1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Wesley CD, Neutel CHG, De Meyer GRY, Martinet W, Guns PJ. Unravelling the impact of active and passive contributors to arterial stiffness in male mice and their role in vascular aging. Sci Rep 2024; 14:18337. [PMID: 39112507 PMCID: PMC11306354 DOI: 10.1038/s41598-024-68725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Arterial stiffness, a key indicator of vascular health, encompassing active (vascular tone) and passive (extracellular matrix) components. This study aims to address how these different components affect arterial stiffness along the aorta and the influence of aging. Aortic segments of 12 week and 24 month old (both n = 6) male C57BL/6J mice were mounted in a Rodent Oscillatory Set-up to study Arterial Compliance, in order to measure arterial stiffness and vascular reactivity. Regional variations in arterial stiffness were evident, with abdominal infrarenal aorta (AIA) exhibiting highest stiffness and smallest diameters. AIA displayed both the highest amount of collagen and collagen:elastin ratio. Regional ex vivo vascular reactivity revealed heightened AIA contractions and lowered NO availability. Aging is a significant factor contributing towards vessel remodelling and arterial stiffness. Aging increased arterial stiffness, aortic diameters, collagen content, and reduced VSMC contraction. The results of this study could identify specific regions or mechanisms to target in the development of innovative therapeutic interventions aimed at enhancing overall vascular health.
Collapse
Affiliation(s)
- Callan D Wesley
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
| | - Cedric H G Neutel
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences and Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
3
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Lyssy F, Guettler J, Brugger BA, Stern C, Forstner D, Nonn O, Fischer C, Herse F, Wernitznig S, Hirschmugl B, Wadsack C, Gauster M. Platelet-derived factors dysregulate placental sphingosine-1-phosphate receptor 2 in human trophoblasts. Reprod Biomed Online 2023; 47:103215. [PMID: 37301709 DOI: 10.1016/j.rbmo.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
RESEARCH QUESTION Sphingosine-1-phosphate (S1P) is an essential and bioactive sphingolipid with various functions, which acts through five different G-protein-coupled receptors (S1PR1-5). What is the localization of S1PR1-S1PR3 in the human placenta and what is the effect of different flow rates, various oxygen concentrations and platelet-derived factors on the expression profile of S1PR in trophoblasts? DESIGN Expression dynamics of placental S1PR1-S1PR3 were determined in human first trimester (n = 10), pre-term (n = 9) and term (n = 10) cases. Furthermore, the study investigated the expression of these receptors in different primary cell types isolated from human placenta, verified the findings with publicly available single-cell RNA-Seq data from first trimester and immunostaining of human first trimester and term placentas. The study also tested whether the placental S1PR subtypes are dysregulated in differentiated BeWo cells under different flow rates, different oxygen concentrations or in the presence of platelet-derived factors. RESULTS Quantitative polymerase chain reaction revealed that S1PR2 is the predominant placental S1PR in the first trimester and reduces towards term (P < 0.0001). S1PR1 and S1PR3 increased from first trimester towards term (P < 0.0001). S1PR1 was localized in endothelial cells, whereas S1PR2 and S1PR3 were predominantly found in villous trophoblasts. Furthermore, S1PR2 was found to be significantly down-regulated in BeWo cells when co-incubated with platelet-derived factors (P = 0.0055). CONCLUSION This study suggests that the placental S1PR repertoire is differentially expressed across gestation. S1PR2 expression in villous trophoblasts is negatively influenced by platelet-derived factors, which could contribute to down-regulation of placental S1PR2 over time of gestation as platelet presence and activation in the intervillous space increases from the middle of the first trimester onwards.
Collapse
Affiliation(s)
- Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Christina Stern
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cornelius Fischer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Florian Herse
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| |
Collapse
|
5
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Ruisanchez É, Janovicz A, Panta RC, Kiss L, Párkányi A, Straky Z, Korda D, Liliom K, Tigyi G, Benyó Z. Enhancement of Sphingomyelinase-Induced Endothelial Nitric Oxide Synthase-Mediated Vasorelaxation in a Murine Model of Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24098375. [PMID: 37176081 PMCID: PMC10179569 DOI: 10.3390/ijms24098375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sphingolipids are important biological mediators both in health and disease. We investigated the vascular effects of enhanced sphingomyelinase (SMase) activity in a mouse model of type 2 diabetes mellitus (T2DM) to gain an understanding of the signaling pathways involved. Myography was used to measure changes in the tone of the thoracic aorta after administration of 0.2 U/mL neutral SMase in the presence or absence of the thromboxane prostanoid (TP) receptor antagonist SQ 29,548 and the nitric oxide synthase (NOS) inhibitor L-NAME. In precontracted aortic segments of non-diabetic mice, SMase induced transient contraction and subsequent weak relaxation, whereas vessels of diabetic (Leprdb/Leprdb, referred to as db/db) mice showed marked relaxation. In the presence of the TP receptor antagonist, SMase induced enhanced relaxation in both groups, which was 3-fold stronger in the vessels of db/db mice as compared to controls and could not be abolished by ceramidase or sphingosine-kinase inhibitors. Co-administration of the NOS inhibitor L-NAME abolished vasorelaxation in both groups. Our results indicate dual vasoactive effects of SMase: TP-mediated vasoconstriction and NO-mediated vasorelaxation. Surprisingly, in spite of the general endothelial dysfunction in T2DM, the endothelial NOS-mediated vasorelaxant effect of SMase was markedly enhanced.
Collapse
Affiliation(s)
- Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Rita Cecília Panta
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Levente Kiss
- Department of Physiology, Semmelweis University, H-1094 Budapest, Hungary
| | - Adrienn Párkányi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Zsuzsa Straky
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Dávid Korda
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Károly Liliom
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Gábor Tigyi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| |
Collapse
|
7
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
8
|
Lai Y, Tian Y, You X, Du J, Huang J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis 2022; 21:101. [PMID: 36229882 PMCID: PMC9563846 DOI: 10.1186/s12944-022-01701-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Many cardiovascular disorders, including atherosclerosis, hypertension, coronary heart disease, diabetes, etc., are characterized by endothelial cell dysfunction. Endothelial cell function is closely related to sphingolipid metabolism, and normal sphingolipid metabolism is critical for maintaining endothelial cell homeostasis. Sphingolipid metabolites or key enzymes in abnormal situation, including sphingosine, ceramide (Cer), sphingosine-1-phosphate (S1P), serine, sphingosine kinase (SPHK), ceramide kinase (Cerk), sphingosine-1-phosphate lyase (S1PL) etc., may have a protective or damaging effect on the function of endothelial cells. This review summarizes the effects of sphingolipid metabolites and key enzymes disordering in sphingolipid metabolism on endothelial cells, offering some insights into further research on the pathogenesis of cardiovascular diseases and corresponding therapeutic targets.
Collapse
Affiliation(s)
- Yali Lai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Tian
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xintong You
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangnan Du
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianmei Huang
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
10
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
11
|
Walsh SW, Strauss JF. The Road to Low-Dose Aspirin Therapy for the Prevention of Preeclampsia Began with the Placenta. Int J Mol Sci 2021; 22:6985. [PMID: 34209594 PMCID: PMC8268135 DOI: 10.3390/ijms22136985] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s with the discovery that there was increased thromboxane and decreased prostacyclin production in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising, but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not term preeclampsia, and patient compliance and patient weight were important variables. Despite the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between thromboxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures. Consideration should be given to aspirin's effect on neutrophils and pregnancy-specific expression of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.
Collapse
Affiliation(s)
- Scott W. Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
12
|
Kerage D, Gombos RB, Wang S, Brown M, Hemmings DG. Sphingosine 1-phosphate-induced nitric oxide production simultaneously controls endothelial barrier function and vascular tone in resistance arteries. Vascul Pharmacol 2021; 140:106874. [PMID: 34004349 DOI: 10.1016/j.vph.2021.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The regulations of endothelial permeability and vascular tone by sphingosine 1-phosphate (S1P) have been well-studied independently. Little is known about whether the effects of S1P on endothelial permeability can directly influence vascular tone in resistance arteries, which impact blood flow. The endothelium forms a partial barrier that regulates access of circulating agonists to underlying vascular smooth muscle cells (VSMCs). We hypothesized that physiological concentrations of circulating S1P simultaneously control endothelial barrier function and vascular tone through endothelial production of nitric oxide (NO). We adapted the pressure myograph system to simultaneously measure both functions in pressurized mesenteric compared to uterine resistance arteries from wild-type and eNOS KO mice. We established that: 1) S1P interacting directly with the endothelium inside pressurized arteries generates NO that limits endothelial permeability; 2) an intact endothelium forms a partial physical barrier that regulates access of intraluminal S1P to the underlying VSMCs and 3) S1P infused lumenally also generates NO through eNOS that counterbalances the constriction induced by S1P that is able to access VSMCs and this is critical to control vascular tone. We conclude that targeting the S1P signaling system, particularly the capacity to produce NO could be clinically important in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Daniel Kerage
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Randi B Gombos
- Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Physiology, University of Alberta, Edmonton, Alberta T5G 2H7, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Shaomeng Wang
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Meagan Brown
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Denise G Hemmings
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada; Cardiovascular Research Center, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
13
|
Li Q, Li Y, Lei C, Tan Y, Yi G. Sphingosine-1-phosphate receptor 3 signaling. Clin Chim Acta 2021; 519:32-39. [PMID: 33811927 DOI: 10.1016/j.cca.2021.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid which regulates a series of physiological and pathological processes via binding to five S1P receptors (S1PR1-5). Although S1PR1-3 are widely expressed, the study of S1PRs, however, mainly addressed S1PR1 and S1PR2, and few studies focus on S1PR3-5. In recent years, a growing number of studies have shown that S1PR3 plays an important role in cell proliferation, differentiation, apoptosis, and migration, but its function is still controversial. This is the first comprehensive review paper about the role of S1PR3 signaling in cardiovascular function, tissue fibrosis, cancer, immune response, and neurological function. In addition, existing S1PR3 agonists and antagonists are listed at the end of the article, and we also put forward our opinion on the dispute of S1PR3 function.
Collapse
Affiliation(s)
- Qian Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yi Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ying Tan
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
16
|
Zhang S, Liu Y, Wang X, Tian Z, Qi D, Li Y, Jiang H. Antihypertensive activity of oleanolic acid is mediated via downregulation of secretory phospholipase A2 and fatty acid synthase in spontaneously hypertensive rats. Int J Mol Med 2020; 46:2019-2034. [PMID: 33125128 PMCID: PMC7595669 DOI: 10.3892/ijmm.2020.4744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is reported to possess antihypertensive activity via the regulation of lipid metabolism; however, the mechanisms underlying lipid regulation by OA are yet to be fully elucidated. The aim of the present study was to evaluate the mechanisms via which OA regulates lipid metabolism in spontaneously hypertensive rats (SHRs) via ultra‑performance liquid chromatography‑quadrupole/Orbitrap‑mass spectrometry (MS)‑based lipidomics analysis. SHRs were treated with OA (1.08 mg/kg) for 4 weeks. The liver tissues were excised, homogenized in dichloromethane and centrifuged, and subsequently the supernatant layer was collected and concentrated under vacuum to dryness. The dichloromethane extract was subjected to MS analysis and database searching, and comparison of standards was performed to identify potential biomarkers. Partial least squares‑discriminant analysis performed on the liver lipidome revealed a total of 14 endogenous metabolites that were significantly changed in the SHR model group (SH group) compared with Wistar Kyoto rats [normal control (NC group)], including glycerophospholipids, sphingolipids and glycerides. Heatmaps revealed that the liver lipid profiles in the OA group were clustered more closely compared with those observed in the NC group, indicating that the antihypertensive effect of OA was mediated via regulation of liver lipid metabolites. It was observed that the protein levels of secretory phospholipase A2 (sPLA2) and fatty acid synthase (FAS) were increased in the SH group compared with the NC group. In addition, the levels of lysophosphatidylcholine and triglycerides in the liver were elevated, whereas the levels of low‑density lipoprotein cholesterol and high‑density lipoprotein cholesterol were reduced in the SH group. Upon treatment with OA, the mRNA and protein levels of PLA2 and FAS were observed to be downregulated. Collectively, the present study indicated that the antihypertensive activity of OA was mediated via downregulation of sPLA2 and FAS in SHRs, and that treatment with OA resulted in significant improvements in blood pressure and associated abnormalities in the lipid metabolites.
Collapse
Affiliation(s)
- Shiming Zhang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Yuecheng Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
| | - Xiaoming Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Zhenhua Tian
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Dongmei Qi
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yunlun Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Haiqiang Jiang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
17
|
Chua XY, Ho LTY, Xiang P, Chew WS, Lam BWS, Chen CP, Ong WY, Lai MKP, Herr DR. Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. Neuromolecular Med 2020; 23:47-67. [PMID: 33180310 DOI: 10.1007/s12017-020-08632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1-S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leona T Y Ho
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
- American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
18
|
Mücke VT, Maria Schwarzkopf K, Thomas D, Mücke MM, Rüschenbaum S, Trebicka J, Pfeilschifter J, Zeuzem S, Lange CM, Grammatikos G. Serum Sphingosine-1-Phosphate Is Decreased in Patients With Acute-on-Chronic Liver Failure and Predicts Early Mortality. Hepatol Commun 2020; 4:1477-1486. [PMID: 33024917 PMCID: PMC7527696 DOI: 10.1002/hep4.1561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Sphingosine‐1‐phosphate (S1P) regulates pathophysiological processes, including liver regeneration, vascular tone control, and immune response. In patients with liver cirrhosis, acute deterioration of liver function is associated with high mortality rates. The present study investigated whether serum S1P concentrations are associated with disease severity in patients with chronic liver disease from compensated cirrhosis (CC), acute decompensation (AD), or acute‐on‐chronic liver failure (ACLF). From August 2013 to October 2017, patients who were admitted to the University Hospital Frankfurt with CC, AD, or ACLF were enrolled in our cirrhosis cohort study. Tandem mass spectrometry was performed on serum samples of 127 patients to assess S1P concentration. Our study comprised 19 patients with CC, 55 with AD, and 51 with ACLF, aged 29 to 76 years. We observed a significant decrease of S1P according to advanced liver injury from CC and AD up to ACLF (P < 0.001). S1P levels further decreased with progression to ACLF grade 3 (P < 0.05), and S1P highly inversely correlated with the Model for End‐Stage Liver Disease score (r = −0.508; P < 0.001). In multivariate analysis, S1P remained an independent predictor of 7‐day mortality with high diagnostic accuracy (area under the curve, 0.874; P < 0.001). Conclusion: In patients with chronic liver disease, serum S1P levels dramatically decreased with advanced stages of liver disease and were predictive of early mortality. Because S1P is a potent regulator of endothelial integrity and immune response, low S1P levels may significantly influence progressive multiorgan failure. Our data justify further elucidation of the diagnostic and therapeutic role of S1P in ACLF.
Collapse
Affiliation(s)
- Victoria T Mücke
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Katharina Maria Schwarzkopf
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt Institute of Clinical Pharmacology Goethe University Frankfurt am Main Germany
| | - Marcus M Mücke
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Sabrina Rüschenbaum
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg-Essen Essen Germany
| | - Jonel Trebicka
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt Institute of General Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - Stefan Zeuzem
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg-Essen Essen Germany
| | - Georgios Grammatikos
- Departement of Internal Medicine 1 University Hospital Frankfurt Goethe University Frankfurt am Main Germany.,St. Luke's Hospital Thessaloniki Panorama Greece
| |
Collapse
|
19
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Wafa D, Koch N, Kovács J, Kerék M, Proia RL, Tigyi GJ, Benyó Z, Miklós Z. Opposing Roles of S1P 3 Receptors in Myocardial Function. Cells 2020; 9:cells9081770. [PMID: 32722120 PMCID: PMC7466142 DOI: 10.3390/cells9081770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator with diverse biological function mediated by S1P1–5 receptors. Whereas S1P was shown to protect the heart against ischemia/reperfusion (I/R) injury, other studies highlighted its vasoconstrictor effects. We aimed to separate the beneficial and potentially deleterious cardiac effects of S1P during I/R and identify the signaling pathways involved. Wild type (WT), S1P2-KO and S1P3-KO Langendorff-perfused murine hearts were exposed to intravascular S1P, I/R, or both. S1P induced a 45% decrease of coronary flow (CF) in WT-hearts. The presence of S1P-chaperon albumin did not modify this effect. CF reduction diminished in S1P3-KO but not in S1P2-KO hearts, indicating that in our model S1P3 mediates coronary vasoconstriction. In I/R experiments, S1P3 deficiency had no influence on postischemic CF but diminished functional recovery and increased infarct size, indicating a cardioprotective effect of S1P3. Preischemic S1P exposure resulted in a substantial reduction of postischemic CF and cardiac performance and increased the infarcted area. Although S1P3 deficiency increased postischemic CF, this failed to improve cardiac performance. These results indicate a dual role of S1P3 involving a direct protective action on the myocardium and a cardiosuppressive effect due to coronary vasoconstriction. In acute coronary syndrome when S1P may be released abundantly, intravascular and myocardial S1P production might have competing influences on myocardial function via activation of S1P3 receptors.
Collapse
Affiliation(s)
- Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| | - Nóra Koch
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Janka Kovács
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institues of Health, Bethesda, MD 20892, USA;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| |
Collapse
|
21
|
Walsh SW, Reep DT, Alam SMK, Washington SL, Al Dulaimi M, Lee SM, Springel EH, Strauss JF, Stephenson DJ, Chalfant CE. Placental Production of Eicosanoids and Sphingolipids in Women Who Developed Preeclampsia on Low-Dose Aspirin. Reprod Sci 2020; 27:2158-2169. [PMID: 32557282 DOI: 10.1007/s43032-020-00234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Low-dose aspirin, which selectively inhibits thromboxane synthesis, is now standard of care for the prevention of preeclampsia in at risk women, but some women still develop preeclampsia despite an aspirin regimen. To explore the "aspirin failures," we undertook a comprehensive evaluation of placental lipids to determine if abnormalities in non-aspirin sensitive lipids might help explain why some women on low-dose aspirin develop preeclampsia. We studied placentas from women with normal pregnancies and women with preeclampsia. Placental villous explants were cultured and media analyzed by mass spectrometry for aspirin-sensitive and non-aspirin-sensitive lipids. In women who developed severe preeclampsia and delivered preterm, there were significant elevations in non-aspirin-sensitive lipids with biologic actions that could cause preeclampsia. There were significant increases in 15- and 20-hydroxyeicosatetraenoic acids and sphingolipids: D-e-C18:0 ceramide, D-e-C18:0 sphingomyelin, D-e-sphingosine-1-phosphate, and D-e-sphinganine-1-phosphate. With regard to lipids sensitive to aspirin, there was no difference in placental production of thromboxane or prostacyclin, but prostaglandins were lower. There was no difference for isoprostanes, but surprisingly, anti-inflammatory omega 3 and 6 PUFAs were increased. In total, 10 of 30 eicosanoids and 5 of 42 sphingolipids were abnormal in women with severe early onset preeclampsia. Lipid changes in women with mild preeclampsia who delivered at term were of lesser magnitude with few significant differences. The placenta produces many aspirin-sensitive and non-aspirin-sensitive lipids. Abnormalities in eicosanoids and sphingolipids not sensitive to aspirin might explain why some aspirin-treated women develop preeclampsia.
Collapse
Affiliation(s)
- Scott W Walsh
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA. .,Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Daniel T Reep
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA.,Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - S M Khorshed Alam
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Sonya L Washington
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Marwah Al Dulaimi
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Stephanie M Lee
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Edward H Springel
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Jerome F Strauss
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University Medical Center, P.O. Box 980034, Richmond, VA, 23298-0034, USA
| | - Daniel J Stephenson
- Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Department of Cell Biology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Charles E Chalfant
- Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Department of Cell Biology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.,The Moffitt Cancer Center, Tampa, FL, 33620, USA
| |
Collapse
|
22
|
Li Y, Zhang W, Li J, Sun Y, Yang Q, Wang S, Luo X, Wang W, Wang K, Bai W, Zhang H, Qin L. The imbalance in the aortic ceramide/sphingosine-1-phosphate rheostat in ovariectomized rats and the preventive effect of estrogen. Lipids Health Dis 2020; 19:95. [PMID: 32430006 PMCID: PMC7236922 DOI: 10.1186/s12944-020-01279-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background The prevalence of hypertension in young women is lower than that in age-matched men while the prevalence of hypertension in women is significantly increased after the age of 50 (menopause) and is greater than that in men. It is already known that sphingosine-1-phosphate (S1P) and ceramide regulate vascular tone with opposing effects. This study aimed to explore the effects of ovariectomy and estrogen supplementation on the ceramide/S1P rheostat of the aorta in rats, and to explore a potential mechanism for perimenopausal hypertension and a brand-new target for menopausal hormone therapy to protect vessels. Methods In total, 30 female adult SD rats were randomly divided into three groups: The sham operation group (SHAM), ovariectomy group (OVX) and ovariectomy plus estrogen group (OVX + E). After 4 weeks of treatment, the blood pressure (BP) of the rats was monitored by a noninvasive system; the sphingolipid content (e.g., ceramide and S1P) was detected by liquid chromatography-mass spectrometry (LC-MS); the expression of the key enzymes involved in ceramide anabolism and catabolism was measured by real-time fluorescence quantitative polymerase chain reaction (qPCR); and the expression of key enzymes and proteins in the sphingosine kinase 1/2 (SphK1/2)-S1P-S1P receptor 1/2/3 (S1P1/2/3) signaling pathway was detected by qPCR and western blotting. Results In the OVX group compared with the SHAM group, the systolic BP (SBP), diastolic BP (DBP) and pulse pressure (PP) increased significantly, especially the SBP and PP (P < 0.001). For aortic ceramide metabolism, the mRNA level of key enzymes involved in anabolism and catabolism decreased in parallel 2–3 times, while the contents of total ceramide and certain long-chain subtypes increased significantly (P < 0.05). As for the S1P signaling pathway, SphK1/2, the key enzymes involved in S1P synthesis, decreased significantly, and the content of S1P decreased accordingly (P < 0.01). The S1P receptors showed various trends: S1P1 was significantly down-regulated, S1P2 was significantly up-regulated, and S1P3 showed no significant difference. No significant difference existed between the SHAM and OVX + E groups for most of the above parameters (P > 0.05). Conclusions Ovariectomy resulted in the imbalance of the aortic ceramide/S1P rheostat in rats, which may be a potential mechanism underlying the increase in SBP and PP among perimenopausal women. Besides, the ceramide/S1P rheostat may be a novel mechanism by which estrogen protects vessels.
Collapse
Affiliation(s)
- Yao Li
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China
| | - Wei Zhang
- Department of Urology, Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Junlei Li
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China
| | - Yanrong Sun
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Qiyue Yang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Sinan Wang
- Department of Stomatology, General Hospital of Armed Police, Beijing, 100039, China
| | - Xiaofeng Luo
- Department of Stomatology, General Hospital of Armed Police, Beijing, 100039, China
| | - Wenjuan Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Ke Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Shijitan Hospital, Beijing, 100038, China
| | - Haicheng Zhang
- Department of Cardiology, Peking University People's Hospital, No. 11 South Avenue, Beijing, 100044, Xi Zhi Men Xicheng District, China.
| | - Lihua Qin
- Department of Anatomy and Embryology, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing, 100191, Haidian District, China.
| |
Collapse
|
23
|
Can Endothelial Glycocalyx Be a Major Morphological Substrate in Pre-Eclampsia? Int J Mol Sci 2020; 21:ijms21093048. [PMID: 32357469 PMCID: PMC7246531 DOI: 10.3390/ijms21093048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Today pre-eclampsia (PE) is considered as a disease of various theories; still all of them agree that endothelial dysfunction is the leading pathogenic factor. Endothelial dysfunction is a sequence of permanent immune activation, resulting in the change of both the phenotype and the functions of an endothelial cell and of the extracellular layer associated with the cell membrane—endothelial glycocalyx (eGC). Numerous studies demonstrate that eGC mediates and regulates the key functions of endothelial cells including regulation of vascular tone and thromboresistance; and these functions are disrupted during PE. Taking into account that eGC and its components undergo alterations under pathological conditions leading to endothelial activation, it is supposed that eGC plays a certain role in pathogenesis of PE. Envisaging the eGC damage as a key factor of PE, might be a new approach to prevention, treatment, and rehabilitation of patients with PE. This approach could include the development of drugs protecting eGC and promoting regeneration of this structure. Since the issue of PE is far from being solved, any effort in this direction might be valuable.
Collapse
|
24
|
Plouffe B, Thomsen ARB, Irannejad R. Emerging Role of Compartmentalized G Protein-Coupled Receptor Signaling in the Cardiovascular Field. ACS Pharmacol Transl Sci 2020; 3:221-236. [PMID: 32296764 PMCID: PMC7155194 DOI: 10.1021/acsptsci.0c00006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that for many years have been considered to function exclusively at the plasma membrane, where they bind to extracellular ligands and activate G protein signaling cascades. According to the conventional model, these signaling events are rapidly terminated by β-arrestin (β-arr) recruitment to the activated GPCR resulting in signal desensitization and receptor internalization. However, during the past decade, emerging evidence suggest that many GPCRs can continue to activate G proteins from intracellular compartments after they have been internalized. G protein signaling from intracellular compartments is in general more sustained compared to G protein signaling at the plasma membrane. Notably, the particular location closer to the nucleus is beneficial for selective cellular functions such as regulation of gene transcription. Here, we review key GPCRs that undergo compartmentalized G protein signaling and discuss molecular considerations and requirements for this signaling to occur. Our main focus will be on receptors involved in the regulation of important physiological and pathological cardiovascular functions. We also discuss how sustained G protein activation from intracellular compartments may be involved in cellular functions that are distinct from functions regulated by plasma membrane G protein signaling, and the corresponding significance in cardiovascular physiology.
Collapse
Affiliation(s)
- Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Alex R B Thomsen
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, New York 10010, United States
| | - Roshanak Irannejad
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, Kerék M, Proia RL, Offermanns S, Tigyi GJ, Benyó Z. Sphingosine-1-Phosphate Enhances α 1-Adrenergic Vasoconstriction via S1P2-G 12/13-ROCK Mediated Signaling. Int J Mol Sci 2019; 20:ijms20246361. [PMID: 31861195 PMCID: PMC6941080 DOI: 10.3390/ijms20246361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P–S1P2–G12/13–ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Cecília R. Panta
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Dorottya Móré
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Péter T. Dancs
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD 20892, USA;
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| |
Collapse
|
26
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
27
|
Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019; 20:ijms20020411. [PMID: 30669371 PMCID: PMC6359388 DOI: 10.3390/ijms20020411] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to playing a role as a structural component of cellular membranes, ceramide is now clearly recognized as a bioactive lipid implicated in a variety of physiological functions. This review aims to provide updated information on the role of ceramide in the regulation of vascular tone. Ceramide may induce vasodilator or vasoconstrictor effects by interacting with several signaling pathways in endothelial and smooth muscle cells. There is a clear, albeit complex, interaction between ceramide and redox signaling. In fact, reactive oxygen species (ROS) activate different ceramide generating pathways and, conversely, ceramide is known to increase ROS production. In recent years, ceramide has emerged as a novel key player in oxygen sensing in vascular cells and mediating vascular responses of crucial physiological relevance such as hypoxic pulmonary vasoconstriction (HPV) or normoxic ductus arteriosus constriction. Likewise, a growing body of evidence over the last years suggests that exaggerated production of vascular ceramide may have detrimental effects in a number of pathological processes including cardiovascular and lung diseases.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), 6202 AZ Maastricht, The Netherlands.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
28
|
Cui L, Xu J, Zhang J, Zhang M, Zhang S, Bai Y. Menaquinone-4 modulates the expression levels of calcification-associated factors to inhibit calcification of rat aortic vascular smooth muscle cells in a dose-dependent manner. Exp Ther Med 2018; 16:3172-3178. [PMID: 30214540 DOI: 10.3892/etm.2018.6535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Vascular calcification (VC) caused by chronic kidney disease (CKD)-mineral and bone disorder is a common complication of CKD. Recent studies have demonstrated that menaquinone-4 (MK-4) is negativly associated with VC in patients with CKD. Furthermore, we have previously shown that runt-related transcription factor 2 (Runx2) is important in the phenotypic transformation process of rat vascular smooth muscle cells (VSMCs), which is the key step for the development of VC. The present study investigated the influence of MK-4 on the phenotypic transformation process of rat VSMCs in order to illustrate its role in the process of VC. Calcification assays were perfomed to access the calcified degree of rat VSMCs. Additionally, the genes and proteins related to phenotypic transformation were measured by reverse transcription-polymerase chain reaction and western blotting methods. It was revealed that calcium deposition in the cells was evidently increased with an addition of β-glycerophosphate (β-GP) and could be completely prevented by co-incubation with MK-4 in a dose-dependent manner. Furthermore, the expression of Runx2 in the β-GP-induced VSMCs was inhibited by MK-4. It was also revealed that the expression of SMAD1 and bone morphogenetic protein (BMP)-2 were decreased in the β-GP-induced VSMCs treated with MK-4 in a dose-dependent manner; however, the expression of SMAD7 was increased in the β-GP-induced VSMCs treated with MK-4 in a dose-dependent manner. These observations suggest that MK-4 reduces mineralization by regulating the BMP-2 signaling pathway in order to attenuate the expression of Runx2.
Collapse
Affiliation(s)
- Liwen Cui
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junxia Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Muqing Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
29
|
Zhou N, Zeng MN, Li K, Yang YY, Bai ZY, Zheng XK, Feng WS. An integrated metabolomic strategy for the characterization of the effects of Chinese yam and its three active components on septic cardiomyopathy. Food Funct 2018; 9:4989-4997. [DOI: 10.1039/c8fo00688a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This integrated metabolomic approach interpreted the effects of Chinese yam on septic cardiomyopathy and the roles of its major active components.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
| | - Meng-Nan Zeng
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
| | - Kai Li
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| | - Yan-Yun Yang
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
| | - Zhi-Yao Bai
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
| | - Xiao-Ke Zheng
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
| | - Wei-Sheng Feng
- College of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- People's Republic of China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
| |
Collapse
|
30
|
Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. Exp Gerontol 2017; 99:87-97. [DOI: 10.1016/j.exger.2017.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022]
|
31
|
Ding NZ, Qi QR, Gu XW, Zuo RJ, Liu J, Yang ZM. De novo synthesis of sphingolipids is essential for decidualization in mice. Theriogenology 2017; 106:227-236. [PMID: 29096270 DOI: 10.1016/j.theriogenology.2017.09.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/10/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
Sphingolipids play multiple roles in membrane structure, signal transduction, stress responses, neural development and immune reaction. The rate of de novo synthesis pathway of sphingolipids is regulated by two key enzymes, serine palmitoyltransferase (SPT), and ketoreductase (Kds). Here, we find that the mRNA levels of three subunits of the SPT holoenzyme (Sptlc1, Sptlc2, and Ssspta) are significantly up-regulated in mouse uterine stromal cells during decidualization. The expression of Kds, which reduces 3-keto-dihydrosphingosine to dihydrosphingosine, is co-localized with Sptlc1 in mouse uteri during early pregnancy. Moreover, l-Cycloserine, a specific inhibitor of SPT, can significantly decrease the weight and number of implantation sites, and impede the decidualization process in mouse uterine stromal cells, suggesting that blockage of de novo sphingolipid synthesis may cause defective decidualization and early pregnancy loss in mice. In addition, this study also shows progesterone (P4) can stimulate the expression of both Sptlc2 and Ssspta in mouse uterus. Therefore, our study shows that de novo synthesis of sphingolipids is necessary in implantation and plays a key role in decidualization of mouse.
Collapse
Affiliation(s)
- Nai-Zheng Ding
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Qian-Rong Qi
- Department of Biology, Shantou University, Shantou 515063, China
| | - Xiao-Wei Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Juan Zuo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Liu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
33
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
34
|
Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Front Pharmacol 2016; 7:167. [PMID: 27445808 PMCID: PMC4914510 DOI: 10.3389/fphar.2016.00167] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular.
Collapse
Affiliation(s)
- Kira V Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
35
|
Machida T, Matamura R, Iizuka K, Hirafuji M. Cellular function and signaling pathways of vascular smooth muscle cells modulated by sphingosine 1-phosphate. J Pharmacol Sci 2016; 132:211-217. [PMID: 27581589 DOI: 10.1016/j.jphs.2016.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/21/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) plays important roles in cardiovascular pathophysiology. S1P1 and/or S1P3, rather than S1P2 receptors, seem to be predominantly expressed in vascular endothelial cells, while S1P2 and/or S1P3, rather than S1P1 receptors, seem to be predominantly expressed in vascular smooth muscle cells (VSMCs). S1P has multiple actions, such as proliferation, inhibition or stimulation of migration, and vasoconstriction or release of vasoactive mediators. S1P induces an increase of the intracellular Ca2+ concentration in many cell types, including VSMCs. Activation of S1P3 seems to play an important role in Ca2+ mobilization. S1P induces cyclooxygenase-2 expression in VSMCs via both S1P2 and S1P3 receptors. S1P2 receptor activation in VSMCs inhibits inducible nitric oxide synthase (iNOS) expression. At the local site of vascular injury, vasoactive mediators such as prostaglandins and NO produced by VSMCs are considered primarily as a defensive and compensatory mechanism for the lack of endothelial function to prevent further pathology. Therefore, selective S1P2 receptor antagonists may have the potential to be therapeutic agents, in view of their antagonism of iNOS inhibition by S1P. Further progress in studies of the precise mechanisms of S1P may provide useful knowledge for the development of new S1P-related drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | - Ryosuke Matamura
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Masahiko Hirafuji
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
36
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
37
|
Ghasemi R, Dargahi L, Ahmadiani A. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. Pharmacol Res 2016; 104:156-64. [DOI: 10.1016/j.phrs.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 01/09/2023]
|
38
|
Binder BYK, Williams PA, Silva EA, Leach JK. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:531-42. [PMID: 26035484 DOI: 10.1089/ten.teb.2015.0107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Priscilla A Williams
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - J Kent Leach
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,2 Department of Orthopaedic Surgery, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
39
|
Książek M, Chacińska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 2015; 56:1271-81. [PMID: 26014962 PMCID: PMC4479332 DOI: 10.1194/jlr.r059543] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts either as an intracellular messenger or as a ligand for its membrane receptors. S1P is a normal constituent of blood, where it is found both in plasma and blood cells. Compared with other cell types, sphingolipid metabolism in erythrocytes and platelets has unique features that allow the erythrocytes and platelets to accumulate S1P. In plasma, S1P is bound mainly to HDLs and albumin. Of note, metabolism and biological activity of S1P is to a large extent affected by the type of its carrier. Plasma S1P is characterized by a short half-life, indicating rapid clearance by degradative enzymes and the presence of high-capacity sources involved in maintaining its high concentration. These sources include blood cells, vascular endothelium, and hepatocytes. However, the extent to which each of these contributes to the plasma pool of S1P is a matter of debate. Circulating S1P plays a significant physiological role. It was found to be the key regulator of lymphocyte trafficking, endothelial barrier function, and vascular tone. The purpose of this review is to summarize the present state of knowledge on the metabolism, transport, and origin of plasma S1P, and to discuss the mechanisms regulating its homeostasis in blood.
Collapse
Affiliation(s)
- Monika Książek
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marta Chacińska
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
40
|
Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015; 56:2048-60. [PMID: 25814022 DOI: 10.1194/jlr.r058362] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
41
|
Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 2015; 149:R91-102. [DOI: 10.1530/rep-14-0271] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian pregnancy involves tremendousde novomaternal vascular construction to adequately support conceptus development. In early mouse decidua basalis (DB), maternal uterine natural killer (uNK) cells oversee this process directing various aspects during the formation of supportive vascular networks. The uNK cells recruited to early implantation site DB secrete numerous factors that act in the construction of early decidual vessels (neoangiogenesis) as well as in the alteration of the structural components of newly developing and existing vessels (pruning and remodeling). Although decidual and placental development sufficient to support live births occur in the absence of normally functioning uNK cells, development and structure of implantation site are optimized through the presence of normally activated uNK cells. Human NK cells are also recruited to early decidua. Gestational complications including recurrent spontaneous abortion, fetal growth restriction, preeclampsia, and preterm labor are linked with the absence of human NK cell activation via paternally inherited conceptus transplantation antigens. This review summarizes the roles that mouse uNK cells normally play in decidual neoangiogenesis and spiral artery remodeling in mouse pregnancy and briefly discusses changes in early developmental angiogenesis due to placental growth factor deficiency.
Collapse
|
42
|
Ross JS, Russo SB, Chavis GC, Cowart LA. Sphingolipid regulators of cellular dysfunction in Type 2 diabetes mellitus: a systems overview. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Su BB, Chen JH, Shi H, Chen QQ, Wan J. Aspirin may modify tumor microenvironment via antiplatelet effect. Med Hypotheses 2014; 83:148-50. [PMID: 24908358 DOI: 10.1016/j.mehy.2014.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/10/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
High-quality evidence suggests that aspirin is a promising agent for cancer prevention and treatment. Direct inhibition of cyclooxygenase-2 (COX-2) pathway is generally thought to be the main mechanism by which aspirin inhibits cancer development. However, either pharmacological properties of aspirin or recent results of epidemiologic studies do not support that mechanism. To address this inconsistency, we hypothesize that antiplatelet effect of aspirin via inhibition of COX-1 may be one of potential mechanisms to inhibit carcinogenesis. Aberrant platelet activation will lead to promote hostility of tumor microenvironment by releasing an abundant array of angiogenesis regulators. Given the outstanding ability of antiplatelet, aspirin may restore balance of pro- and anti-angiogenic factors released from platelet to "normalize" tumor vasculature and shape tumor microenvironment to some extent, which will not only diminish tumor aggressiveness and progression, but also enhance the sensitivity to therapeutic treatment. Thus, targeting the platelet activation leading to alter tumor microenvironment may provide a novel way to tumor therapy.
Collapse
Affiliation(s)
- B B Su
- Department of Gastroenterology, South Building, Chinese PLA General Hospital, Beijing 100853, China
| | - J H Chen
- Department of Medical Oncology, Shenzhen People's Hospital, Shen Zhen 518020, Guangdong Province, China
| | - H Shi
- Department of Gastroenterology, South Building, Chinese PLA General Hospital, Beijing 100853, China
| | - Q Q Chen
- Department of Gastroenterology, South Building, Chinese PLA General Hospital, Beijing 100853, China
| | - J Wan
- Department of Gastroenterology, South Building, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
44
|
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801896. [PMID: 24719887 PMCID: PMC3955677 DOI: 10.1155/2014/801896] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/11/2014] [Indexed: 01/07/2023]
Abstract
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.
Collapse
Affiliation(s)
- Gaia Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Corrado Paganelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|