1
|
Nease LA, Church KP, Delclaux I, Murakami S, Astorkia M, Zerhouni M, Cascio G, Hughes RO, Aguirre KN, Zumbo P, Dow LE, Jaffrey S, Betel D, Piskounova E. Selenocysteine tRNA methylation promotes oxidative stress resistance in melanoma metastasis. NATURE CANCER 2024:10.1038/s43018-024-00844-8. [PMID: 39438623 DOI: 10.1038/s43018-024-00844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Selenocysteine-containing proteins play a central role in redox homeostasis. Their translation is a highly regulated process and is dependent on two tRNASec isodecoders differing by a single 2'-O-ribose methylation called Um34. Here we characterized FTSJ1 as the Um34 methyltransferase and show that its activity is required for efficient selenocysteine insertion at the UGA stop codon during translation. Specifically, loss of Um34 leads to ribosomal stalling and decreased UGA recoding. FTSJ1-deficient cells are more sensitive to oxidative stress and show decreased metastatic colonization in xenograft models of melanoma metastasis. We found that FTSJ1 mediates efficient translation of selenoproteins essential for the cellular antioxidant response. Our findings uncover a role for tRNASec Um34 modification in oxidative stress resistance and highlight FTSJ1 as a potential therapeutic target specific for metastatic disease.
Collapse
Affiliation(s)
- Leona A Nease
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kellsey P Church
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ines Delclaux
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Shino Murakami
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Maider Astorkia
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Marwa Zerhouni
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Graciela Cascio
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Riley O Hughes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kelsey N Aguirre
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Samie Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Awoyemi T, Jiang S, Rahbar M, Logentherian P, Collett G, Zhang W, Cribbs A, Cerdeira S, Vatish M. MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies. Front Cardiovasc Med 2024; 11:1371168. [PMID: 38628314 PMCID: PMC11018924 DOI: 10.3389/fcvm.2024.1371168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 2%-8% of pregnancies worldwide, and is the leading cause of adverse maternal and fetal outcomes. The disease is characterized by oxidative and cellular stress and widespread endothelial dysfunction. While the precise mechanisms are not entirely understood, the pathogenesis of PE is closely linked to placental dysfunction and, to some extent, syncytiotrophoblast extracellular vesicle release (STB-EVs). These vesicles can be divided into the less well-studied medium/large EVs (220-1,000 nm) released in response to stress and small EVs (<220 nm) released as a component of intercellular communication. The previously described production of m/lSTB-EVs in response to cellular stress combined with the overwhelming occurrence of cellular and oxidative stress in PE prompted us to evaluate the microRNAome of PE m/lSTB-EVs. We hypothesized that the microRNAome profile of m/lSTB-EVs is different in PE compared to normal pregnancy (NP), which might permit the identification of potential circulating biomarkers not previously described in PE. Methods/study design We performed small RNA sequencing on medium/large STB-EVs isolated from PE and NP placentae using dual-lobe ex vivo perfusion. The sequencing data was bioinformatically analyzed to identify differentially regulated microRNAs. Identified microRNAs were validated with quantitative PCR analysis. We completed our analysis by performing an in-silico prediction of STB-EV mechanistic pathways. Results We identified significant differences between PE and NP in the STB-EVs micro ribonucleic acid (microRNA) profiles. We verified the differential expression of hsa-miR-193b-5p, hsa-miR-324-5p, hsa-miR-652-3p, hsa-miR-3196, hsa-miR-9-5p, hsa-miR-421, and hsa-miR-210-3p in the medium/large STB-EVs. We also confirmed the differential abundance of hsa-miR-9-5p in maternal serum extracellular vesicles (S EVs). In addition, we integrated the results of these microRNAs into the previously published messenger RNA (mRNA) data to better understand the relationship between these biomolecules. Conclusions We identified a differentially regulated micro-RNA, hsa-miR-9-5p, that may have biomarker potential and uncovered mechanistic pathways that may be important in the pathophysiology of PE.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Shuhan Jiang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maryam Rahbar
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Prasanna Logentherian
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Gavin Collett
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Adam Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sofia Cerdeira
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Tatar M, Tüfekci KK. An investigation of the distributions of ferroptosis and necroptosis mediators in the maternal-fetal interface at different days of rat pregnancy. Anat Histol Embryol 2024; 53:e12991. [PMID: 37921037 DOI: 10.1111/ahe.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Ferroptosis and necroptosis are recognized as playing major roles in the regulation of various physiological processes. However, the physiological role of the cell death mediated by these two pathways in the developmental process has not yet been clearly established. This study investigated ferroptosis and necroptosis signalling pathways in maternal-fetal tissue in the different gestational days (GD) of rat pregnancy using immunohistochemical and western blot methods in order to fill this gap. Twenty-four female Wistar albino rats were mated and divided into three groups. Maternal-fetal tissue samples were collected on GD 5, 12 and 19 of pregnancy. Expression and total protein levels of the markers glutathione peroxidase-4, soluble transporter family 7 member 11, transferrin receptor, receptor-interacting serine/threonine-protein kinase 1, receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like protein were investigated on both the maternal and fetal surfaces of the placenta using immunohistochemical and western blot methods. The results showed varying levels of protein expression of both ferroptosis and necroptosis mediators in the GD 5, 12 and 19 of pregnancy. Immunohistochemical analyses revealed that these mediators were located on both the maternal (decidua and metrial gland) and fetal surfaces (labyrinth zone, yolk sac and basal zone) and that their expression levels changed in the different GD. The findings revealed the existence of important ferroptosis and necroptosis pathway mediators in rat maternal-fetal tissue. These results may provide a molecular framework for a better understanding of the communication between the placenta, decidua and fetus during the developmental process.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
4
|
Gumilar KE, Priangga B, Lu CH, Dachlan EG, Tan M. Iron metabolism and ferroptosis: A pathway for understanding preeclampsia. Biomed Pharmacother 2023; 167:115565. [PMID: 37751641 DOI: 10.1016/j.biopha.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Preeclampsia (PE) is a serious medical condition that poses a significant health risk to women and children worldwide, particularly in the middle- and low-income countries. It is a complex syndrome that occurs as a result of abnormal pregnancy. Hypertension is the most common symptom of PE, with proteinuria and specific organ systems as detrimental targets. PE's pathogenesis is diverse, and its symptoms can overlap with other diseases. In early pregnancy, when the placenta takes over control, oxidative stress may be closely associated with ferroptosis, a type of cell death caused by intracellular iron accumulation. Ferroptosis in the placenta is defined by redox-active iron availability, loss of antioxidant capacity and phospholipids containing polyunsaturated fatty acids (PUFA) oxidation. Recent studies suggest a compelling potential link between ferroptosis and PE. In this article, we comprehensively review the current understanding of PE and discuss one of its emerging underlying mechanisms, the ferroptosis pathway. We also provide perspective and analysis on the implications of this process in the diagnosis, prevention, and treatment of preeclampsia. We aim to bridge the gap between clinicians and basic scientists in understanding this harmful disease and challenge the research community to put more effort into this exciting new area.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bayu Priangga
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Institute of Biochemistry & Molecular Biology, and Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan, ROC.
| |
Collapse
|
5
|
Grzeszczak K, Kapczuk P, Kupnicka P, Simińska DK, Lebdowicz-Knul J, Kwiatkowski SK, Łanocha-Arendarczyk N, Chlubek D, Kosik-Bogacka DI. The Trace Element Concentrations and Oxidative Stress Parameters in Afterbirths from Women with Multiple Pregnancies. Biomolecules 2023; 13:biom13050797. [PMID: 37238667 DOI: 10.3390/biom13050797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to evaluate the intensity of oxidative stress by measuring the concentrations of lipid peroxidation products (LPO) in fetal membrane, umbilical cord, and placenta samples obtained from women with multiple pregnancies. Additionally, the effectiveness of protection against oxidative stress was assessed by measuring the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR). Due to the role of iron (Fe), copper (Cu), and zinc (Zn) as cofactors for antioxidant enzymes, the concentrations of these elements were also analyzed in the studied afterbirths. The obtained data were compared with newborn parameters, selected environmental factors, and the health status of women during pregnancy to determine the relationship between oxidative stress and the health of women and their offspring during pregnancy. The study involved women (n = 22) with multiple pregnancies and their newborns (n = 45). The Fe, Zn, and Cu levels in the placenta, umbilical cord, and fetal membrane were determined using inductively coupled plasma atomic emission spectroscopy (ICP-OES) using an ICAP 7400 Duo system. Commercial assays were used to determine SOD, GPx, GR, CAT, and LPO activity levels. The determinations were made spectrophotometrically. The present study also investigated the relationships between trace element concentrations in fetal membrane, placenta, and umbilical cord samples and various maternal and infant parameters in women. Notably, a strong positive correlation was observed between Cu and Zn concentrations in the fetal membrane (p = 0.66) and between Zn and Fe concentrations in the placenta (p = 0.61). The fetal membrane Zn concentration exhibited a negative correlation with shoulder width (p = -0.35), while the placenta Cu concentration was positively correlated with placenta weight (p = 0.46) and shoulder width (p = 0.36). The umbilical cord Cu level was positively correlated with head circumference (p = 0.36) and birth weight (p = 0.35), while the placenta Fe concentration was positively correlated with placenta weight (p = 0.33). Furthermore, correlations were determined between the parameters of antioxidative stress (GPx, GR, CAT, SOD) and oxidative stress (LPO) and the parameters of infants and maternal characteristics. A negative correlation was observed between Fe and LPO product concentrations in the fetal membrane (p = -0.50) and placenta (p = -0.58), while the Cu concentration positively correlated with SOD activity in the umbilical cord (p = 0.55). Given that multiple pregnancies are associated with various complications, such as preterm birth, gestational hypertension, gestational diabetes, and placental and umbilical cord abnormalities, research in this area is crucial for preventing obstetric failures. Our results could serve as comparative data for future studies. However, we advise caution when interpreting our results, despite achieving statistical significance.
Collapse
Affiliation(s)
- Konrad Grzeszczak
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Donata Kinga Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Joanna Lebdowicz-Knul
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Sebastian Karol Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Wang X, Wei Y, Wei F, Kuang H. Regulatory mechanism and research progress of ferroptosis in obstetrical and gynecological diseases. Front Cell Dev Biol 2023; 11:1146971. [PMID: 37065851 PMCID: PMC10098117 DOI: 10.3389/fcell.2023.1146971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by iron-dependent lipid peroxidation, which is distinguished from traditional types of programmed cell death, such as apoptosis, proptosis and necrosis et al. Impaired iron homeostasis, lipid peroxidation and antioxidants depletion are three hallmarks of ferroptosis. Over the past years, emerging studies support the notion that ferroptosis might be involved in the pathology of obstetrical and gynecological diseases, including preeclampsia (PE), endometriosis (EMs) and polycystic ovarian syndrome (PCOS). In the PE condition, the high sensitivity of trophoblasts towards ferroptosis has been found to potentially link to inflammation, suboptimal vascular remodeling and aberrant hemodynamics, which are three prominent pathophysiological features of PE. As for EMs, compromised ferroptosis of endometrial cells was associated with the formation ectopic lesions, whereas in the nearby lesions, the presence of ferroptosis was suggested to promote the progression of EMs, contributing to the relative clinical manifestations. Ferroptosis has been implicated a crucial role in the initiation of ovarian follicular atresia, which might help to manage ovulation in PCOS patients. Taken together, this review explored the basis of ferroptosis mechanisms and comprehensively summarized the latest discovery of roles of ferroptosis on PE, EMs and PCOS, gaining a deeper insight into the pathogenesis of these obstetrical and gynecological diseases and investigation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yanchen Wei
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Fangyi Wei
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
- *Correspondence: Haibin Kuang,
| |
Collapse
|
7
|
Kurlak LO, Scaife PJ, Briggs LV, Broughton Pipkin F, Gardner DS, Mistry HD. Alterations in Antioxidant Micronutrient Concentrations in Placental Tissue, Maternal Blood and Urine and the Fetal Circulation in Pre-eclampsia. Int J Mol Sci 2023; 24:3579. [PMID: 36834991 PMCID: PMC9958563 DOI: 10.3390/ijms24043579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Trace elements such as selenium and zinc are vital components of many enzymes, including endogenous antioxidants, and can interact with each other. Women with pre-eclampsia, the hypertensive disease of pregnancy, have been reported as having changes in some individual antioxidant trace elements during pregnancy, which are related to maternal and fetal mortality and morbidity. We hypothesised that examination of the three compartments of (a) maternal plasma and urine, (b) placental tissue and (c) fetal plasma in normotensive and hypertensive pregnant women would allow identification of biologically significant changes and interactions in selenium, zinc, manganese and copper. Furthermore, these would be related to changes in the angiogenic markers, placental growth factor (PlGF) and Soluble Fms-Like Tyrosine Kinase-1 (sFlt-1) concentrations. Venous plasma and urine were collected from healthy non-pregnant women (n = 30), normotensive pregnant controls (n = 60) and women with pre-eclampsia (n = 50) in the third trimester. Where possible, matched placental tissue samples and umbilical venous (fetal) plasma were also collected. Antioxidant micronutrient concentrations were measured by inductively coupled plasma mass-spectrometry. Urinary levels were normalised to creatinine concentration. Plasma active PlGF and sFlt-1 concentrations were measured by ELISA. Maternal plasma selenium, zinc and manganese were all lower in women with pre-eclampsia (p < 0.05), as were fetal plasma selenium and manganese (p < 0.05 for all); maternal urinary concentrations were lower for selenium and zinc (p < 0.05). Conversely, maternal and fetal plasma and urinary copper concentrations were higher in women with pre-eclampsia (p < 0.05). Differences in placental concentrations varied, with lower overall levels of selenium and zinc (p < 0.05) in women with pre-eclampsia. Maternal and fetal PlGF were lower and sFlt-1 higher in women with pre-eclampsia; maternal plasma zinc was positively correlated with maternal plasma sFlt-1 (p < 0.05). Because of perceptions that early- and late-onset pre-eclampsia have differing aetiologies, we subdivided maternal and fetal data accordingly. No major differences were observed, but fetal sample sizes were small following early-onset. Disruption in these antioxidant micronutrients may be responsible for some of the manifestations of pre-eclampsia, including contributing to an antiangiogenic state. The potential benefits of mineral supplementation, in women with deficient intakes, during pregnancy to reduce pre-eclampsia remain an important area for experimental and clinical research.
Collapse
Affiliation(s)
- Lesia O. Kurlak
- School of Medicine (Stroke Research), University of Nottingham, Nottingham NG7 2UH, UK
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology Research Group, University of Nottingham, Derby DE22 3DT, UK
| | - Louise V. Briggs
- School of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Fiona Broughton Pipkin
- Department of Obstetrics & Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK
| | - David S. Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London SE1 1UL, UK
| |
Collapse
|
8
|
Bizerea-Moga TO, Pitulice L, Bizerea-Spiridon O, Angelescu C, Mărginean O, Moga TV. Selenium status in term neonates, according to birth weight and gestational age, in relation to maternal hypertensive pathology. Front Pediatr 2023; 11:1157689. [PMID: 37063670 PMCID: PMC10101720 DOI: 10.3389/fped.2023.1157689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Background Pregnancy represents a state of increased oxidative stress and antioxidants, in which selenium (Se) plays a pivotal role, contribute to maintain the oxidative balance. If antioxidant defenses are depleted, placental function is disrupted, resulting in pregnancy complications, including pregnancy-induced hypertension (PIH). Little is known about fetal selenium status in concomitant relation to maternal PIH, gestational age (GA) and birthweight (BW). Methods We examined over a 3-year period the serum (SeS) and urine selenium (SeU) status in term neonates from normotensive (nonPIH) and hypertensive (PIH) mothers as clinical markers of oxidative stress. In this retrospective observational study, 72 neonates with maternal PIH were matched for GA and BW to 72 neonates of normotensive mothers. Four groups were obtained, based on maternal PIH and BW relative to GA (appropriate-for-gestational-age-AGA, small-for-gestational-age-SGA): nonPIH-AGA (control group), nonPIH-SGA, PIH-AGA, and PIH-SGA. Results The results showed significant differences (p < 0.001) in selenium levels among the study groups: SeS - 44.85 ± 7.56 μg/L in nonPIH-AGA, 39.62 ± 11.42 μg/L in nonPIH-SGA, 40.01 ± 10.07 μg/L in PIH-AGA, and 25.39 ± 8.99 μg/L in PIH-SGA; SeU - 27.98 ± 7.99 μg/L in nonPIH-AGA, 22.85 ± 9.48 μg/L in nonPIH-SGA, 23.44 ± 6.73 μg/L in PIH-AGA, and 13.05 ± 5.86 μg/L in PIH-SGA. Selenium depletion was more common in neonates born from hypertensive mothers and those born small for gestational age. Though moderate in intensity, selenium levels were positively correlated with BW (0.319 for SeS, 0.397 for SeU) and negatively correlated with maternal systolic blood pressure (-0.313 for SeS, -0.324 for SeU). The main independent effects on SeS and SeU of each maternal blood pressure and birth weight turned out statistically significant. In interaction, a more pronounced effect was reached in PIH-SGA neonates. Conclusion Selenium status seemed to reflect the negative impact that PIH exerts in neonates during intrauterine development. Clinical markers of selenium status could thus be of great value for tracking responses of individuals to selenium supplementation as part of health improvement and harm mitigation approaches.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics-1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
- 1st Pediatric Clinic, “Louis Țurcanu” Children’s Clinical and Emergency Hospital, Timișoara, Romania
| | - Laura Pitulice
- Department of Biology-Chemistry, West University of Timişoara, Timişoara, Romania
- Laboratory of Advanced Researches in Environmental Protection, Timişoara, Romania
- Correspondence: Laura Pitulice
| | - Otilia Bizerea-Spiridon
- Department of Biology-Chemistry, West University of Timişoara, Timişoara, Romania
- Laboratory of Advanced Researches in Environmental Protection, Timişoara, Romania
| | - Claudiu Angelescu
- Clinic of Obstetrics, Gynecology and Neonatology, “Pius Brînzeu” County Emergency Clinical Hospital, Timișoara, Romania
| | - Otilia Mărginean
- Department XI of Pediatrics-1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
- 1st Pediatric Clinic, “Louis Țurcanu” Children’s Clinical and Emergency Hospital, Timișoara, Romania
| | - Tudor Voicu Moga
- Department VII of Internal Medicine-Gastroenterology Discipline, Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara, Romania
- Gastroenterology and Hepatology Clinic, “Pius Brînzeu” County Emergency Clinical Hospital, Timișoara, Romania
| |
Collapse
|
9
|
Wu Q, Ying X, Yu W, Li H, Wei W, Lin X, Zhang X. Identification of ferroptosis-related genes in syncytiotrophoblast-derived extracellular vesicles of preeclampsia. Medicine (Baltimore) 2022; 101:e31583. [PMID: 36343018 PMCID: PMC9646584 DOI: 10.1097/md.0000000000031583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia (PE), defined as new-onset hypertension and multi-organ systemic complication during pregnancy, is the leading cause of maternal and neonatal mortality and morbidity. With extracellular vesicles research progresses, current data refers to the possibility that ferroptosis may play a role in exosomal effects. Evidence has suggested that ferroptosis may contribute to the pathogenesis of preeclampsia by bioinformatics analyses. The purpose of the current study is to identify the potential ferroptosis-related genes in syncytiotrophoblast-derived extracellular vesicles (STB-EVs) of preeclampsia using bioinformatics analyses. Clinical characteristics and gene expression data of all samples were obtained from the NCBI GEO database. The differentially expressed mRNAs (DE-mRNAs) in STB-EVs of preeclampsia were screened and then were intersected with ferroptosis genes. Functional and pathway enrichment analyses of ferroptosis-related DE-mRNAs in STB-EVs were performed. Ferroptosis-related hub genes in STB-EVs were identified by Cytoscape plugin CytoHubba with a Degree algorithm using a protein-protein interaction network built constructed from the STRING database. The predictive performance of ferroptosis-related hub genes was determined by a univariate analysis of receiver operating characteristic (ROC). The miRNA-hub gene regulatory network was constructed using the miRwalk database. A total of 1976 DE-mRNAs in STB-EVs were identified and the most enriched item identified by gene set enrichment analysis was signaling by G Protein-Coupled Receptors (normalized enrichment score = 1.238). These DE-mRNAs obtained 26 ferroptosis-related DE-mRNAs. Ferroptosis-related DE-mRNAs of gene ontology terms and Encyclopedia of Genes and Genomes pathway enrichment analysis were enriched significantly in response to oxidative stress and ferroptosis. Five hub genes (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) were found in the constructed protein-protein interaction network with ferroptosis-related DE-mRNAs and the areas under the ROC curves for ALB, NOX4, CDKN2A, TXNRD1, and CAV1 were 0.938 (CI: 0.815-1.000), 0.833 (CI: 0.612-1.000), 0.875 (CI: 0.704-1.000), 0.958 (CI: 0.862-1.000), and 0.854 (CI: 0.652-1.000) in univariate analysis of ROC. We constructed a regulatory network of miRNA-hub gene and the findings demonstrate that hsa-miR-26b-5p, hsa-miR-192-5p, hsa-miR-124-3p, hsa-miR-492, hsa-miR-34a-5p and hsa-miR-155-5p could regulate most hub genes. In this study, we identified several central genes closely related to ferroptosis in STB-EVs (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) that are potential biomarkers related to ferroptosis in preeclampsia. Our findings will provide evidence for the involvement of ferroptosis in preeclampsia and improve the understanding of ferroptosis-related molecular pathways in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Quanfeng Wu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Ying
- Department of Gynecology and Obstetrics, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Weiwei Yu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huanxi Li
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Wei
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueyan Lin
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xueqin Zhang, Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China (e-mail: )
| |
Collapse
|
10
|
Iron Metabolism and Ferroptosis in Physiological and Pathological Pregnancy. Int J Mol Sci 2022; 23:ijms23169395. [PMID: 36012659 PMCID: PMC9409111 DOI: 10.3390/ijms23169395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Iron is a vital element in nearly every living organism. During pregnancy, optimal iron concentration is essential for both maternal health and fetal development. As the barrier between the mother and fetus, placenta plays a pivotal role in mediating and regulating iron transport. Imbalances in iron metabolism correlate with severe adverse pregnancy outcomes. Like most other nutrients, iron exhibits a U-shaped risk curve. Apart from iron deficiency, iron overload is also dangerous since labile iron can generate reactive oxygen species, which leads to oxidative stress and activates ferroptosis. In this review, we summarized the molecular mechanism and regulation signals of placental iron trafficking under physiological conditions. In addition, we revealed the role of iron metabolism and ferroptosis in the view of preeclampsia and gestational diabetes mellitus, which may bring new insight to the pathogenesis and treatment of pregnancy-related diseases.
Collapse
|
11
|
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol 2022; 202:115141. [PMID: 35700759 DOI: 10.1016/j.bcp.2022.115141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
A successful pregnancy and the birth of a healthy baby depend to a great extent on the controlled supply of essential nutrients via the placenta. Iron is essential for mitochondrial energy supply and oxygen distribution via the blood. However, its high reactivity requires tightly regulated transport processes. Disturbances of maternal-fetal iron transfer during pregnancy can aggravate or lead to severe pathological consequences for the mother and the fetus with lifelong effects. Furthermore, high intracellular iron levels due to disturbed gestational iron homeostasis have recently been associated with the non-apoptotic cell death pathway called ferroptosis. Therefore, the investigation of transplacental iron transport mechanisms, their physiological regulation and potential risks are of high clinical importance. The present review summarizes the current knowledge on principles and regulatory mechanisms underlying materno-fetal iron transport and gives insight into common pregnancy conditions in which iron homeostasis is disturbed. Moreover, the significance of the newly emerging ferroptosis pathway and its impact on the regulation of placental iron homeostasis, oxidative stress and gestational diseases will be discussed.
Collapse
Affiliation(s)
- Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Fabia Solenthaler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland.
| |
Collapse
|
12
|
Blake BE, Rickard BP, Fenton SE. A High-Throughput Toxicity Screen of 42 Per- and Polyfluoroalkyl Substances (PFAS) and Functional Assessment of Migration and Gene Expression in Human Placental Trophoblast Cells. FRONTIERS IN TOXICOLOGY 2022; 4:881347. [PMID: 35548680 PMCID: PMC9081605 DOI: 10.3389/ftox.2022.881347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants that have been associated with adverse pregnancy outcomes in women and experimental research models. Adverse developmental and reproductive outcomes have been investigated for relatively few PFAS, and such studies are not scalable to address the thousands of unique chemical structures. As the placenta has been reported as a PFAS target tissue, the human placental trophoblast JEG-3 cell line was employed in a high-throughput toxicity screen (HTTS) to evaluate the effects of 42 unique PFAS on viability, proliferation, and mitochondrial membrane potential (MMP). HTTS concentration-response curve fitting determined EC50 values for 79% of tested compounds for at least one of the three endpoints. Trophoblast migratory potential was evaluated for a subset of six prioritized PFAS using a scratch wound assay. Migration, measured as the percent of wound closure after 72 h, was most severely inhibited by exposure to 100 µM perfluorooctanoic acid (PFOA; 72% closure), perfluorooctanesulfonic acid (PFOS; 57% closure), or ammonium perfluoro-2-methyl-3-oxahexanoate (GenX; 79% closure). PFOA and GenX were subsequently evaluated for disrupted expression of 46 genes reported to be vital to trophoblast health. Disrupted regulation of oxidative stress was suggested by altered expression of GPEX1 (300 µM GenX and 3 µM GenX), GPER1 (300 µM GenX), and SOD1 and altered cellular response to xenobiotic stress was indicated by upregulation of the placental efflux transporter, ABCG2 (300 µM GenX, 3 µM GenX, and 100 µM PFOA). These findings suggest the placenta is potentially a direct target of PFAS exposure and indicate that trophoblast cell gene expression and function are disrupted at PFAS levels well below the calculated cytotoxicity threshold (EC50). Future work is needed to determine the mechanism(s) of action of PFAS towards placental trophoblasts.
Collapse
Affiliation(s)
- Bevin E. Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brittany P. Rickard
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- *Correspondence: Suzanne E. Fenton,
| |
Collapse
|
13
|
Zhang Q, Yang J, Yang C, Yang X, Chen Y. Eucommia ulmoides Oliver- Tribulus terrestris L. Drug Pair Regulates Ferroptosis by Mediating the Neurovascular-Related Ligand-Receptor Interaction Pathway- A Potential Drug Pair for Treatment Hypertension and Prevention Ischemic Stroke. Front Neurol 2022; 13:833922. [PMID: 35345408 PMCID: PMC8957098 DOI: 10.3389/fneur.2022.833922] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Background In this study, we used the network pharmacology approach to explore the potential disease targets of the Eucommia ulmoides Oliver (EUO)-Tribulus terrestris L. (TT) drug pair in the treatment of hypertension-associated neurovascular lesions and IS via the ferroptosis pathway. Methods We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform to search for the key active compounds and targets of the drug pair. Based on the GeneCards database, the relevant targets for the drug pair were obtained. Then, we performed the molecular docking of the screened core active ingredients and proteins using the DAVID database and the R AutoDock Vina software. Based on the GSE22255 dataset, these screened target proteins were used to build random forest (RF) and support vector machine (SVM) models. Finally, a new IS nomogram prediction model was constructed and evaluated. Results There were 36 active compounds in the EUO-TT drug pair. CHRM1, NR3C1, ADRB2, and OPRD1 proteins of the neuroactive ligand-receptor interaction pathway interacted with the proteins related to the ferroptosis pathway. Molecular docking experiments identified 12 active ingredients of the drug pair that may tightly bind to those target proteins. We constructed a visual IS nomogram prediction model using four genes (CHRM1, NR3C1, ADRB2, and OPRD1). The calibration curve, DCA, and clinical impact curves all indicated that the nomogram model is clinically applicable and diagnostically capable. CHRM1, NR3C1, ADRB2, and OPRD1, the target genes of the four effective components of the EUO-TT drug pair, were considered as risk markers for IS. Conclusions The active ingredients of EUO-TT drug pair may act on proteins associated with the neuroactive ligand-receptor interaction pathway to regulate ferroptosis in vascular neurons cells, ultimately affecting the onset and progression of hypertension.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Science and Technology Office, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanhua Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuesong Yang
- Department of Vascular Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongzhi Chen
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Gan J, Gu T, Hong L, Cai G. Ferroptosis-related genes involved in animal reproduction: An Overview. Theriogenology 2022; 184:92-99. [DOI: 10.1016/j.theriogenology.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
|
15
|
Hogan C, Perkins AV. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients 2022; 14:nu14030628. [PMID: 35276987 PMCID: PMC8838303 DOI: 10.3390/nu14030628] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Selenium is an essential trace element required for human health, and selenium deficiency has been associated with many diseases. The daily recommended intake of selenium is 60 µg/day for adults, which increases to 65 µg/day for women when pregnant. Selenium is incorporated into the 21st amino acid, selenocysteine (sec), a critical component of selenoproteins that plays an important role in a variety of biological responses such as antioxidant defence, reactive oxygen species (ROS) signalling, formation of thyroid hormones, DNA synthesis and the unfolded protein response in the endoplasmic reticulum (ER). Although 25 selenoproteins have been identified, the role of many of these is yet to be fully characterised. This review summarises the current evidence demonstrating that selenium is essential for a healthy pregnancy and that poor selenium status leads to gestational disorders. In particular, we focus on the importance of the placental selenoproteome, and the role these proteins may play in a healthy start to life.
Collapse
|
16
|
Kajiwara K, Beharier O, Chng CP, Goff JP, Ouyang Y, St Croix CM, Huang C, Kagan VE, Hsia KJ, Sadovsky Y. Ferroptosis induces membrane blebbing in placental trophoblasts. J Cell Sci 2021; 135:jcs.255737. [PMID: 33414166 DOI: 10.1242/jcs.255737] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated, non-apoptotic form of cell death, characterized by hydroxy-peroxidation of discrete phospholipid hydroperoxides, particularly hydroperoxyl (Hp) forms of arachidonoyl- and adrenoyl-phosphatidylethanolamine, with a downstream cascade of oxidative damage to membrane lipids, proteins and DNA, culminating in cell death. We recently showed that human trophoblasts are particularly sensitive to ferroptosis caused by depletion or inhibition of glutathione peroxidase 4 (GPX4) or the lipase PLA2G6. Here, we show that trophoblastic ferroptosis is accompanied by a dramatic change in the trophoblast plasma membrane, with macro-blebbing and vesiculation. Immunofluorescence revealed that ferroptotic cell-derived blebs stained positive for F-actin, but negative for cytoplasmic organelle markers. Transfer of conditioned medium that contained detached macrovesicles or co-culture of wild-type target cells with blebbing cells did not stimulate ferroptosis in target cells. Molecular modeling showed that the presence of Hp-phosphatidylethanolamine in the cell membrane promoted its cell ability to be stretched. Together, our data establish that membrane macro-blebbing is characteristic of trophoblast ferroptosis and can serve as a useful marker of this process. Whether or not these blebs are physiologically functional remains to be established.
Collapse
Affiliation(s)
- Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan105-8461
| | - Ofer Beharier
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Julie P Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome. Placenta 2021; 108:32-38. [PMID: 33812183 DOI: 10.1016/j.placenta.2021.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Programmed cell death is a central process in the control of tissue development, organismal physiology, and disease. Ferroptosis is a recently identified form of programmed cell death that is uniquely defined by redox-active iron-dependent hydroxy-peroxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids and a loss of lipid peroxidation repair capacity. This distinctive form of lipotoxic cell death has been recently implicated in multiple human diseases, spanning ischemia-reperfusion heart injury, brain damage, acute kidney injury, cancer, and asthma. Intriguingly, settings that have been associated with ferroptosis are linked to placental physiology and trophoblast injury. Such circumstances include hypoxia-reperfusion during placental development, physiological uterine contractions or pathological changes in placental bed perfusion, the abundance of trophoblastic iron, evidence for lipotoxicity during the pathophysiology of major placental disorders such as preeclampsia, fetal growth restriction, and preterm birth, and reduced glutathione peroxidation capacity and lipid peroxidation repair during placental injury. We recently interrogated placental ferroptosis in placental dysfunction in human and mouse pregnancy, dissected its relevance to placental injury, and validated the role of glutathione peroxidase-4 in guarding placental trophoblasts against ferroptotic injury. We also uncovered a role for the phospholipase PLA2G6 (PNPLA9) in attenuating trophoblast ferroptosis. Here, we summarize current data on trophoblast ferroptosis, and the role of several proteins and microRNAs as regulators of this process. Our text offers insights into new opportunities for regulating ferroptosis as a means for protecting placental trophoblasts against lipotoxic injury.
Collapse
|
18
|
Modeling preeclampsia using human induced pluripotent stem cells. Sci Rep 2021; 11:5877. [PMID: 33723311 PMCID: PMC7961010 DOI: 10.1038/s41598-021-85230-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder, affecting up to 10% of pregnancies worldwide. The primary etiology is considered to be abnormal development and function of placental cells called trophoblasts. We previously developed a two-step protocol for differentiation of human pluripotent stem cells, first into cytotrophoblast (CTB) progenitor-like cells, and then into both syncytiotrophoblast (STB)- and extravillous trophoblast (EVT)-like cells, and showed that it can model both normal and abnormal trophoblast differentiation. We have now applied this protocol to induced pluripotent stem cells (iPSC) derived from placentas of pregnancies with or without PE. While there were no differences in CTB induction or EVT formation, PE-iPSC-derived trophoblast showed a defect in syncytialization, as well as a blunted response to hypoxia. RNAseq analysis showed defects in STB formation and response to hypoxia; however, DNA methylation changes were minimal, corresponding only to changes in response to hypoxia. Overall, PE-iPSC recapitulated multiple defects associated with placental dysfunction, including a lack of response to decreased oxygen tension. This emphasizes the importance of the maternal microenvironment in normal placentation, and highlights potential pathways that can be targeted for diagnosis or therapy, while absence of marked DNA methylation changes suggests that other regulatory mechanisms mediate these alterations.
Collapse
|
19
|
Zhu H, Kannan K. Parabens in stretch mark creams: A source of exposure in pregnant and lactating women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:141016. [PMID: 32755791 DOI: 10.1016/j.scitotenv.2020.141016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Parabens are widely used as antimicrobial preservatives in personal care products (PCPs). Stretch mark cream is widely used by pregnant and lactating women for the treatment of striae gravidarum. This can be a potential source of paraben exposure, not only to pregnant/lactating women but also to fetuses/newborns. Little is known, however, with regard to the occurrence of parabens in stretch mark creams. In this study, we analyzed eight parabens and their metabolites in 31 popular stretch mark creams originated from various countries including China. The concentrations of Σparaben (sum of eight parabens/metabolites) ranged from 0.007 to 1630 μg/g, with mean and median values of 453 and 273 μg/g, respectively. Methyl- and propyl-parabens accounted for >95% of Σparaben concentrations. We examined the measured paraben concentrations against ingredients listed on the product labels. Parabens were listed as ingredients in those creams that contained concentrations >100 μg/g except for four samples with such high concentrations. Six cream samples that were labeled 'paraben-free' contained trace levels (0.007-9.92 μg/g) of these preservatives. Mean dermal ∑paraben exposure dose from the use of stretch mark creams (30.6 μg/kg bw/day) was well below the current acceptable daily intake value (5 mg/kg bw/day). In comparison to diet and indoor dust ingestion pathways, paraben-laden stretch mark cream may be a major source of paraben exposure in pregnant and lactating women. This study provides information on parabens and other preservatives in stretch mark creams and measures to reduce exposures during pregnancy and lactation.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
20
|
Oxidative Stress and Preeclampsia-Associated Prothrombotic State. Antioxidants (Basel) 2020; 9:antiox9111139. [PMID: 33212799 PMCID: PMC7696949 DOI: 10.3390/antiox9111139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disease characterized by hypertension, proteinuria, and multi-system dysfunction. It endangers both maternal and fetal health. Although hemostasis is critical for preventing bleeding complications during pregnancy, delivery, and post-partum, PE patients often develop a severe prothrombotic state, potentially resulting in life-threatening thrombosis and thromboembolism. The cause of this thrombotic complication is multi-factorial, involving endothelial cells, platelets, adhesive ligands, coagulation, and fibrinolysis. Increasing evidence has shown that hemostatic cells and factors undergo oxidative modifications during the systemic inflammation found in PE patients. However, it is largely unknown how these oxidative modifications of hemostasis contribute to development of the PE-associated prothrombotic state. This knowledge gap has significantly hindered the development of predictive markers, preventive measures, and therapeutic agents to protect women during pregnancy. Here we summarize reports in the literature regarding the effects of oxidative stress and antioxidants on systemic hemostasis, with emphasis on the condition of PE.
Collapse
|
21
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
22
|
Abstract
The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.
Collapse
|
23
|
Ferreira RC, Fragoso MBT, Bueno NB, Goulart MOF, de Oliveira ACM. Oxidative stress markers in preeclamptic placentas: A systematic review with meta-analysis. Placenta 2020; 99:89-100. [PMID: 32763617 DOI: 10.1016/j.placenta.2020.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oxidative stress (OS) is the basis of several diseases. Preeclampsia (PE) is a multisystemic syndrome, considered one of the major causes of maternal and fetal mortality. The placenta is considered the main anatomical pathogenetic substrate for the disease, being the placental OS a likely critical pathway in the pathogenesis of PE. This meta-analysis aimed to verify whether there is OS in the preeclamptic placenta and which markers are altered in this condition. METHODS The search was conducted in the following databases: MEDLINE (via PubMed), Lilacs and Scopus. Relevant studies were identified until May 2020. The quality of the studies was evaluated according to the Newcastle-Ottawa scale. RESULTS From the 3998 screened records, 43 were finally included in the systematic review, and 23 in the meta-analysis. The biomarkers evaluated were related to cell and macromolecules' damage, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), lipid peroxides, isoprostane, total oxidant status (TOS), carbonylated proteins and some of the reactive oxygen and nitrogen species (RONS), like hydrogen peroxide and nitric oxide. It was also related to antioxidant activity, both enzymatic, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione S-transferase and total antioxidant status, and non-enzymatic, through quantification of reduced glutathione, vitamin C and E, zinc and copper. CONCLUSION It was observed that there was OS in the preeclamptic placentas, based on results, like lower activity of some of the enzymes of the antioxidant system (SOD and GPx) as well as the increase in oxidative damage markers (MDA and lipid peroxide), corroborating literature data.
Collapse
Affiliation(s)
- Raphaela Costa Ferreira
- Instituto de Ciências Biológicas e da Saúde da Universidade Federal de Alagoas (ICBS/UFAL), Maceió, Alagoas, Brazil
| | | | - Nassib Bezerra Bueno
- Faculdade de Nutrição da Universidade Federal de Alagoas (FANUT/UFAL), Maceió, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Instituto de Ciências Biológicas e da Saúde da Universidade Federal de Alagoas (ICBS/UFAL), Maceió, Alagoas, Brazil; Instituto de Química e Biotecnologia (IQB/UFAL); Rede Nordeste de Biotecnologia (RENORBIO), Maceió, Alagoas, Brazil
| | | |
Collapse
|
24
|
Pollack AZ, Mumford SL, Krall JR, Carmichael A, Andriessen VC, Kannan K, Schisterman EF. Urinary levels of environmental phenols and parabens and antioxidant enzyme activity in the blood of women. ENVIRONMENTAL RESEARCH 2020; 186:109507. [PMID: 32325294 PMCID: PMC7363544 DOI: 10.1016/j.envres.2020.109507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The balance between oxidative stress and antioxidant enzymes is one biological mechanism by which environmental and lifestyle exposures affect health outcomes. Yet, no studies have examined the relationship between environmental phenolic compounds and parabens or their mixtures in relation to antioxidant enzyme activity in women of reproductive age. METHODS Sixteen environmental phenols and parabens were measured in urine 2-5 times across two months of follow-up in 143 women aged 18-44 years. Four antioxidant enzymes, erythrocyte and plasma glutathione peroxidase (eGPx, pGPx), glutathione reductase (GSHR), superoxide dismutase (SOD) were measured in plasma. Linear mixed models were adjusted for age, body mass index, race, and creatinine and were weighted with inverse probability of exposure weights. Multi-chemical exposures were estimated using hierarchical principal component analysis (PCA). RESULTS In line with our hypothesis that environmental phenols and parabens would be associated with decreased antioxidant enzymes, butyl, benzyl, ethyl, and propyl parabens were associated with lower levels of eGPx. Methyl paraben, 2,4-dichlorophenol and 2,5-dichlorophenol were associated with reduced SOD. 2,4,6-trichlorophenol was associated with increased levels of pGPx and GSHR. Several parabens were associated with modest decreases in eGPx and SOD, biomarkers of antioxidant defense. Increases in pGPx and GSHR were noted in relation to butyl and ethyl parabens. Co-exposures to parabens were associated with decreased eGPx (β = -1.08, 95% CI: -1.74, -0.43) in principal components mixed models, while co-exposure to benzophenones-3 and -1 were associated with increased eGPx (β = 0.92, 95% CI: 0.20, 1.64). CONCLUSION These findings indicate that nonpersistent chemicals altered antioxidant enzyme activity. Further human studies are necessary to delineate the relationship between environmental phenol and paraben exposures with erythrocyte and plasma activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, 22030, USA.
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, 22030, USA
| | - Andrea Carmichael
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, 22030, USA
| | - Victoria C Andriessen
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, United States; Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, United States
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
25
|
Rani A, Chavan-Gautam P, Mehendale S, Wagh G, Mani NS, Joshi S. Region-specific changes in the mRNA and protein expression of LCPUFA biosynthesis enzymes and transporters in the placentae of women with preeclampsia. Placenta 2020; 95:33-43. [PMID: 32452400 DOI: 10.1016/j.placenta.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
The biosynthesis and transport of long chain polyunsaturated fatty acids (LCPUFA) require the activity of fatty acid desaturase (FADS) enzymes, fatty acid transport proteins (FATP) and fatty acid binding proteins (FABP). In a previous study we have demonstrated region-specific changes in the LCPUFA levels in preeclampsia (PE) as compared to the normotensive control (NC) placentae. AIM To understand the region-specific changes in the mRNA levels and protein expression of biosynthesis enzymes and transporters of LCPUFA in PE and NC placentae. METHODS In this cross-sectional study, 20 NC women and 44 women with PE (23 term (TPE) and 21 preterm PE (PTPE)) were recruited. The samples were collected from four regions of the placentae considering cord insertion as the center (CM, central maternal/basal; CF, central fetal/chorionic; PM, peripheral maternal/basal and PF, peripheral fetal/chorionic). The mRNA levels were estimated using qRT-PCR. Statistical analysis was done using both post hoc least significant difference (LSD) test and Benjamini Hochberg correction in the analysis of covariance. Preliminarily, localization and expression of proteins were studied by immunohistochemistry (n = 3/group). RESULTS The mRNA levels of FADS1, FADS2 and FATP1 were lower in the central regions (CM and CF) of the PE placentae (both TPE and PTPE) as compared to NC. These differences in the mRNA levels were observed by the LSD test and were not significant after the Benjamini Hochberg correction. Preliminary findings of IHC indicate that the protein expression of FADS1 and FATP4 was higher in the basal regions (CM and PM) of the PE placentae as compared to NC. FADS1, FADS2 and FATP4 proteins were localized in the syncytiotrophoblasts, cytotrophoblasts, mesenchymal cells, endothelial cells of the fetal capillaries and extravillous trophoblasts of the placenta. CONCLUSION FADS enzymes are detected in the placentae of Indian women. In PE placentae, there are region-specific alterations in the mRNA and protein levels of LCPUFA biosynthesis enzymes (FADS1 and FADS2) and transporters (FATP1, FATP4 and FABP3) as compared to term NC. These changes were more pronounced toward the basal side and region around the cord insertion.
Collapse
Affiliation(s)
- Alka Rani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| | - Savita Mehendale
- Department of Obstetrics and Gynaecology, Bharati Vidyapeeth (Deemed to be University) Medical College and Bharati Hospital, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynaecology, Bharati Vidyapeeth (Deemed to be University) Medical College and Bharati Hospital, Pune, India
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
26
|
Kennedy E, Everson TM, Punshon T, Jackson BP, Hao K, Lambertini L, Chen J, Karagas MR, Marsit CJ. Copper associates with differential methylation in placentae from two US birth cohorts. Epigenetics 2020; 15:215-230. [PMID: 31462129 PMCID: PMC7028322 DOI: 10.1080/15592294.2019.1661211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Copper is an essential trace nutrient and an enzymatic cofactor necessary for diverse physiological and biological processes. Copper metabolism is uniquely controlled in the placenta and changes to copper metabolism have been linked with adverse birth outcomes. We investigated associations between patterns of DNA methylation (DNAm; measured at >485 k CpG sites) and copper concentration measured from placentae in two independent mother-infant cohorts: the New Hampshire Birth Cohort Study (NHBCS, n = 306) and the Rhode Island Child Health Study (RICHS, n = 141). We identified nine copper-associated differentially methylated regions (DMRs; adjusted P < 0.05) and 15 suggestive CpGs (raw P < 1e-5). One of the most robust variably methylated CpGs associated with the expression of the antioxidant, GSTP1. Our most robust DMR negatively associates with the expression of the zinc-finger gene, ZNF197 (FDR = 4.5e-11). Genes co-expressed with ZNF197, a transcription factor, are enriched for genes that associate with birth weight in RICHS (OR = 2.9, P = 2.6e-6, N = 194), genes that are near a ZNF197 consensus binding motif (OR = 1.34, P = 0.01, N = 194), and for those classified in GO biological processes growth hormone secretion (P = 3.4e-4), multicellular organism growth (P = 3.8e-4), and molecular functions related to lipid biosynthesis (P = 1.9e-4). Further, putative transcriptional targets for ZNF197 include genes involved in copper metabolism and placentation. Our results suggest that copper metabolism is tied to DNAm in the placenta and that copper-associated patterns in DNAm may mediate normal placentation and foetal development.
Collapse
Affiliation(s)
- Elizabeth Kennedy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
27
|
Haplotype Analysis of Candidate Genes Involved in Inflammation and Oxidative Stress and the Susceptibility to Preeclampsia. J Immunol Res 2020; 2020:4683798. [PMID: 32185238 PMCID: PMC7061132 DOI: 10.1155/2020/4683798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 02/01/2023] Open
Abstract
Unbalanced inflammatory reactions and oxidative stress are inseparably interconnected, and both may play crucial roles in the pathophysiological mechanisms of preeclampsia (PE). In the published previous studies, we have genotyped for SNPs that related to inflammation (rs2227485, rs153109, rs17855750, rs2027432, rs2275913, rs763780, rs4819554, and rs13015714) and oxidative stress (rs1695, rs4680, rs1800566, rs4807542, rs713041, rs7579, rs230813, rs1004467, rs3824755, and rs9932581) to investigate whether these polymorphisms were associated with susceptibility to PE in a Chinese Han population. In this present study, we collected these data of experimental and clinical from above studies for haplotype analysis of inflammation-related SNPs in 631 PE patients and 720 normal pregnancy and oxidative stress-related SNPs in 342 PE patients and 457 normal pregnancies for susceptibility to PE. The data of genotype distribution and allele frequency comparisons after correction for multiple comparisons (P/8 or P/10) showed 2 among the 8 candidate inflammation-related SNPs have significant differences (rs2027432 genotype χ2 = 407.377, p < 0.001, p < 0.00625). Moreover, the minor alleles of rs2027432 T (minor allele χ2 = 450.923, p < 0.001, p < 0.00625; OR = 21.439, 95%CI = 15.181‐30.278) and rs4819554 G (minor allele χ2 = 163.465, p < 0.001, p < 0.00625; OR = 5.814, 95%CI = 4.380‐7.719) were confirmed as risk allele of PE, respectively. Our analysis revealed rs2027432 (TT) of NLRP3 and rs4819554 (GG) of IL-17RA are risk factors for PE. However, no significant difference was found at the oxidative stress-related SNPs. In the candidate loci for oxidative stress, we also identified 3 SNP matches (rs4807542 and rs713041, rs230813 and rs75799, rs1004467 and rs3824755) that had high linkage disequilibrium (LD) with each other and were selected as a block (r2 = 0.98, r2 = 0.97, r2 = 0.97, r2 > 0.9), and the GT and GC haplotypes of rs4807542 and rs713041 in GPX4 showed significant differences between the PE and control groups (χ2 = 5.143, p = 0.0233, p < 0.05; χ2 = 6.373, p = 0.0116, p < 0.05). So, we inferred that polymorphisms of NLRP3 rs2027432 and IL-17RA rs4819554, which are related to inflammation, and the rs713041 variant of GPX4, which is related to oxidative stress, were associated with susceptibility to PE. The GT and GC haplotypes of rs4807542 and rs713041 in GPX4 may increase the risk of PE in the Chinese Han population.
Collapse
|
28
|
Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, Feng YL, Gu YF. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol 2019; 29:101402. [PMID: 31926626 PMCID: PMC6928320 DOI: 10.1016/j.redox.2019.101402] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major cause of adverse outcomes in preeclampsia (PE). Ferroptosis, i.e. programmed cell death from iron-dependent lipid peroxidation, likely mediates PE pathogenesis. We evaluated specific markers for ferroptosis in normal and PE placental tissues, using in vitro (trophoblasts) and in vivo (rat) models. Increase in malondialdehyde content and total Fe2+ along with reduced the glutathione content and glutathione peroxidase activity was observed in PE placenta. While the trophoblasts experienced death under hypoxia, inhibitors of ferroptosis, apoptosis, autophagy, and necrosis increased the cell viability. Microarrays, bioinformatic analysis, and luciferase reporter assay revealed that upregulation of miR-30b-5p in PE models plays a pivotal role in ferroptosis, by downregulating Cys2/glutamate antiporter and PAX3 and decreasing ferroportin 1 (an iron exporter) expression, resulting in decreased GSH and increased labile Fe2+. Inhibition of miR-30b-5p expression and supplementation with ferroptosis inhibitors attenuated the PE symptoms in rat models, making miR-30b-5p a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Child Health Care, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Yue He
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China
| | - Jian-Xia Wang
- Department of Women Health Care, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Ming-Hua Chen
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China
| | - Jian-Juan Xu
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China
| | - Min-Hui Jiang
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China
| | - Ya-Ling Feng
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China.
| | - Yan-Fang Gu
- Department of Obstetrics and Gynecology, Wuxi Matemal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214002, PR China
| |
Collapse
|
29
|
Prepregnancy Obesity, Maternal Dietary Intake, and Oxidative Stress Biomarkers in the Fetomaternal Unit. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5070453. [PMID: 31312657 PMCID: PMC6595351 DOI: 10.1155/2019/5070453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
Background Obesity and pregnancy increase levels of maternal oxidative stress (OS). However, little is known about the maternal, placental, and neonatal OS status. Objective To analyze the relation between prepregnancy obesity and the expression of OS markers and antioxidant capacity in the fetomaternal unit and their association with dietary intake. Methods This cross-sectional study included 33 women with singleton, noncomplicated pregnancies. Two groups were formed: women with prepregnancy body mass index (pBMI) within normal range (18.5-24.9 kg/m2, n = 18) and women with pBMI ≥ 30 kg/m2, suggestive of obesity (n = 15). Dietary and clinical information was obtained by questionnaire and from clinical records. Total antioxidant capacity (TAC) and malondialdehyde (MDA) concentration were measured on maternal and cord serum by colorimetric techniques, and placental expression of glutathione peroxidase 4 (GPx4) was measured by immunohistochemistry. Results Placental GPx4 expression was lower in the group with pBMI suggestive of obesity than in the normal weight group (ß = -0.08, p = 0.03, adjusted for gestational age and magnesium intake). Concentrations of TAC and MDA in maternal and cord blood were not statistically different between groups (p>0.05). Cord MDA concentration was related to maternal MDA concentration (ß = 0.40, p < 0.01), vitamin A intake (tertile 2: ß = -0.04, p = 0.40, tertile 3: ß = 0.13, p = 0.03, vs tertile 1), and placental GPx4 expression (ß = -0.09, p = 0.02). Conclusion Prepregnancy obesity is associated with a decrease in GPx4 expression in the placenta, which is related to OS in the newborn. The influence of micronutrient intake on OS biomarkers highlights the importance of nutritional assessment during pregnancy and adequate prenatal care.
Collapse
|
30
|
Chu A, Najafzadeh P, Sullivan P, Cone B, Elshimali R, Shakeri H, Janzen C, Mah V, Wadehra M. Aldehyde dehydrogenase isoforms and inflammatory cell populations are differentially expressed in term human placentas affected by intrauterine growth restriction. Placenta 2019; 81:9-17. [PMID: 31138432 PMCID: PMC6719708 DOI: 10.1016/j.placenta.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) is a complication of pregnancy that has both short- and long-term sequelae for affected mothers and offspring. The pathophysiology of disease stems from poor nutrient and oxygen provision to the fetus, resulting in increased oxidative stress within the placenta. As the milieu within the local microenvironment alters macrophage differentiation, we hypothesized that macrophage plasticity may be altered in placentas associated with IUGR, and that macrophages would show hallmarks of lipid peroxidation including altered aldehyde metabolism. METHODS In human placentas taken from normal pregnancies resulting in appropriate-for-gestational-age (AGA) newborns and placentas associated with IUGR, placental macrophages were evaluated by immunohistochemistry and shown in IUGR to resemble pro-inflammatory activated M1-type macrophages. To link oxidative stress to macrophages, the expression of aldehyde dehydrogenase (ALDHs) isozymes ALDH1, ALDH2, and ALDH3 was assessed. RESULTS All three isozymes displayed preferential staining for distinct cellular populations within the term human placenta. ALDH1 and ALDH2 were strongly expressed in placental Hofbauer and decidual stromal cells. ALDH3, in contrast, was present in extravillous trophoblasts. Comparing AGA and IUGR-associated placentas, ALDH1 and ALDH2 trended to have greater expression in macrophage populations but lower expression in decidual cell populations in IUGR-associated placentas. ALDH3 had higher expression in IUGR-associated placentas but localized specifically to extravillous trophoblast populations. CONCLUSION Therefore, we speculate that specific ALDH isozymes have cell-specific functions related to differentiation, inflammation, or oxidative stress responses that are altered in IUGR-associated term human placentas. This family of isozymes may be a novel method to identify human placentas affected by placental insufficiency/IUGR.
Collapse
Affiliation(s)
- Alison Chu
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Room B2-375 MDCC, Los Angeles, CA, 90095, USA.
| | - Parisa Najafzadeh
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Brian Cone
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ryan Elshimali
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Hania Shakeri
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 22-172, Los Angeles, CA, 90095, USA.
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, 4525 MacDonald Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 8-684 Factor Building, Los Angeles, CA, 90095, USA; Center to Eliminate Cancer Health Disparities, Charles Drew University, 1731 East 120th Street, Los Angeles, CA, 90059, USA.
| |
Collapse
|
31
|
Lewandowska M, Sajdak S, Lubiński J. Serum Selenium Level in Early Healthy Pregnancy as a Risk Marker of Pregnancy Induced Hypertension. Nutrients 2019; 11:nu11051028. [PMID: 31071931 PMCID: PMC6566672 DOI: 10.3390/nu11051028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023] Open
Abstract
Selenium (Se) is an antioxidant nutrient whose deficiency can influence adverse outcomes of pregnancy. The aim of this study is to determine whether serum Se level in early healthy pregnancy may be a risk marker for pregnancy induced hypertension. We obtained data from our prospective study in which we recruited healthy women in weeks 10–14 of a single pregnancy. In this analysis, we examined 121 women who subsequently developed pregnancy-induced hypertension and matched 363 women who remained normotensive. We measured Se levels (using the ICP-MS technique) in the serum in weeks 10–14 of the pregnancy. The odds ratios of pregnancy-induced hypertension (95% confidence intervals) were calculated using multivariate logistic regression. We found that the mean Se level was lower in the case group compared to the control (57.51 vs. 62.89 μg/L; p = 2.6 × 10−10). Excessive body mass index (BMI) and smoking influenced the estimated odds ratios. In the subgroup of women who had never smoked with normal pre-pregnancy BMI, the adjusted odds ratio (AOR) of pregnancy-induced hypertension was 15.34 (95% CI: 2.73–86.31, p = 0.002) for Se levels in the lowest quartile (≤57.68 µg/L), as compared to the highest quartile (>66.60 µg/L), after adjusting for all the accepted confounders. In the whole cohort, the prognostic value of Se by logistic regression showed that the area under curve (AUC) = 0.814. In our study, one can consider the role of Se as a risk marker of pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Małgorzata Lewandowska
- Division of Gynecological Surgery, Poznań University of Medical Sciences, 60-535 Poznań, Poland.
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznań University of Medical Sciences, 60-535 Poznań, Poland.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252 Szczecin, Poland.
| |
Collapse
|
32
|
VEGF and VEGFR1 levels in different regions of the normal and preeclampsia placentae. Mol Cell Biochem 2017; 438:141-152. [PMID: 28770473 DOI: 10.1007/s11010-017-3121-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023]
Abstract
Altered placental angiogenesis is implicated in the pathophysiology of preeclampsia. We have earlier reported placental regional differences in oxidative stress markers and neurotrophins. Oxidative stress and neurotrophins are reported to regulate angiogenesis. This study aims to examine protein and mRNA levels of vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1) in four regions [central maternal (CM), central fetal (CF), peripheral maternal (PM), and peripheral fetal (PF)] of the placenta in normotensive control (NC) women (n = 51) and women with preeclampsia (PE) (n = 43) [18 delivered at term (T-PE) and 25 delivered preterm (PT-PE)]. In all groups, CF region reported highest VEGF protein levels compared to all other regions. VEGF mRNA level was higher in CF region as compared to CM region in PE group (p < 0.05). VEGF levels were lower in all regions of PE, T-PE, and PT-PE groups (p < 0.05) as compared to their respective regions in NC group. VEGFR1 levels were lower in CF (p < 0.05) and PF (p < 0.01) regions as compared to CM region only in control. However, VEGFR1 levels were higher in CF (p < 0.05) and PF (p < 0.01) regions of PT-PE group as compared to control. VEGFR1 mRNA level was higher in PM region of PE group and T-PE group (p < 0.05 for both) as compared to control. VEGF levels in the PF region were positively associated with birth weight and placental weight. This study describes placental regional changes in angiogenic factors particularly highlighting increased VEGF in CF region possibly in response to hypoxic conditions prevailing in placenta.
Collapse
|
33
|
Zhou S, Yuan H, Ma X, Liu Y. Hair chemical element contents and influence factors of reproductive-age women in the West Ujimqin Banner, Inner Mongolia, China. CHEMOSPHERE 2017; 166:528-539. [PMID: 27718426 DOI: 10.1016/j.chemosphere.2016.09.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Women have an increased risk for chemical element deficiencies during reproductive age, particularly due to higher chemical element requirements and poor diets. Twenty-one chemical elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, Si, Sn, Sr, Ti, V and Zn) in hair samples, which were collected from 71 non-pregnant and 236 pregnant women living in the West Ujimqin Banner, central Inner Mongolia, China, were measured, and the environment, dietary habits and ethnic group influence factors associated with the biomarker were analyzed. The results indicated that the average values of the chemical element contents from hair were greatly different compared to those from other areas, especially the Al, Cd, Pb, Ca and Sr contents. There was no significant difference among the three ethnicities for any element except Mn and Ti in non-pregnant women. Compared to non-pregnant women, in the first trimester group, the levels of nine chemical elements (Ba, Cd, Cu, Pb, Se, Si, Sn and Ti) decreased, while the others increased, and the contents of all of the chemical elements decreased in the second trimester group, while in the third trimester, there was a slight increase. Three chemical elements (Cu, Mn and Zn) displayed a synergistic correlation between each other in the third trimester group, which may protect the placenta from some oxidant damage. The high levels of Cd and Pb in hair likely originate from house renovations and traffic pollution. This study provided basic and useful information on the levels of chemical elements in reproductive-age women, and the results of this study are helpful to control the contents and improve the health of pregnant and non-pregnant women.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China
| | - Haodong Yuan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiaoling Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
34
|
|
35
|
Sõber S, Rull K, Reiman M, Ilisson P, Mattila P, Laan M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci Rep 2016; 6:38439. [PMID: 27929073 PMCID: PMC5143936 DOI: 10.1038/srep38439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Recurrent pregnancy loss (RPL) concerns ~3% of couples aiming at childbirth. In the current study, transcriptomes and miRNomes of 1st trimester placental chorionic villi were analysed for 2 RPL cases (≥6 miscarriages) and normal, but electively terminated pregnancies (ETP; n = 8). Sequencing was performed on Illumina HiSeq 2000 platform. Differential expression analyses detected 51 (27%) transcripts with increased and 138 (73%) with decreased expression in RPL compared to ETP (DESeq: FDR P < 0.1 and DESeq2: <0.05). RPL samples had substantially decreased transcript levels of histones, regulatory RNAs and genes involved in telomere, spliceosome, ribosomal, mitochondrial and intra-cellular signalling functions. Downregulated expression of HIST1H1B and HIST1H4A (Wilcoxon test, fc≤0.372, P≤9.37 × 10−4) was validated in an extended sample by quantitative PCR (RPL, n = 14; ETP, n = 24). Several upregulated genes are linked to placental function and pregnancy complications: ATF4, C3, PHLDA2, GPX4, ICAM1, SLC16A2. Analysis of the miRNA-Seq dataset identified no large disturbances in RPL samples. Notably, nearly 2/3 of differentially expressed genes have binding sites for E2F transcription factors, coordinating mammalian endocycle and placental development. For a conceptus destined to miscarriage, the E2F TF-family represents a potential key coordinator in reprogramming the placental genome towards gradually stopping the maintenance of basic nuclear and cellular functions.
Collapse
Affiliation(s)
- Siim Sõber
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Kristiina Rull
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, L. Puusepa St. 8, Tartu 51014, Estonia.,Women's Clinic of Tartu University Hospital, L. Puusepa St. 8, Tartu 51014, Estonia
| | - Mario Reiman
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Piret Ilisson
- Department of Genetics, United Laboratories of Tartu University Hospital, L. Puusepa St. 2, Tartu 51014, Estonia
| | - Pirkko Mattila
- The Institute for Molecular Medicine Finland (FIMM), Tukholmankatu 8, Helsinki FI-00014 Finland.,Finnish Red Cross Blood Service (FRCBS), Kivihaantie 7, Helsinki FI-00310, Finland
| | - Maris Laan
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50412 Tartu, Estonia
| |
Collapse
|
36
|
Endler M, Saltvedt S, Eweida M, Åkerud H. Oxidative stress and inflammation in retained placenta: a pilot study of protein and gene expression of GPX1 and NFκB. BMC Pregnancy Childbirth 2016; 16:384. [PMID: 27923344 PMCID: PMC5139037 DOI: 10.1186/s12884-016-1135-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retained placenta is associated with severe postpartum hemorrhage. Its etiology is unknown and its biochemistry has not been studied. We aimed to assess whether levels of the antioxidative enzyme Glutathione Peroxidase 1 (GPX1) and the transcription factor Nuclear Factor κβ (NFκβ), as markers of oxidative stress and inflammation, were affected in retained placentas compared to spontaneously released placentas from otherwise normal full term pregnancies. METHODS In a pilot study we assessed concentrations of GPX1 by ELISA and gene (mRNA) expression of GPX1, NFκβ and its inhibitor Iκβα, by quantitative real-time-PCR in periumbilical and peripheral samples from retained (n = 29) and non-retained (n = 31) placental tissue. RESULTS Median periumbilical GPX1 concentrations were 13.32 ng/ml in retained placentas and 17.96 ng/ml in non-retained placentas (p = 0.22), peripheral concentrations were 13.27 ng/ml and 19.09 ng/ml (p = 0.08). Retained placental tissue was more likely to have a low GPX1 protein concentration (OR 3.82, p = 0.02 for periumbilical and OR 3.95, p = 0.02 for peripheral samples). Median periumbilical GPX1 gene expressions were 1.13 for retained placentas and 0.88 for non-retained placentas (p = 0.08), peripheral expression was 1.32 and 1.18 (p = 0.46). Gene expressions of NFκβ and Iκβα were not significantly different between retained and non-retained placental tissue. CONCLUSIONS Women with retained placenta were more likely to have a low level of GPX1 protein concentration in placental tissue compared to women without retained placenta and retained placental tissue showed a tendency of lower median concentrations of GPX1 protein expression. This may indicate decreased antioxidative capacity as a component in this disorder but requires a larger sample to corroborate results.
Collapse
Affiliation(s)
- Margit Endler
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden ,Department of Obstetrics and Gynecology, Södersjukhuset, Sjukhusbacken 10, Stockholm, 118 83 Sweden
| | - Sissel Saltvedt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden ,Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - Mohamed Eweida
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Helena Åkerud
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Zurkinden L, Mansour YT, Rohrbach B, Vogt B, Mistry HD, Escher G. Hepatic caveolin-1 is enhanced in Cyp27a1/ApoE double knockout mice. FEBS Open Bio 2016; 6:1025-1035. [PMID: 28149711 PMCID: PMC5275772 DOI: 10.1002/2211-5463.12123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023] Open
Abstract
Sterol 27‐hydroxylase (CYP27A1) is involved in bile acid synthesis and cholesterol homoeostasis. Cyp27a1(−/−)/Apolipoprotein E(−/−) double knockout mice (DKO) fed a western diet failed to develop atherosclerosis. Caveolin‐1 (CAV‐1), the main component of caveolae, is associated with lipid homoeostasis and has regulatory roles in vascular diseases. We hypothesized that liver CAV‐1 would contribute to the athero‐protective mechanism in DKO mice. Cyp27a1(+/+)/ApoE(−/−) (ApoE KO), Cyp27a1(+/−)/ApoE(−/−) (het), and DKO mice were fed a western diet for 2 months. Atherosclerotic plaque and CAV‐1 protein were quantified in aortas. Hepatic Cav‐1 mRNA was assessed using qPCR, CAV‐1 protein by immunohistochemistry and western blotting. Total hepatic and plasma cholesterol was measured using chemiluminescence. Cholesterol efflux was performed in RAW264.7 cells, using mice plasma as acceptor. CAV‐1 protein expression in aortas was increased in endothelial cells of DKO mice and negatively correlated with plaque surface (P < 0.05). In the liver, both CAV‐1 protein and mRNA expression doubled in DKO, compared to ApoE KO and het mice (P < 0.001 for both) and was negatively correlated with total hepatic cholesterol (P < 0.05). Plasma from DKO, ApoE KO and het mice had the same efflux capacity. In the absence of CYP27A1, CAV‐1 overexpression might have an additional athero‐protective role by partly overcoming the defect in CYP27A1‐mediated cholesterol efflux.
Collapse
Affiliation(s)
- Line Zurkinden
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Yosef T Mansour
- Division of Women's Health King's College London Women's Health Academic Centre UK
| | - Beatrice Rohrbach
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Bruno Vogt
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Hiten D Mistry
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland; Division of Child Health, Obstetrics & Gynaecology School of Medicine University of Nottingham UK
| | - Geneviève Escher
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| |
Collapse
|
38
|
Evaluation of Glutathione Peroxidase 4 role in Preeclampsia. Sci Rep 2016; 6:33300. [PMID: 27641822 PMCID: PMC5027559 DOI: 10.1038/srep33300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome that may be lifethreatening to pregnancies and fetus. Glutathione Peroxidase 4 (GPx4) is a powerful antioxidant enzyme that can provide protection from oxidative stress damage which plays a pivotal role in the pathology of PE. Therefore, this study aims to investigate the association between Gpx4 polymorphisms and the susceptibility to PE in Chinese Han women. TaqMan allelic discrimination real-time PCR was used to perform the genotyping of rs713041 and rs4807542 in 1008 PE patients and 1386 normotensive pregnancies. Obviously statistical difference of genotypic and allelic frequencies were found of rs713041 in GPx4 between PE patients and controls and the C allele has the higher risk for pathogenesis of PE (χ2 = 12.292, P = 0.002 by genotype; χ2 = 11.035, P = 0.001, OR = 1.216, 95% CI 1.084–1.365 by allele). Additionally, when subdividing these samples into CC + CT and TT groups, we found a significant difference between the two groups (χ2 = 11.241, P = 0.001, OR = 1.417, 95% CI 1.155–1.738). Furthermore, the genotype of rs713041 was found to be associated with the mild, severe and early-onset PE. Our results suggest that rs713041 in GPx4 may play a key role in the pathogenesis of PE.
Collapse
|
39
|
Rani A, Wadhwani N, Chavan-Gautam P, Joshi S. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:582-97. [DOI: 10.1002/wdev.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Alka Rani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Nisha Wadhwani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Preeti Chavan-Gautam
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Sadhana Joshi
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| |
Collapse
|
40
|
Acauan Filho BJ, Pinheiro da Costa BE, Ogando PB, Vieira MC, Antonello IC, Poli-de-Figueiredo CE. Serum nitrate and NOx levels in preeclampsia are higher than in normal pregnancy. Hypertens Pregnancy 2016; 35:226-33. [PMID: 27003519 DOI: 10.3109/10641955.2016.1139718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To compare nitric oxide (NO) serum levels in women with and without preeclampsia. METHODS 106 women were classified into preeclampsia group (n = 40) and normotensive group (n = 66). NO content was measured in the serum. Clinical and laboratorial data were recorded for comparison. RESULTS Preeclampsia presented a significant increase in nitrate and NOx levels compared to the control group. Uric acid, gestational age, systolic and diastolic blood pressure, and creatinine showed correlation with nitrates and NOx. CONCLUSION Increase of NO was observed in preeclampsia women. Failure in the mechanism of action, dependent on cyclic GMP, may justify this finding.
Collapse
Affiliation(s)
- Breno José Acauan Filho
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bartira Ercilia Pinheiro da Costa
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Barcelos Ogando
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Matias Costa Vieira
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ivan Carlos Antonello
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Carlos Eduardo Poli-de-Figueiredo
- a Programa de Pós-Graduação em Medicina e Ciências da Saúde, Instituto de Pesquisas Biomédicas - Hospital São Lucas/Faculdade de Medicina of Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
41
|
Rosner J, Gupta M, McGill M, Xue X, Chatterjee P, Yoshida-Hay M, Robeson W, Metz C. Magnesium deficiency during pregnancy in mice impairs placental size and function. Placenta 2016; 39:87-93. [DOI: 10.1016/j.placenta.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
42
|
D'Souza V, Rani A, Patil V, Pisal H, Randhir K, Mehendale S, Wagh G, Gupte S, Joshi S. Increased oxidative stress from early pregnancy in women who develop preeclampsia. Clin Exp Hypertens 2016; 38:225-32. [PMID: 26817695 DOI: 10.3109/10641963.2015.1081226] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder, defined as new onset of maternal hypertension and proteinuria after 20 weeks of gestation. Our earlier study has shown increased maternal oxidative stress at delivery to be associated with poor birth outcome in PE. However, these results were observed when the pathology had progressed and may have been secondary to the effects of the disorder. To understand the role of antioxidant defense mechanisms in PE right from early pregnancy, in this prospective study, we measured malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) concentrations in maternal blood at 3 time-points of gestation [16-20 weeks (T1), 26-30 weeks (T2), at delivery (T3)] and in cord blood. Gene expression of SOD and GPx and protein levels of endothelial nitric oxide synthase (eNOS) enzyme were also analyzed in the placenta. MDA levels were higher at T1 (p < 0.01) and T2 (p < 0.01) in women with PE as compared with control. GPx levels were higher at T3 (p < 0.05) while SOD levels were lower at T2 (p < 0.05), T3 (p < 0.01) and in cord (p < 0.01) in PE. GSH levels at T1 (p < 0.05) and expression of GPx in the placenta were lower in PE as compared with control. In conclusion, this study demonstrates that women who develop PE exhibit increased oxidative stress right from 16 to 20 weeks of gestation. This may alter placental development and lead to fetal programming of adult non-communicable disease in the offspring.
Collapse
Affiliation(s)
- Vandita D'Souza
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| | - Alka Rani
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| | - Vidya Patil
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| | - Hemlata Pisal
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| | - Karuna Randhir
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| | - Savita Mehendale
- b Department of Obstetrics and Gynaecology , Bharati Medical College and Hospital, Bharati Vidyapeeth University , Pune , Maharashtra , India , and
| | - Girija Wagh
- b Department of Obstetrics and Gynaecology , Bharati Medical College and Hospital, Bharati Vidyapeeth University , Pune , Maharashtra , India , and
| | - Sanjay Gupte
- c Department of Obstetrics and Gynaecology , Gupte Hospital and Research Center , Pune , Maharashtra , India
| | - Sadhana Joshi
- a Department of Nutritional Medicine , Interactive Research School for Health Affairs, Bharati Vidyapeeth University , Pune , Maharashtra , India
| |
Collapse
|
43
|
Implication du stress oxydant dans la physiopathologie de la pré-éclampsie : mise au point. ACTA ACUST UNITED AC 2015; 43:751-6. [DOI: 10.1016/j.gyobfe.2015.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
|
44
|
Sahay AS, Sundrani DP, Joshi SR. Regional changes of placental vascularization in preeclampsia: a review. IUBMB Life 2015; 67:619-25. [PMID: 26269153 DOI: 10.1002/iub.1407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
Preeclampsia is characterized by vascular dysfunction and results in maternal and fetal morbidity and mortality. The placenta plays a critical role in the growth and development of the fetus, and recent studies indicate that placental architecture, oxygen availability, and oxidative stress indices vary across different regions of the placenta. Our earlier studies have reported altered maternal angiogenesis and differential placental gene expression and methylation patterns of angiogenic factors in women with preeclampsia when compared with normotensive women. We have also demonstrated lower maternal and placental neurotrophin (NT) levels in women with preeclampsia. Studies suggest that oxidative stress is associated with proteases like matrix metalloproteinases (MMPs) and growth factors like NTs and angiogenic factors known to be involved in the process of angiogenesis. Recently, we have reported regionwise differential oxidative stress, antioxidant enzyme activity, and NT levels in placenta from normotensive control women and women with preeclampsia. The current review describes the regional changes in the placenta and highlights the role of placental oxidative stress in influencing regional differences in the expression of angiogenic factors, MMPs, and NTs. This review discusses the need for further research on various growth factors and proteins involved in the process of placental development across different regions of the placenta. This would help to understand whether regional differences in these factors affect the growth and development of the fetus.
Collapse
Affiliation(s)
- Akriti S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Deepali P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
45
|
Schneider D, Hernández C, Farías M, Uauy R, Krause BJ, Casanello P. Oxidative stress as common trait of endothelial dysfunction in chorionic arteries from fetuses with IUGR and LGA. Placenta 2015; 36:552-8. [PMID: 25747728 DOI: 10.1016/j.placenta.2015.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Fetal macrosomia and intrauterine growth restriction (IUGR) associate with increased morbidity in the neonate. Placental vascular relaxation is impaired in fetal macrosomia, as well as in IUGR, and this could result from increased oxidative stress present in both conditions. We determined the role of pro- and anti-oxidants on NOS dependent relaxation in placental chorionic arteries from pregnancies with LGA babies from overweight and/or obese mothers (LOOM) and IUGR fetuses from normal BMI women. METHODS Chorionic arteries were mounted in a wire-myograph, where responses to the NOS-dependent agent CGRP in presence or absence of the antioxidant N-acetyl cysteine (NAC), the pro-oxidant SIN-1, the SOD inhibitor DDC, and the GPx inhibitor MS were determined. Additionally the presence of pro- and antioxidant enzymes (NOX-4, SOD-1, SOD-2 and GPx-1) and eNOS in chorionic and umbilical vessels were addressed by immunohistochemistry. RESULTS Maximal CGRP-induced relaxation was comparable to controls but presented a reduced potency in chorionic arteries from LOOM placentae, whilst in IUGR vessels both maximal response and potency were reduced. NAC increased maximal relaxation in controls, IUGR and LOOM arteries, whilst SIN-1 completely abolished the CGRP-induced relaxation only in IUGR and LOOM samples, the later effect was paralleled by SOD or GPx inhibition. These responses associated with the presence of NOX-4, SOD-1 and GPx-1 in the endothelium and vascular wall of chorionic and umbilical arteries in the different groups studied. DISCUSSION These data suggest that NOS dependent relaxation in placental vessels from IUGR and LOOM pregnancies present a higher sensitivity to oxidative stress.
Collapse
Affiliation(s)
- D Schneider
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Hernández
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Farías
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R Uauy
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B J Krause
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P Casanello
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
46
|
Gilman CL, Soon R, Sauvage L, Ralston NVC, Berry MJ. Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption. J Trace Elem Med Biol 2015; 30:17-24. [PMID: 25744505 PMCID: PMC4352208 DOI: 10.1016/j.jtemb.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
Seafood is an important source of nutrients for fetal neurodevelopment. Most individuals are exposed to the toxic element mercury through seafood. Due to the neurotoxic effects of mercury, United States government agencies recommend no more than 340g (12oz) per week of seafood consumption during pregnancy. However, recent studies have shown that selenium, also abundant in seafood, can have protective effects against mercury toxicity. In this study, we analyzed mercury and selenium levels and selenoprotein mRNA, protein, and activity in placenta of a cohort of women in Hawaii in relation to maternal seafood consumption assessed with dietary surveys. Fish consumption resulted in differences in mercury levels in placenta and cord blood. When taken as a group, those who consumed no fish exhibited the lowest mercury levels in placenta and cord blood. However, there were numerous individuals who either had higher mercury with no fish consumption or lower mercury with high fish consumption, indicating a lack of correlation. Placental expression of selenoprotein mRNAs, proteins and enzyme activity was not statistically different in any region among the different dietary groups. While the absence of seafood consumption correlates with lower average placental and cord blood mercury levels, no strong correlations were seen between seafood consumption or its absence and the levels of either selenoproteins or selenoenzyme activity.
Collapse
Affiliation(s)
- Christy L Gilman
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Reni Soon
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Lynnae Sauvage
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Nicholas V C Ralston
- Energy & Environmental Research Center, University of North Dakota, Grand Forks ND 58202, United States
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States.
| |
Collapse
|
47
|
Regional differences in the placental levels of oxidative stress markers in pre-eclampsia. Int J Gynaecol Obstet 2015; 129:213-8. [DOI: 10.1016/j.ijgo.2015.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/16/2014] [Accepted: 02/25/2015] [Indexed: 01/19/2023]
|
48
|
Collier AC, Thévenon AD, Goh W, Hiraoka M, Kendal-Wright CE. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term. Eur J Drug Metab Pharmacokinet 2014; 40:471-80. [PMID: 25465229 DOI: 10.1007/s13318-014-0243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
Abstract
Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred.
Collapse
Affiliation(s)
- Abby C Collier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA. .,Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Audrey D Thévenon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - William Goh
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Mark Hiraoka
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Claire E Kendal-Wright
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA.,Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA
| |
Collapse
|
49
|
Kawasaki K, Kondoh E, Chigusa Y, Ujita M, Murakami R, Mogami H, Brown JB, Okuno Y, Konishi I. Reliable pre-eclampsia pathways based on multiple independent microarray data sets. Mol Hum Reprod 2014; 21:217-24. [PMID: 25323968 DOI: 10.1093/molehr/gau096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pre-eclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. Gene expression profiling of preeclamptic placenta have provided different and even opposite results, partly due to data compromised by various experimental artefacts. Here we aimed to identify reliable pre-eclampsia-specific pathways using multiple independent microarray data sets. Gene expression data of control and preeclamptic placentas were obtained from Gene Expression Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set activation scores of 9707 pathways obtained from the Molecular Signatures Database. Candidate pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722 and GSE25906. Additionally, recursive feature elimination was applied to arrive at a further reduced set of pathways. To assess the validity of the pre-eclampsia pathways, a statistically-validated protocol was executed using five data sets including two independent other validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for genes in a panel of potential pre-eclampsia pathways using placentas of 20 women with normal or severe preeclamptic singleton pregnancies (n = 10, respectively). A panel of ten pathways were found to discriminate women with pre-eclampsia from controls with high accuracy. Among these were pathways not previously associated with pre-eclampsia, such as the GABA receptor pathway, as well as pathways that have already been linked to pre-eclampsia, such as the glutathione and CDKN1C pathways. mRNA expression of GABRA3 (GABA receptor pathway), GCLC and GCLM (glutathione metabolic pathway), and CDKN1C was significantly reduced in the preeclamptic placentas. In conclusion, ten accurate and reliable pre-eclampsia pathways were identified based on multiple independent microarray data sets. A pathway-based classification may be a worthwhile approach to elucidate the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | | | - Mari Ujita
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - J B Brown
- Department of Clinical System Onco-Informatics, Kyoto University, Kyoto, Japan
| | - Yasushi Okuno
- Department of Clinical System Onco-Informatics, Kyoto University, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| |
Collapse
|
50
|
Park HR, Loch-Caruso R. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line. Toxicol Appl Pharmacol 2014; 281:67-77. [PMID: 25305463 DOI: 10.1016/j.taap.2014.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20μM BDE-47 for 24h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20μM BDE-47 for 24h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|