1
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Zhang Y, Liang Z, Xing H, Yu C, Liang J, Xu Q, Song J, He Z. A model of pregnancy-associated malaria for inducing adverse pregnancy outcomes in ICR mouse. Exp Parasitol 2024; 257:108686. [PMID: 38158008 DOI: 10.1016/j.exppara.2023.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Based on understanding of placental pathological features and safe medication in pregnancy-associated malaria (PAM), establishment of a stable pregnant mouse infection model with Plasmodium was urgently needed. METHODS ICR mice with vaginal plugs detected were randomly divided into post-pregnancy infection (Malaria+) and uninfected pregnancy (Malaria-) cohorts. Age-matched mice that had not been mated were infected as pre-pregnancy infection group (Virgin control), which were subsequently mated with ICR males. All mice were inoculated with 1 × 106Plasmodium berghei ANKA-infected RBCs by intraperitoneal injection, and the same amount of saline was given to Malaria- group. We recorded the incidence of adverse pregnancy outcomes and the amounts of offspring in each group. RESULTS The Virgin group mice were unable to conceive normally, and vaginal bleeding, abortion, or stillbirth appeared in the Malaria+ group. The incidence of adverse pregnancy outcomes was extremely high and statistically significant compared with the control (Malaria-) group (P < 0.05), of which placenta exhibited pathological features associated with human gestational malaria. CONCLUSIONS The intraperitoneal injection of 1 × 106Plasmodium berghei ANKA-infected RBCs could establish a model of pregnancy-associated malaria in ICR mouse.
Collapse
Affiliation(s)
- Yingying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhiming Liang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Haoyu Xing
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuyi Yu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianming Liang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhouqing He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
3
|
Li X, Li ZH, Wang YX, Liu TH. A comprehensive review of human trophoblast fusion models: recent developments and challenges. Cell Death Discov 2023; 9:372. [PMID: 37816723 PMCID: PMC10564767 DOI: 10.1038/s41420-023-01670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.
Collapse
Affiliation(s)
- Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
| | - Zhuo-Hang Li
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, 625099, Sichuan, China
| | - Ying-Xiong Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| |
Collapse
|
4
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
5
|
Hermans S, Pilon J, Eschweiler D, Stegmaier J, Severens–Rijvers CAH, Al-Nasiry S, van Zandvoort M, Kapsokalyvas D. Definition and Quantification of Three-Dimensional Imaging Targets to Phenotype Pre-Eclampsia Subtypes: An Exploratory Study. Int J Mol Sci 2023; 24:ijms24043240. [PMID: 36834652 PMCID: PMC9959375 DOI: 10.3390/ijms24043240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Pre-eclampsia is a severe placenta-related complication of pregnancy with limited early diagnostic and therapeutic options. Aetiological knowledge is controversial, and there is no universal consensus on what constitutes the early and late phenotypes of pre-eclampsia. Phenotyping of native placental three-dimensional (3D) morphology offers a novel approach to improve our understanding of the structural placental abnormalities in pre-eclampsia. Healthy and pre-eclamptic placental tissues were imaged with multiphoton microscopy (MPM). Imaging based on inherent signal (collagen, and cytoplasm) and fluorescent staining (nuclei, and blood vessels) enabled the visualization of placental villous tissue with subcellular resolution. Images were analysed with a combination of open source (FIJI, VMTK, Stardist, MATLAB, DBSCAN), and commercially (MATLAB) available software. Trophoblast organization, 3D-villous tree structure, syncytial knots, fibrosis, and 3D-vascular networks were identified as quantifiable imaging targets. Preliminary data indicate increased syncytial knot density with characteristic elongated shape, higher occurrence of paddle-like villous sprouts, abnormal villous volume-to-surface ratio, and decreased vascular density in pre-eclampsia compared to control placentas. The preliminary data presented indicate the potential of quantifying 3D microscopic images for identifying different morphological features and phenotyping pre-eclampsia in placental villous tissue.
Collapse
Affiliation(s)
- Sammy Hermans
- Department of Genetics and Cell Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jacob Pilon
- Department of Genetics and Cell Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dennis Eschweiler
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Salwan Al-Nasiry
- Obstetrics and Gynaecology, GROW, Maastricht University Medical Centre (MUMC), 6229 HX Maastricht, The Netherlands
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, GROW, CARIM, MHeNS, Maastricht University, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Interdisciplinary Centre for Clinical Research IZKF, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
6
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
7
|
Ortega MA, Fraile-Martínez O, García-Montero C, Paradela A, Asunción Sánchez-Gil M, Rodriguez-Martin S, De León-Luis JA, Pereda-Cerquella C, Bujan J, Guijarro LG, Alvarez-Mon M, García-Honduvilla N. Unfolding the role of placental-derived Extracellular Vesicles in Pregnancy: From homeostasis to pathophysiology. Front Cell Dev Biol 2022; 10:1060850. [PMID: 36478738 PMCID: PMC9720121 DOI: 10.3389/fcell.2022.1060850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
The human placenta is a critical structure with multiple roles in pregnancy, including fetal nutrition and support, immunological, mechanical and chemical barrier as well as an endocrine activity. Besides, a growing body of evidence highlight the relevance of this organ on the maternofetal wellbeing not only during gestation, but also from birth onwards. Extracellular vesicles (EVs) are complex macromolecular structures of different size and content, acting as carriers of a diverse set of molecules and information from donor to recipient cells. Since its early development, the production and function of placental-derived EVs are essential to ensure an adequate progress of pregnancy. In turn, the fetus receives and produce their own EVs, highlighting the importance of these components in the maternofetal communication. Moreover, several studies have shown the clinical relevance of EVs in different obstetric pathologies such as preeclampsia, infectious diseases or gestational diabetes, among others, suggesting that they could be used as pathophysiological biomarkers of these diseases. Overall, the aim of this article is to present an updated review of the published basic and translational knowledge focusing on the role of placental-derived EVs in normal and pathological pregnancies. We suggest as well future lines of research to take in this novel and promising field.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | | | - María Asunción Sánchez-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- University Defense Center of Madrid (CUD), Madrid, Spain
| | - Sonia Rodriguez-Martin
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Ma-drid, Madrid, Spain
| | - Claude Pereda-Cerquella
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Luis G. Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Centro de Investigación Biomédica en Red en El Área Temática de Enfermedades Hepáticas (CIBEREHD), Department of System Biology, University of Alcalá, Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, Centro de Investigación Biomédica en Red en El Área Temática de Enfermedades Hepáticas (CIBEREHD), University Hospital Príncipe de Asturias, Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- University Defense Center of Madrid (CUD), Madrid, Spain
| |
Collapse
|
8
|
Wong YP, Cheah FC, Wong KK, Shah SA, Phon SE, Ng BK, Lim PS, Khong TY, Tan GC. Gardnerella vaginalis infection in pregnancy: Effects on placental development and neonatal outcomes. Placenta 2022; 120:79-87. [PMID: 35231793 DOI: 10.1016/j.placenta.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
9
|
Aplin JD, Jones CJP. Cell dynamics in human villous trophoblast. Hum Reprod Update 2021; 27:904-922. [PMID: 34125187 DOI: 10.1093/humupd/dmab015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Villous cytotrophoblast (vCTB) is a precursor cell population that supports the development of syncytiotrophoblast (vSTB), the high surface area barrier epithelium of the placental villus, and the primary interface between maternal and fetal tissue. In light of increasing evidence that the placenta can adapt to changing maternal environments or, under stress, can trigger maternal disease, we consider what properties of these cells empower them to exert a controlling influence on pregnancy progression and outcome. OBJECTIVE AND RATIONALE How are cytotrophoblast proliferation and differentiation regulated in the human placental villus to allow for the increasing demands of the fetal and environmental challenges and stresses that may arise during pregnancy? SEARCH METHODS PubMed was interrogated using relevant keywords and word roots combining trophoblast, villus/villous, syncytio/syncytium, placenta, stem, transcription factor (and the individual genes), signalling, apoptosis, autophagy (and the respective genes) from 1960 to the present. Since removal of trophoblast from its tissue environment is known to fundamentally change cell growth and differentiation kinetics, research that relied exclusively on cell culture has not been the main focus of this review, though it is mentioned where appropriate. Work on non-human placenta is not systematically covered, though mention is made where relevant hypotheses have emerged. OUTCOMES The synthesis of data from the literature has led to a new hypothesis for vCTB dynamics. We propose that a reversible transition can occur from a reserve population in G0 to a mitotically active state. Cells from the in-cycle population can then differentiate irreversibly to intermediate cells that leave the cycle and turn on genes that confer the capacity to fuse with the overlying vSTB as well as other functions associated with syncytial barrier and transport function. We speculate that alterations in the rate of entry to the cell cycle, or return of cells in the mitotic fraction to G0, can occur in response to environmental challenge. We also review evidence on the life cycle of trophoblast from the time that fusion occurs, and point to gaps in knowledge of how large quantities of fetal DNA arrive in maternal circulation. We critique historical methodology and make a case for research to re-address questions about trophoblast lifecycle and dynamics in normal pregnancy and the common diseases of pre-eclampsia and fetal growth restriction, where altered trophoblast kinetics have long been postulated. WIDER IMPLICATIONS The hypothesis requires experimental testing, moving research away from currently accepted methodology towards a new standard that includes representative cell and tissue sampling, assessment of cell cycle and differentiation parameters, and robust classification of cell subpopulations in villous trophoblast, with due attention to gestational age, maternal and fetal phenotype, disease and outcome.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
10
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
11
|
Burton GJ, Jauniaux E. Placentation in the Human and Higher Primates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:223-254. [PMID: 34694484 DOI: 10.1007/978-3-030-77360-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Placentation in humans is precocious and highly invasive compared to other mammals. Implantation is interstitial, with the conceptus becoming completely embedded within the endometrium towards the end of the second week post-fertilization. Villi initially form over the entire surface of the chorionic sac, stimulated by histotrophic secretions from the endometrial glands. The secondary yolk sac never makes contact with the chorion, and a choriovitelline placenta is never established. However, recent morphological and transcriptomic analyses suggest that the yolk sac plays an important role in the uptake of nutrients from the coelomic fluid. Measurements performed in vivo demonstrate that early development takes place in a physiological, low-oxygen environment that protects against teratogenic free radicals and maintains stem cells in a multipotent state. The maternal arterial circulation to the placenta is only fully established around 10-12 weeks of gestation. By then, villi have regressed over the superficial, abembryonic pole, leaving the definitive discoid placenta, which is of the villous, hemochorial type. Remodeling of the maternal spiral arteries is essential to ensure a high-volume but low-velocity inflow into the mature placenta. Extravillous trophoblast cells migrate from anchoring villi and surround the arteries. Their interactions with maternal immune cells release cytokines and proteases that are key to remodeling, and a successful pregnancy.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Eric Jauniaux
- Faculty of Population Health Sciences, EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
12
|
Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front Physiol 2020; 11:98. [PMID: 32116801 PMCID: PMC7026478 DOI: 10.3389/fphys.2020.00098] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Preeclampsia is the most severe type of hypertensive disorder of pregnancy, affecting one in 10 pregnancies worldwide and increasing significantly maternal and neonatal morbidity and mortality. Women developing preeclampsia display an array of symptoms encompassing uncontrolled hypertension and proteinuria, with neurological symptoms including seizures at the end of pregnancy. The main causes of preeclampsia are still unknown. However, abnormal placentation and placenta vascularization seem to be common features in preeclampsia, also leading to fetal growth restriction mainly due to reduced placental blood flow and chronic hypoxia. An over activation of maternal immunity cells against the trophoblasts, the main cells forming the placenta, has been recently shown as an important mechanism triggering trophoblast apoptosis and death. This response will further disrupt the remodeling of maternal uterine arteries, in a first stage, and the formation of new placental vessels in a later stage. A consequent chronic hypoxia stress will further contribute to increase placental stress and exacerbate systemic circulatory changes in the mother. The molecular mechanisms driving these processes of apoptosis and anti-angiogenesis are also not well-understood. In this review, we group main evidences suggesting potential targets and molecules that should be better investigated in preeclampsia. This knowledge will contribute to improve therapies targeting a better placenta formation, having a positive impact on maternal disease prevention and on fetal development.
Collapse
Affiliation(s)
- Nozha Raguema
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Sarah Moustadraf
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Mariane Bertagnolli
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Vangrieken P, Vanterpool SF, van Schooten FJ, Al-Nasiry S, Andriessen P, Degreef E, Alfer J, Kramer BW, von Rango U. Histological villous maturation in placentas of complicated pregnancies. Histol Histopathol 2020; 35:849-862. [PMID: 31985030 DOI: 10.14670/hh-18-205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chorioamnionitis and preeclampsia account for the majority of preterm births worldwide. Thus far, adequate methods for early detection or prevention of these diseases are lacking. In preeclampsia, accelerated villous maturation is believed to compensate placental insufficiency. However, little is known about the effects of placental inflammation in chorioamnionitis on villous maturation. Therefore, we established a set of morphological parameters to evaluate histological villous maturity in pregnancies complicated by chorioamnionitis and preeclampsia. Preterm placentas complicated by chorioamnionitis or preeclampsia were compared to idiopathic preterm placentas and term controls. Histological villous maturation was analyzed by means of 17 histological markers. Fourteen of these markers provided information on absolute and relative numbers of the terminal villi (TV), the extent of their vascularization (using CD31-stained sections) and their exchange capacities. In addition, the numbers of syncytial bridges, syncytial apoptotic knots and shed syncytiotrophoblasts were counted. Accelerated villous maturation in preeclampsia was demonstrated by means of histological villous remodeling and confirmed by 11 relevant markers. Chorioamnionitis, however, only showed increased area of fetal capillaries. In preeclampsia, placentas may transition from growth to maturation earlier than placentas in normal pregnancies, whereas in chorioamnionitis placental changes are more acute and therefore less elaborated at a structural level. Regression analysis suggests the number of all villi and the number of terminal villi as a percentage of all villi as parameters to evaluate histological villous maturity in preeclamptic placentas and to assist diagnosis. However, we would recommend to analyze all 11 relevant parameters to judge placental maturity in detail.
Collapse
Affiliation(s)
- Philippe Vangrieken
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Sizzle F Vanterpool
- Department of Reproductive Medicine, University Hospital Ghent, Ghent, Belgium.,School for Mental Health and Neurosciences (MHeNS), Department of Pediatrics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Frederik J van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Salwan Al-Nasiry
- School for Oncology and Developmental Biology (GROW), Department of Obstetrics and Gynaecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Peter Andriessen
- Department of Pediatrics, Máxima Medical Center, Veldhoven, the Netherlands
| | - Ellen Degreef
- Foundation Laboratory for Pathology and Medical Microbiology (PAMM), Eindhoven, The Netherlands
| | - Joachim Alfer
- Department of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
| | - Boris W Kramer
- School for Mental Health and Neurosciences (MHeNS), Department of Pediatrics, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Oncology and Developmental Biology (GROW), Department of Obstetrics and Gynaecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ulrike von Rango
- Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
14
|
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:80. [PMID: 32161574 PMCID: PMC7053284 DOI: 10.3389/fendo.2020.00080] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Reproduction involves tightly regulated series of events and the immune system is involved in an array of reproductive processes. Disruption of well-controlled immune functions leads to infertility, placental inflammation, and numerous pregnancy complications, including preeclampsia (PE). Inflammasomes are involved in the process of pathogen clearance and sterile inflammation. They are large multi-protein complexes that are located in the cytosol and play key roles in the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and pyroptosis. The nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome is a key mediator of sterile inflammation induced by various types of damage-associated molecular patterns (DAMPs). Recent evidence indicates that the NLRP3 inflammasome is involved in pregnancy dysfunction, including PE. Many DAMPs (uric acid, palmitic acid, high-mobility group box 1, advanced glycation end products, extracellular vesicles, cell-free DNA, and free fatty acids) are increased and associated with pregnancy complications, especially PE. This review focuses on the role of the NLRP3 inflammasome in the pathophysiology of PE.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Koumei Shirasuna
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
15
|
Morffy Smith CD, Russ BN, Andrew AK, Cooper CA, Moore JM. A novel murine model for assessing fetal and birth outcomes following transgestational maternal malaria infection. Sci Rep 2019; 9:19566. [PMID: 31862902 PMCID: PMC6925284 DOI: 10.1038/s41598-019-55588-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum infection during pregnancy is a major cause of severe maternal illness and neonatal mortality. Mouse models are important for the study of gestational malaria pathogenesis. When infected with Plasmodium chabaudi chabaudi AS in early gestation, several inbred mouse strains abort at midgestation. We report here that outbred Swiss Webster mice infected with P. chabaudi chabaudi AS in early gestation carry their pregnancies to term despite high parasite burden and malarial hemozoin accumulation in the placenta at midgestation, with the latter associated with induction of heme oxygenase 1 expression. Infection yields reduced fetal weight and viability at term and a reduction in pup number at weaning, but does not influence postnatal growth prior to weaning. This novel model allows for the exploration of malaria infection throughout pregnancy, modeling chronic infections observed in pregnant women prior to the birth of underweight infants and enabling the production of progeny exposed to malaria in utero, which is critical for understanding the postnatal repercussions of gestational malaria. The use of outbred mice allows for the exploration of gestational malaria in a genetically diverse model system, better recapitulating the diversity of infection responses observed in human populations.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Julie M Moore
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States. .,Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
16
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
17
|
A Ahmed M, I Alqosaibi A, Mohamed MA, Soliman MG. Evaluation of Some Cytokines and Gene Expressions in Pre-eclampsia. Pak J Biol Sci 2019; 22:148-153. [PMID: 30972985 DOI: 10.3923/pjbs.2019.148.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Preeclampsia(PE) is adisordercharacterized byhypertensionandproteinuria. There is accumulating evidence that this is a disease of the endothelium. Angiogenic factors may be responsible for the regulation of placental vascular development. Clinicians cannot predict pre-eclampsia prior to the onset symptoms. An ideal bio-marker for pre-eclampsia prediction is during the first trimester. This study investigated the serum levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP) and the gene expressions of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and p53 in PE trying to find out potential bio-markers for prediction and diagnosis of PE. MATERIAL AND METHODS A total of 100 female volunteers were involved in this study and their ages were ranged from 25-35 years. They were divided into three groups: Group (1) was 20 healthy non-pregnant women, group (2) was 20 pregnant women normal pregnancies and group (3) was 60 preeclamptic patients. The study participants were enrolled at the Department of Obstetrics and Gynaecology at Mansoura University Hospital, Mansoura, Egypt. The study was approved by the Research Ethics Committee (Faculty of Science, Al Azhar University, Egypt) approved on the March 15, 2014) all women gave written informed consent. Serum levels of CRP, IL-10 and TNF-α were evaluated, in addition to the gene expression of VEGF, eNOS and p53. RESULTS Significant elevations in the serum levels of blood pressure, TNF-α and CRP were observed in PE patients. Additionally, the gene expression of VEGF, eNOS and P53 were down-regulated in preeclampsia. CONCLUSION Elevated serum levels of TNFα and CRP, in addition to the down-regulation of eNOS may be used as good predictors for preeclampsia. The TNF-α and VEGF gene were recommended used as markers for PE to be added to routine testes of pregnant women.
Collapse
|
18
|
Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3095383. [PMID: 31249642 PMCID: PMC6556237 DOI: 10.1155/2019/3095383] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a multisystemic pregnancy disorder and a major cause of maternal and neonatal morbidity and mortality worldwide. The exact pathophysiology of preeclampsia remains unclear; however, it is speculated that the various pathologies can be attributed to impaired vascular remodelling and elevated oxidative stress within the placenta. Oxidative stress plays a key role in cell ageing, and the persistent presence of elevated oxidative stress precipitates cellular senescence and mitochondrial dysfunction, resulting in premature ageing of the placenta. Premature ageing of the placenta is associated with placental insufficiency, which reduces the functional capacity of this critical organ and leads to abnormal pregnancy outcomes. The changes brought about by oxidative insults are irreversible and often lead to deleterious modifications in macromolecules such as lipids and proteins, DNA mutations, and alteration of mitochondrial functioning and dynamics. In this review, we have summarized the current knowledge of placental ageing in the aetiology of adverse pregnancy outcomes and discussed the hallmarks of ageing which could be potential markers for preeclampsia and fetal growth restriction.
Collapse
|
19
|
Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 2017; 60:69-80. [PMID: 29222068 DOI: 10.1016/j.mam.2017.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Intercellular communication is a critical process in biological mechanisms. During pregnancy foetoplacental tissues release a heterogeneous group of extracellular vesicles (EVs) that include exosomes, microvesicles, apoptotic bodies, and syncytial nuclear aggregates. These vesicles contain a complex cargo (proteins, DNA, mRNA transcripts, microRNAs, noncoding RNA, lipids, and other molecules) that actively participate in the maternal-foetal communication by modulating different processes during gestation for a successful foetal development. Each stage of human gestation is marked by events such as immunomodulation, proliferation, invasion, migration, and differentiation, among others, requiring EVs-mediated signalling to be nearby or distant target cells. Furthermore, EVs also associate with pregnancy pathologies such as preeclampsia and intrauterine growth restriction. This review addresses the role of EVs in human foetomaternal communication in normal pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029 Queensland, Australia.
| |
Collapse
|
20
|
Lean SC, Heazell AEP, Dilworth MR, Mills TA, Jones RL. Placental Dysfunction Underlies Increased Risk of Fetal Growth Restriction and Stillbirth in Advanced Maternal Age Women. Sci Rep 2017; 7:9677. [PMID: 28852057 PMCID: PMC5574918 DOI: 10.1038/s41598-017-09814-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
Pregnancies in women of advanced maternal age (AMA) are susceptible to fetal growth restriction (FGR) and stillbirth. We hypothesised that maternal ageing is associated with utero-placental dysfunction, predisposing to adverse fetal outcomes. Women of AMA (≥35 years) and young controls (20-30 years) with uncomplicated pregnancies were studied. Placentas from AMA women exhibited increased syncytial nuclear aggregates and decreased proliferation, and had increased amino acid transporter activity. Chorionic plate and myometrial artery relaxation was increased compared to controls. AMA was associated with lower maternal serum PAPP-A and sFlt and a higher PlGF:sFlt ratio. AMA mice (38-41 weeks) at E17.5 had fewer pups, more late fetal deaths, reduced fetal weight, increased placental weight and reduced fetal:placental weight ratio compared to 8-12 week controls. Maternofetal clearance of 14C-MeAIB and 3H-taurine was reduced and uterine arteries showed increased relaxation. These studies identify reduced placental efficiency and altered placental function with AMA in women, with evidence of placental adaptations in normal pregnancies. The AMA mouse model complements the human studies, demonstrating high rates of adverse fetal outcomes and commonalities in placental phenotype. These findings highlight placental dysfunction as a potential mechanism for susceptibility to FGR and stillbirth with AMA.
Collapse
Affiliation(s)
- Samantha C Lean
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, United Kingdom.
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester Academic Health Science Centre, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester Academic Health Science Centre, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| | - Tracey A Mills
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester Academic Health Science Centre, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, United Kingdom
- St. Mary's Hospital, Manchester Academic Health Science Centre, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
21
|
Senagore PK, Holzman CB, Parks WT, Catov JM. Working Towards a Reproducible Method for Quantifying Placental Syncytial Knots. Pediatr Dev Pathol 2017; 19:389-400. [PMID: 26529304 DOI: 10.2350/15-08-1701-oa.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prominent syncytial knots (SK) in placentas signal advanced gestation or placental malperfusion, reflecting exposures that adversely affect placental development and pregnancy outcomes. Molecular-level interrogations of syncytiotrophoblast have altered perceptions of and raised questions about the function and disposition of SK. Quantifying SK and achieving acceptable levels of interrater reliability have been challenging. Our objective was to develop a simple, reproducible protocol for counting SK and demonstrate interrater reliability overall and within 3 parameters, ie, preterm vs term delivery, presence vs absence of diffuse prominent SK (DPSK), and SK relationship with a lesion, all of which could influence measurement reproducibility and interpretation. Criteria for defining SK and a grid system drawn on glass slides were developed for counting percentage of villi with SK. One disc section each from 151 placentas, sampled from 8 groups defined by the 3 parameters, was assessed by 2 pretrained pathologists. The resulting weighted kappa statistic for overall interrater agreement was 0.60 (very good) and Spearman correlation coefficient for ranking quartiles was >0.70. Agreement was best for preterm placentas, kappa = 0.61, and those only showing DPSK associated with a lesion, kappa = 0.67. Agreement was low in the absence of DPSK, kappa = 0.22, or when DPSK was present in a placenta not associated with a lesion, kappa = 0.32. The proposed method offers a potentially reliable approach for categorizing SK counts as normal vs abnormal or providing continuous measure counts. More extensive pretraining, focused on placentas with few SK and those without an associated lesion, is recommended to improve agreement.
Collapse
Affiliation(s)
- Patricia K Senagore
- 1 Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, West Fee Hall, 909 Fee Road, Room B601, East Lansing, MI 48824, USA
| | - Claudia B Holzman
- 1 Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, West Fee Hall, 909 Fee Road, Room B601, East Lansing, MI 48824, USA
| | - W Tony Parks
- 2 Department of Pathology, University of Pittsburgh, Magee-Women's Hospital of UPMC, 300 Halket Street, Room 4436, Pittsburgh, PA 15213, USA.,3 Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
| | - Janet M Catov
- 4 Magee Women's Research Institute; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 300 Halket Street, Suite 2315, Pittsburgh, PA, USA.,5 Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Calvert SJ, Longtine MS, Cotter S, Jones CJP, Sibley CP, Aplin JD, Nelson DM, Heazell AEP. Studies of the dynamics of nuclear clustering in human syncytiotrophoblast. Reproduction 2016; 151:657-71. [PMID: 27002000 PMCID: PMC4911178 DOI: 10.1530/rep-15-0544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Syncytial nuclear aggregates (SNAs), clusters of nuclei in the syncytiotrophoblast of
the human placenta, are increased as gestation advances and in pregnancy pathologies.
The origins of increased SNAs are unclear; however, a better appreciation of the
mechanism may give insight into placental ageing and factors underpinning
dysfunction. We developed three models to investigate whether SNA formation results
from a dynamic process of nuclear movement and to generate alternative hypotheses.
SNA count and size were measured in placental explants cultured over 16 days and
particles released into culture medium were quantified. Primary trophoblasts were
cultured for 6 days. Explants and trophoblasts were cultured with and without
cytoskeletal inhibitors. An in silico model was developed to examine
the effects of modulating nuclear behaviour on clustering. In explants, neither
median SNA number (108 SNA/mm2 villous area) nor size (283
μm2) changed over time. Subcellular particles from conditioned
culture medium showed a wide range of sizes that overlapped with those of SNAs.
Nuclei in primary trophoblasts did not change position relative to other nuclei;
apparent movement was associated with positional changes of the syncytial cell
membrane. In both models, SNAs and nuclear clusters were stable despite
pharmacological disruption of cytoskeletal activity. In silico,
increased nuclear movement, adhesiveness and sites of cytotrophoblast fusion were
related to nuclear clustering. The prominence of SNAs in pregnancy disorders may not
result from an active process involving cytoskeleton-mediated rearrangement of
syncytial nuclei. Further insights into the mechanism(s) of SNA formation will aid
understanding of their increased presence in pregnancy pathologies.
Collapse
Affiliation(s)
- S J Calvert
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M S Longtine
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - S Cotter
- School of MathematicsAlan Turing Building, University of Manchester, Manchester, UK
| | - C J P Jones
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C P Sibley
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J D Aplin
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D M Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - A E P Heazell
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
23
|
Hayward CE, Lean S, Sibley CP, Jones RL, Wareing M, Greenwood SL, Dilworth MR. Placental Adaptation: What Can We Learn from Birthweight:Placental Weight Ratio? Front Physiol 2016; 7:28. [PMID: 26903878 PMCID: PMC4742558 DOI: 10.3389/fphys.2016.00028] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/18/2016] [Indexed: 11/17/2022] Open
Abstract
Appropriate fetal growth relies upon adequate placental nutrient transfer. Birthweight:placental weight ratio (BW:PW ratio) is often used as a proxy for placental efficiency, defined as the grams of fetus produced per gram placenta. An elevated BW:PW ratio in an appropriately grown fetus (small placenta) is assumed to be due to up-regulated placental nutrient transfer capacity i.e., a higher nutrient net flux per gram placenta. In fetal growth restriction (FGR), where a fetus fails to achieve its genetically pre-determined growth potential, placental weight and BW:PW ratio are often reduced which may indicate a placenta that fails to adapt its nutrient transfer capacity to compensate for its small size. This review considers the literature on BW:PW ratio in both large cohort studies of normal pregnancies and those studies offering insight into the relationship between BW:PW ratio and outcome measures including stillbirth, FGR, and subsequent postnatal consequences. The core of this review is the question of whether BW:PW ratio is truly indicative of altered placental efficiency, and whether changes in BW:PW ratio reflect those placentas which adapt their nutrient transfer according to their size. We consider this question using data from mice and humans, focusing upon studies that have measured the activity of the well characterized placental system A amino acid transporter, both in uncomplicated pregnancies and in FGR. Evidence suggests that BW:PW ratio is reduced both in FGR and in pregnancies resulting in a small for gestational age (SGA, birthweight < 10th centile) infant but this effect is more pronounced earlier in gestation (<28 weeks). In mice, there is a clear association between increased BW:PW ratio and increased placental system A activity. Additionally, there is good evidence in wild-type mice that small placentas upregulate placental nutrient transfer to prevent fetal undergrowth. In humans, this association between BW:PW ratio and placental system A activity is less clear and is worthy of further consideration, both in terms of system A and other placental nutrient transfer processes. This knowledge would help decide the value of measuring BW:PW ratio in terms of determining the risk of poor health outcomes, both in the neonatal period and long term.
Collapse
Affiliation(s)
- Christina E Hayward
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Samantha Lean
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester, UK
| |
Collapse
|
24
|
Roland CS, Hu J, Ren CE, Chen H, Li J, Varvoutis MS, Leaphart LW, Byck DB, Zhu X, Jiang SW. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci 2016; 73:365-76. [PMID: 26496726 PMCID: PMC4846582 DOI: 10.1007/s00018-015-2069-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Preeclampsia is a hypertensive disease that complicates many pregnancies, typically presenting with new-onset or worsening hypertension and proteinuria. It is well recognized that the placental syncytium plays a key role in the pathogenesis of preeclampsia. This review summarizes the findings pertaining to the structural alterations in the syncytium of preeclamptic placentas and analyzes their pathological implications for the development of preeclampsia. Changes in the trophoblastic lineage, including those in the proliferation of cytotrophoblasts, the formation of syncytiotrophoblast through cell fusion, cell apoptosis and syncytial deportation, are discussed in the context of preeclampsia. Extensive correlations are made between functional deficiencies and the alterations on the levels of gross anatomy, tissue histology, cellular events, ultrastructure, molecular pathways, and gene expression. Attention is given to the significance of dynamic changes in the syncytial turnover in preeclamptic placentas. Specifically, experimental evidences for the complex and obligatory role of syncytin-1 in cell fusion, cell-cycle regulation at the G1/S transition, and apoptosis through AIF-mediated pathway, are discussed in detail in the context of syncytium homeostasis. Finally, the recent observations on the aberrant fibrin deposition in the trophoblastic layer and the trophoblast immature phenotype in preeclamptic placentas and their potential pathogenic impact are also reviewed.
Collapse
Affiliation(s)
- Cynthia S Roland
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA
| | - Jian Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Chun-E Ren
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinping Li
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Megan S Varvoutis
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA
| | - Lynn W Leaphart
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA
| | - David B Byck
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA, 31404, USA.
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, 31404, USA.
| |
Collapse
|
25
|
Wei J, Chen Q, James JL, Stone PR, Chamley LW. IL-1 beta but not the NALP3 inflammasome is an important determinant of endothelial cell responses to necrotic/dangerous trophoblastic debris. Placenta 2015; 36:1385-92. [PMID: 26515928 DOI: 10.1016/j.placenta.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Necrotic but not apoptotic trophoblastic debris can induce endothelial cell activation but the mechanism by which endothelial cells distinguish apoptotic from necrotic debris is unclear. The NALP3 inflammasome is a pattern recognition receptor that macrophages employ to recognise "danger signals" in necrotic cell corpses. In this study, we hypothesized that endothelial cells can identify and respond to necrotic trophoblastic debris via the NALP3 inflammasome. METHODS The effect of trophoblastic debris on endothelial expression of NALP3 inflammasome components was investigated using qRT-PCR, immunoassays and fluorescent caspase 1 activity assay. IL-1β in was quantified by ELISA. Endothelial cell activation was measured by cell surface ICAM expression and monocytes adhesion assay. RESULTS The NALP3 inflammasome was expressed in resting vascular endothelial cells and is involved in endothelial response to danger signals. However, exposure to necrotic trophoblastic debris did not significantly alter the expression of any of the three components of the NALP3 inflammasome at the mRNA level, nor was caspase-1 activation increased. Conditioned media from endothelial cells exposed to necrotic trophoblastic debris contained elevated levels of IL-1β which was derived from the necrotic debris and which contributed to endothelial cell activation. DISCUSSION Necrotic trophoblastic debris induced endothelial cell activation through the IL-1β/IL-1R pathway. However, the NALP3 inflammasome in endothelial cells was not involved in this process.
Collapse
Affiliation(s)
- J Wei
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand.
| | - Q Chen
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand
| | - J L James
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand
| | - P R Stone
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand
| | - L W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, New Zealand
| |
Collapse
|
26
|
Linscheid C, Heitmann E, Singh P, Wickstrom E, Qiu L, Hodes H, Nauser T, Petroff MG. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women. Placenta 2015; 36:832-8. [PMID: 26095815 DOI: 10.1016/j.placenta.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. METHODS Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. RESULTS HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). DISCUSSION Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia.
Collapse
Affiliation(s)
- C Linscheid
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Heitmann
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - P Singh
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - E Wickstrom
- Saint Luke's Health System, Department of Maternal and Fetal Medicine, Kansas City, MO, USA
| | - L Qiu
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - H Hodes
- The Center for Women's Health, Overland Park, KS, USA
| | - T Nauser
- The Center for Women's Health, Overland Park, KS, USA
| | - M G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
27
|
Li XL, Dong X, Xue Y, Li CF, Gou WL, Chen Q. Increased expression levels of E-cadherin, cytokeratin 18 and 19 observed in preeclampsia were not correlated with disease severity. Placenta 2014; 35:625-31. [PMID: 24857367 DOI: 10.1016/j.placenta.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Preeclampsia is a pregnancy-specific disorder and placental factor(s) contribute to the pathogenesis of preeclampsia. Turnover of villous trophoblast is affected by impaired placental perfusion in preeclampsia. Expression and localisation of cadherins and cytokeratins are involved in the pathogenesis of preeclampsia. However, studies describing the associations between cadherins and cytokeratins in preeclampsia are limited. The aim of this study was to investigate the expression of E-cadherin, N-cadherin, cytokeratin 18 and cytokeratin 19 in placentae from women with preeclampsia in order to determine whether their expression differs with disease severity. METHODS 29 preeclamptic placentae and 25 normotensive placentae were included in this study. The expression of E-cadherin, cytokeratin 18, cytokeratin 19 andN-cadherin was quantified by immunohistochemistry and western blotting. RESULTS E-cadherin, cytokeratin 18 and cytokeratin 19 were expressed predominantly in the syncytiotrophoblast of the placenta and the expression of E-cadherin, cytokeratin 18 and cytokeratin 19 was significantly increased in preeclampsia compared to normotensive pregnancies. However, there was no significant difference in expression between severe preeclampsia and mild preeclampsia. In addition, there was no difference in the expression of N-cadherin between preeclampsic and normotensive pregnancies. DISCUSSION Our data demonstrated increased expression of E-cadherin, cytokeratin 18 and cytokeratin 19 in the syncytiotrophoblast of preeclamptic placentae, but this increase was not correlated with disease severity. CONCLUSION Our data suggests that E-cadherin and cytokeratins are involved in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- X L Li
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China.
| | - X Dong
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Y Xue
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - C F Li
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - W L Gou
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Q Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand; The Hospital of Obstetrics & Gynaecology, Nanjing Medical University, China.
| |
Collapse
|
28
|
Mayhew TM. Turnover of human villous trophoblast in normal pregnancy: what do we know and what do we need to know? Placenta 2014; 35:229-40. [PMID: 24529666 DOI: 10.1016/j.placenta.2014.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/16/2022]
Abstract
How the turnover of villous trophoblast is regulated is important for understanding normal and complicated pregnancies. There is considerable accord that syncytiotrophoblast (STB) grows and is refreshed by recruiting post-mitotic cells from the deeper cytotrophoblast (CTB). Nuclei in STB exhibit a spectrum of morphologies and packing densities and, until recently, there seemed to be a consensus that this variation reflected a transition from an early undifferentiated CTB-like phenotype to a long pre-apoptotic and brief apoptotic phase. In these later phases, nuclei are sequestered in clusters (syncytial knots) prior to extrusion as part of normal epithelial turnover. Early in gestation, nuclear clustering and formation of protrusions (syncytial sprouts) also occurs as a preliminary to villous sprouting. Nuclei in these clusters have a CTB-like phenotype and some sprouts may also detach from STB and pass into the uteroplacental circulation. However, this apparent consensus has been challenged and new interpretations of events in the proliferative (CTB), terminal differentiation (STB) and deportation compartments have emerged. Several different types of STB fragment are deported in normal pregnancy: larger multinucleate STB fragments, smaller uninucleate elements with CTB-like morphology, anucleate cytoplasmic fragments, microparticles and nanovesicles. This review identifies points of agreement and disagreement and offers possible avenues of future research. An obvious need is to standardise best practice in several areas including choosing appropriate references for cell cycle phase labelling indices and combining immunolabeling of cell cycle and apoptosis markers (at LM or TEM levels) with design-based stereological estimates of absolute numbers of cells and nuclei in different compartments throughout normal gestation. This would also provide a surer foundation for interpreting results from different research groups and changes in normal and complicated pregnancies.
Collapse
Affiliation(s)
- T M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
29
|
Sharp AN, Heazell AEP, Baczyk D, Dunk CE, Lacey HA, Jones CJP, Perkins JE, Kingdom JCP, Baker PN, Crocker IP. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS One 2014; 9:e87621. [PMID: 24498154 PMCID: PMC3907567 DOI: 10.1371/journal.pone.0087621] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. METHODS Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. RESULTS Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. CONCLUSIONS These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.
Collapse
Affiliation(s)
- Andrew N. Sharp
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alexander E. P. Heazell
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dora Baczyk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline E. Dunk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Helen A. Lacey
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | - John C. P. Kingdom
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Philip N. Baker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ian P. Crocker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Calvert S, Jones C, Sibley C, Aplin J, Heazell A. Analysis of syncytial nuclear aggregates in preeclampsia shows increased sectioning artefacts and decreased inter-villous bridges compared to healthy placentas. Placenta 2013; 34:1251-4. [DOI: 10.1016/j.placenta.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/18/2013] [Accepted: 10/01/2013] [Indexed: 11/26/2022]
|
31
|
Zybina TG, Stein GI, Pozharisski KM, Zybina EV. Invasion and genome reproduction of the trophoblast cells of placenta junctional zone in the field vole, Microtus rossiaemeridionalis. Cell Biol Int 2013; 38:136-43. [PMID: 24155276 DOI: 10.1002/cbin.10187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023]
Abstract
In the field vole Microtus rossiaemeridionalis, like in other rodents, invasive secondary giant trophoblast cells (SGTC) form a continuous layer at the foeto-maternal interface in the beginning of placentation. However, in the field vole, at midgestation, clusters of junctional zone (JZ) trophoblast non-giant cells interrupt SGTC layer and progressively replace SGTC at the border of decidua basalis. As a result, 'border' cells form a continuous stratum of cytokeratin-positive glycogen-rich cells at the foeto-maternal interface. SGTC plunge into JZ and line the lacunae with maternal blood. SGTC are bound by their highly cytokeratin-positive sprouts forming a framework that holds other trophoblast cell populations. According to DNA cytophotometry, the 'border' cells show the highest ploidy among the JZ cells (up to 46% of 8c cells). Thus, in M. rossiaemeridionalis the role of barrier between semiallogenic foetal and maternal tissues is shifted from the highly endopolyploid (32c-1024c) SGTC to the specific subpopulation of glycogen-rich non-giant (2c-16c) 'border' trophoblast cells that, however, exceed the ploidy of the deeply located and/or proliferative JZ trophoblast cells.
Collapse
Affiliation(s)
- Tatiana G Zybina
- Laboratory of Cell Pathology, Institute of Cytology RAS, St.-Petersburg, Russia
| | | | | | | |
Collapse
|