vitro culture systems, the cellular organization, compartmentalization and three-dimensional structure of ex vivo-perfused organs are maintained. These particular parameters are crucial for the normal physiological function of the placenta, which supports fetal growth through transplacental exchange, nutritional synthesis and metabolism, growth factor promotion and regulation of both maternally and fetally derived molecules. The perfusion system described here, which can be completed in 4-5 h, allows for integrated, physiological studies of de novo synthesis and metabolism and transport of materials across the live mouse placenta, not only throughout a normal gestation period but also following a variety of individual or combined genetic and environmental perturbations compromising placental function.
Collapse
Affiliation(s)
- Nick Goeden
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Miyazaki M, Kato M, Tanaka M, Tanaka K, Takao S, Kohjima M, Ito T, Enjoji M, Nakamuta M, Kotoh K, Takayanagi R. Antithrombin III injection via the portal vein suppresses liver damage. World J Gastroenterol 2012; 18:1884-91. [PMID: 22563168 PMCID: PMC3337563 DOI: 10.3748/wjg.v18.i16.1884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/20/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of antithrombin III (AT III) injection via the portal vein in acute liver failure.
METHODS: Thirty rats were intraperitoneally challenged with lipopolysaccharide (LPS) and D-galactosamine (GalN) and divided into three groups: a control group; a group injected with AT III via the tail vein; and a group injected with AT III via the portal vein. AT III (50 U/kg body weight) was administrated 1 h after challenge with LPS and GalN. Serum levels of inflammatory cytokines and fibrin degradation products, hepatic fibrin deposition, and hepatic mRNA expression of hypoxia-related genes were analyzed.
RESULTS: Serum levels of alanine aminotransferase, tumor necrosis factor-α and interleukin-6 decreased significantly following portal vein AT III injection compared with tail vein injection, and control rats. Portal vein AT III injection reduced liver cell destruction and decreased hepatic fibrin deposition. This treatment also significantly reduced hepatic mRNA expression of lactate dehydrogenase and heme oxygenase-1.
CONCLUSION: A clinically acceptable dose of AT III injection into the portal vein suppressed liver damage, probably through its enhanced anticoagulant and anti-inflammatory activities.
Collapse
|
38
|
Schneider H. Oxygenation of the placental–fetal unit in humans. Respir Physiol Neurobiol 2011; 178:51-8. [DOI: 10.1016/j.resp.2011.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 01/18/2023]
|
39
|
Sun YY, Lu M, Xi XW, Qiao QQ, Chen LL, Xu XM, Feng YJ. Regulation of epithelial-mesenchymal transition by homeobox gene DLX4 in JEG-3 trophoblast cells: a role in preeclampsia. Reprod Sci 2011; 18:1138-45. [PMID: 21602546 DOI: 10.1177/1933719111408112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathogenesis of preeclampsia is unclear but is thought to be related to shallow trophoblast invasion. An invasive phenotype is acquired by trophoblasts through the process of epithelial-mesenchymal transition (EMT). We proposed that EMT in trophoblasts is deregulated in preeclampsia. The homeobox gene DLX4 plays an important role in epithelial-mesenchymal interactions during embryonic and placental development. To elucidate the role of DLX4 in trophoblast EMT and preeclampsia, we investigated the expression of DLX4 in preeclampsia-affected placentas and the effect of DLX4 on EMT in trophoblast-derived JEG-3 cells. DLX4 expression was downregulated in preeclampsia-affected placentas and hypoxic JEG-3 cells. Knockdown of DLX4 by RNA interference (RNAi) inhibited the motility and invasion ability of JEG-3 cells, decreased the expression of E-cadherin, and upregulated the expression of the E-cadherin repressor Snail. Our findings suggest that decreased expression of DLX4 leads to the pathogenesis of preeclampsia by inhibiting EMT in trophoblasts and provides new insight into the pathophysiological mechanism of preeclampsia.
Collapse
Affiliation(s)
- Yun-Yan Sun
- Department of Obstetrics and Gynecology, Affiliated First Hospital of Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kotoh K, Kato M, Kohjima M, Tanaka M, Miyazaki M, Nakamura K, Enjoji M, Nakamuta M, Takayanagi R. Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Exp Ther Med 2011; 2:195-199. [PMID: 22977488 DOI: 10.3892/etm.2011.197] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023] Open
Abstract
Although the mechanism involved in acute liver failure (ALF) has not yet been clarified, microcirculatory disturbance in the liver appears to play a pivotal role in the progression of this disease. To confirm the existence of hepatic hypoxic conditions, we evaluated the amounts of lactate dehydrogenase (LDH) in hepatocytes, since its production increases under low oxygen concentrations. Histological examination was performed in 7 patients with ALF. All 7 patients underwent a liver biopsy during the acute phase of ALF, and 4 of them underwent a second biopsy during the recovery phase. The obtained samples were immunohistochemically stained with anti-LDH5 and anti-CD-68 antibodies. As controls, we examined samples from patients with acute hepatitis, chronic hepatitis and liver cirrhosis. The production of LDH by hepatocytes and the number of CD-68 positive macrophages were markedly increased at the acute phase of ALF, and both of these effects abruptly decreased during the recovery phase. By contrast, most of the samples from the patients with chronic hepatitis and acute hepatitis showed slightly any increase in LDH staining. In cirrhotic patients, partially elevated LDH production was observed mainly around the central vein, but the staining intensity was less compared to that in ALF patients. Our findings indicate that hepatic hypoxic conditions exist in ALF at the acute phase and seem to closely correlate with macrophage overactivation in the liver. We speculate that microcirculatory disturbance may be a key process in the development and progression of ALF.
Collapse
Affiliation(s)
- Kazuhiro Kotoh
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Illsley NP, Caniggia I, Zamudio S. Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth? THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:409-19. [PMID: 19924633 DOI: 10.1387/ijdb.082798ni] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insufficient oxygen leads to the cessation of growth in favor of cellular survival. Our unique model of high-altitude human pregnancy indicates that hypoxia-induced reductions in fetal growth occur at higher levels of oxygen than previously described. Fetal PO(2) is surprisingly high and fetal oxygen consumption unaffected by high altitude, whereas fetal glucose delivery and consumption decrease. Placental delivery of energy-generating substrates to the fetus is thus altered by mild hypoxia, resulting in maintained fetal oxygenation but a relative fetal hypoglycemia. Our data point to this altered mix of substrates as a potential initiating factor in reduced fetal growth, since oxygen delivery is adequate. These data support the existence, in the placenta, of metabolic reprogramming mechanisms, previously documented in tumor cells, whereby HIF-1 stimulates reductions in mitochondrial oxygen consumption at the cost of increased glucose consumption. Decreased oxygen consumption is not due to substrate (oxygen) limitation but rather results from active inhibition of mitochondrial oxygen utilization. We suggest that under hypoxic conditions, metabolic reprogramming in the placenta decreases mitochondrial oxygen consumption and increases anerobic glucose consumption, altering the mix of energy-generating substrates available for transfer to the fetus. Increased oxygen is available to support the fetus, but at the cost of less glucose availability, leading to a hypoglycemia-mediated decrease in fetal growth. Our data suggest that metabolic reprogramming may be an initiating step in the progression to more severe forms of fetal growth restriction and points to the placenta as the pivotal source of fetal programming in response to an adverse intrauterine environment.
Collapse
Affiliation(s)
- Nicholas P Illsley
- Department of Obstetrics, Gynecology and Womens Health, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | | | |
Collapse
|
42
|
Cellular Expression of the Monocarboxylate Transporter (MCT) Family in the Placenta of Mice. Placenta 2010; 31:126-33. [DOI: 10.1016/j.placenta.2009.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 11/21/2022]
|
43
|
Lee GSR, Joe YS, Kim SJ, Shin JC. Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas. Arch Gynecol Obstet 2009; 282:363-9. [DOI: 10.1007/s00404-009-1222-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023]
|
44
|
Kang BY, Tsoi S, Zhu S, Su S, Kay HH. Differential gene expression profiling in HELLP syndrome placentas. Reprod Sci 2008; 15:285-94. [PMID: 18421023 DOI: 10.1177/1933719108314626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to identify differentially expressed genes by suppression subtractive hybridization (SSH) in HELLP placentas. Two cDNA libraries were constructed; HSI (HELLP subtracted induced or upregulated) and HSS (HELLP subtracted suppressed or downregulated). Two hundred eighty-eight cDNA clones were sequenced; 37 were matched to GenBank entries and included genes in cell communication and organization, cellular processes, genetic information processing, and metabolic processes. A subgroup of 11 genes of interest was further selected for real-time quantitative polymerase chain reaction confirmation. Results showed no differences in expression of chosen upregulated genes between HELLP and non-HELLP placentas; 6 HELLP downregulated genes were significantly suppressed. Two genes related to production of secreted proteins, CTHRC1 and SERPINE2. SERPINE2 (PAI-1) is a soluble protease inhibitor and is a potential biomarker by Western blot analysis, and the protein is significantly decreased in HELLP placentas. SERPINE2 might be tested clinically in patients for early diagnosis of HELLP syndrome.
Collapse
Affiliation(s)
- Bum-Yong Kang
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|