1
|
de Oliveira AA, Spaans F, Cooke CLM, Davidge ST. Excessive hypercholesterolaemia during pregnancy as a risk factor for endothelial dysfunction in pre-eclampsia. J Physiol 2024. [PMID: 39724497 DOI: 10.1113/jp285943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Pregnancy induces significant changes in the maternal cardiovascular system, and insufficient vascular endothelial adaptations to pregnancy contribute to the development of pregnancy complications such as pre-eclampsia. Pre-eclampsia is not only a major cause of maternal morbidity and mortality, but also a significant risk factor for the development of later-life cardiovascular disease. However, the specific mechanisms underlying the pathophysiology of pre-eclampsia, as well as the mechanisms for an increased susceptibility to cardiovascular disease later in life, are not fully characterized. In this review, we discuss the concept that excessive pregnancy-specific dyslipidaemia, particularly hypercholesterolaemia, is a significant risk factor for the development of pre-eclampsia. We further outline novel potential mechanisms (i.e. oxidized low-density lipoprotein receptor 1 and toll-like receptor 4) underlying endothelial dysfunction induced by excessively high cholesterol levels during pregnancy (in the context of pre-eclampsia), in addition to discussing the overall implications of having had a pregnancy complicated by pre-eclampsia on later-life maternal vascular health. Determining the mechanisms by which excessive, pregnancy-specific dyslipidaemia/hypercholesterolaemia impact maternal endothelial health in pregnancy, and later in life, will create a window of opportunity to diagnose and develop targeted therapy for a susceptible population of women, aiming to ultimately reduce the societal burden of cardiovascular disease.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M Cooke
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Davidge
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Wang Y, Guan L, Liu X, Fan P, Zhou M, Wu Y, Ma W, Liu R, Bai H. Body mass index-dependent association between cholesteryl ester transfer protein variants and atherometabolic risk factors in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2024; 37:2415375. [PMID: 39428345 DOI: 10.1080/14767058.2024.2415375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is associated with metabolic abnormalities such as an altered serum lipid profile. This study investigated the influence of polymorphisms in the lipid metabolism-related cholesteryl ester transfer protein gene (CETP) on the metabolic parameters of pregnant women with GDM. METHODS This prospective case-control study included 665 women with GDM and 1,044 women with uncomplicated pregnancies. The PCR-restriction fragment length polymorphism method was used to genotype rs708272 and rs1800775 single nucleotide polymorphisms (SNPs). Lipid and glucose metabolic parameters were assessed. Genetic associations with related traits were analyzed. RESULTS Genotype distributions of rs708272 and rs1800775 in patients with GDM were similar to those in normal controls. However, the two CETP SNPs were associated with altered plasma total cholesterol (TC), high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol (LDL-C) concentrations in patients with GDM and in control pregnant women. Additional subgroup analysis demonstrated that the rs708272 polymorphism was associated with variations in triglyceride (TGs), TC, LDL-C, and apolipoprotein B (ApoB) levels in patients with overweight or obesity GDM, whereas both polymorphisms were associated with glucose metabolic traits (plasma insulin, glucose, or insulin) and the insulin resistance index in patients with GDM without obesity. CONCLUSIONS In patients with GDM, the rs708272 polymorphism was associated with atherogenic lipid levels (TG, TC, LDL-C, and ApoB), whereas the rs708272 and rs1800775 polymorphisms were associated with glucose metabolism and insulin resistance parameters, which were influenced by the body mass index. These results suggest that genetic associations with atherogenic metabolic factors may increase the risk of adverse outcomes in mothers with GDM and their offspring.
Collapse
Affiliation(s)
- Yufeng Wang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Linbo Guan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yujie Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wandi Ma
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Rui Liu
- Division of Peptides Related with Human Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
3
|
Zhao Y, Yang HZ, Li H, Liang S, Wang M, Li CD, Zhuo D, Fan F, Guo M, Lv X, Zhang L, Chen X, Li SS, Jin X. Early statin exposure influences cardiac and skeletal development with implications for ion channel transcriptomes in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109905. [PMID: 38522713 DOI: 10.1016/j.cbpc.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Statins, widely prescribed for cholesterol management by inhibiting HMG-CoA reductase in the cholesterol biosynthesis pathway, may also influence vertebrate development. In this study, we investigated the developmental effects of two widely used statins, atorvastatin (ATO) and pravastatin (PRA), on zebrafish offspring. For ATO, we administered doses classified as low (1 μM), medium (5 μM), and high (10 μM), while for PRA, the corresponding concentrations were set at low (18 μM), medium (180 μM), and high (270 μM). Our results showed significant reductions in birth and hatching rates, along with decreased body length in offspring at all ATO concentrations and medium to high PRA concentrations. A notable increase in malformation rates, especially in the spine and heart, was observed across all ATO treatments and in medium and high PRA groups. Additionally, we observed reduced heart contraction rates, decreased heart size, lower bone volumes, and diminished expression of mRNA osteogenic markers. Elevated venous sinus-artery bulb (SV-BA) ratios, increased thoracic area, and abnormal cartilage development were also prominent in all ATO-treated groups. Transcriptome analysis revealed alterations in genes predominantly associated with ion channels. These findings provide insights into the potential impacts of specific concentrations of statins on offspring development and highlight potential gene interactions with statins.
Collapse
Affiliation(s)
- Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | | | - Huinan Li
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuang Liang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Meng Wang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Chun-Di Li
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | - Feifei Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Chen
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| |
Collapse
|
4
|
Liu K, Chen Z, Hu W, He B, Xu D, Guo Y, Wang H. Intrauterine developmental origin, programming mechanism, and prevention strategy of fetal-originated hypercholesterolemia. Obes Rev 2024; 25:e13672. [PMID: 38069529 DOI: 10.1111/obr.13672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 02/28/2024]
Abstract
There is increasing evidence that hypercholesterolemia has an intrauterine developmental origin. However, the pathogenesis of fetal-originated is still lacking in a theoretical system, which makes its clinical early prevention and treatment difficult. It has been found that an adverse environment during pregnancy (e.g., xenobiotic exposure) may lead to changes in fetal blood cholesterol levels through changing maternal cholesterol metabolic function and/or placental cholesterol transport function and may also directly affect the liver cholesterol metabolic function of the offspring in utero and continue after birth. Adverse environmental conditions during pregnancy may also raise maternal glucocorticoid levels and promote the placental glucocorticoid barrier opening, leading to fetal overexposure to maternal glucocorticoids. Intrauterine high-glucocorticoid exposure can alter the liver cholesterol metabolism of offspring, resulting in an increased susceptibility to hypercholesterolemia after birth. Abnormal epigenetic modifications are involved in the intrauterine programming mechanism of fetal-originated hypercholesterolemia. Some interventions targeted at pregnant mothers or offspring in early life have been proposed to effectively prevent and treat the development of fetal-originated hypercholesterolemia. In this paper, the recent research progress on fetal-originated hypercholesterolemia was reviewed, with emphasis on intrauterine maternal glucocorticoid programming mechanisms, in order to provide a theoretical basis for its early clinical warning, prevention, and treatment.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
5
|
Fuenzalida B, Yañez MJ, Mueller M, Mistry HD, Leiva A, Albrecht C. Evidence for hypoxia-induced dysregulated cholesterol homeostasis in preeclampsia: Insights into the mechanisms from human placental cells and tissues. FASEB J 2024; 38:e23431. [PMID: 38265294 PMCID: PMC10953329 DOI: 10.1096/fj.202301708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Maria Jose Yañez
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Martin Mueller
- Division of Gynecology and ObstetricsLindenhofgruppeBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Hiten D. Mistry
- Department of Women and Children's HealthSchool of Life Course and Population Health Sciences, King's College LondonLondonUK
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
- Swiss National Center of Competence in Research, NCCR TransCureUniversity of BernBernSwitzerland
| |
Collapse
|
6
|
Jiang C, Chen M, Wu Y, Bai H, Liu X, Fan P. Longitudinal changes of oxidative stress and PON1 lactonase activity and status in older pregnant women undergoing assisted reproductive technology: a prospective nested case-control study. Reprod Biol Endocrinol 2023; 21:97. [PMID: 37885002 PMCID: PMC10601164 DOI: 10.1186/s12958-023-01139-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Childbearing in women with advanced maternal age (AMA) has increased the need for artificial reproductive technology (ART). ART and oxidative stress are associated with many pregnancy complications. Paraoxonase (PON) 1 is one of the key components responsible for antioxidative activity in high-density lipoprotein (HDL). This study aimed to investigate the longitudinal changes of oxidative stress and PON1 lactonase activity and status in older women undergoing ART. METHODS This prospective nested case-control study included 129 control and 64 ART women. Blood samples were obtained respectively at different stages of pregnancy. PON1 level and lactonase activity were assessed using 7-O-diethylphosphoryl-3-cyano-4-methyl-7-hydroxycoumarin (DEPCyMC) and 5-thiobutyl butyrolactone (TBBL) as a substrate, respectively. A normalized lactonase activity (NLA) was estimated based on the ratio of TBBLase to DEPCyMCase activity. Serum total oxidant status (TOS), total antioxidant capacity (TAC), malondialdehyde (MDA), homocysteine (HCY), PON1 C-108T and Q192R genetic polymorphisms, and metabolic parameters were analyzed. RESULTS Lactonase activity and level of PON1 gradually decreased with pregnancy progression, while glycolipid metabolism parameters and TAC levels increased with pregnancy progression or significantly raised during the 2nd and 3rd trimesters, and NLA of PON1, TOS, OSI, MDA, and HCY significantly increased before delivery in the ART and control groups. Compared with the control women, the ART women had substantially higher or relatively high lactonase activity and NLA of PON1 and TAC during pregnancy; higher triglyceride (TG), total cholesterol, low-density lipoprotein cholesterol, atherogenic index, apolipoprotein (apo) B, and apoB/apoA1 ratio in the 1st trimester; and higher fasting glucose, fasting insulin, homeostatic model assessment of insulin resistance, and TG levels before delivery. No significant differences were found in the frequencies of PON1 C-108T and Q192R genotypes and alleles between the ART and control groups. CONCLUSIONS Women with AMA undergoing ART had higher TAC, PON1 lactonase activity, and PON1 NLA than control women, suggesting increased compensatory antioxidant capacity in ART women, thus showing higher sensitivity to oxidative stress-related injury and diseases.
Collapse
Affiliation(s)
- Chenyu Jiang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujie Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Cantin C, Morales A, Serra R, Illanes SE, Leiva A. Maternal Supraphysiological Hypercholesterolemia Is Accompanied by Shifts in the Composition and Anti-Atherogenic Functions of Maternal HDL along with Maternal Cardiovascular Risk Markers at Term of Pregnancy. Antioxidants (Basel) 2023; 12:1804. [PMID: 37891883 PMCID: PMC10604113 DOI: 10.3390/antiox12101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Maternal physiological hypercholesterolemia (MPH) occurs in pregnancy for a proper fetal development. When cholesterol increases over the physiological range, maternal supraphysiological hypercholesterolemia (MSPH) is described, a condition underdiagnosed by a lack of evidence showing its biological and clinical relevance. AIM To determine if MSPH associates with maternal vascular dysfunction, along with changes in the composition and function of maternal HDL leading to increased cardiovascular risk. METHODS This study included 57 women at term of pregnancy in which a lipid profile was determined. RESULTS Maternal total cholesterol (TC) and LDL but not HDL were increased in MSPH women. The isolated HDL from a subgroup of MSPH women had a lower protein abundance and a reduced activity of the antioxidant enzyme PON1; however, an increased antioxidant capacity compared to MPH was observed, along with higher serum levels of α-tocopherol. Moreover, HDL from a subgroup of MSPH women had a lower capacity to induce NO synthesis in endothelial cells compared to MPH. In the circulation, we observed a reduced total antioxidant capacity and augmented levels of soluble VCAM, ApoB, ApoCII, ApoCIII, IL-10, and IL-12p70, as well as the cardiovascular risk ratio ApoB/ApoAI, compared to MPH women. CONCLUSION MSPH women present dysfunctional HDL and increased atherogenic cardiovascular risk factors.
Collapse
Affiliation(s)
- Claudette Cantin
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| | - Andrea Morales
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| | - Ramón Serra
- Hospital Naval, Punta Arenas 6200000, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago 111711, Chile;
| | - Sebastián E. Illanes
- Faculty of Medicine, Universidad de los Andes, Santiago 111711, Chile;
- Laboratory of Reproductive Biology, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 111711, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8331150, Chile
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| |
Collapse
|
8
|
Contreras S, Escalona R, Cantin C, Valdivia P, Zapata D, Carvajal L, Brito R, Cerda Á, Illanes S, Gutiérrez J, Leiva A. Small extracellular vesicles from pregnant women with maternal supraphysiological hypercholesterolemia impair endothelial cell function in vitro. Vascul Pharmacol 2023; 150:107174. [PMID: 37105374 DOI: 10.1016/j.vph.2023.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Maternal physiological hypercholesterolemia (MPH, maternal total cholesterol (TC) levels at term of pregnancy ≤280 mg/dl) occurs to assure fetal development. Maternal supraphysiological hypercholesterolemia (MSPH, TC levels >280 mg/dl) is a pathological condition associated with maternal, placental, and fetal endothelial dysfunction and early neonatal atherosclerosis development. Small extracellular vesicles (sEVs) are delivered to the extracellular space by different cells, where they modulate cell functions by transporting active signaling molecules, including proteins and miRNA. AIM To determine whether sEVs from MSPH women could alter the function of endothelial cells (angiogenesis, endothelial activation and nitric oxide synthesis capacity). METHODS This study included 24 Chilean women (12 MPH and 12 MSPH). sEVs were isolated from maternal plasma and characterized by sEV markers (CD9, Alix and HSP70), nanoparticle tracking analysis, transmission electron microscopy, and protein and cholesterol content. The endothelial cell line HMEC-1 was used to determine the uptake of labeled sEVs and the effects of sEVs on cell viability, endothelial tube formation, endothelial cell activation, and endothelial nitric oxide expression and function. RESULTS In MSPH women, the plasma concentration of sEVs was increased compared to that in MPH women. MSPH-sEVs were highly taken up by HMEC-1 cells and reduced angiogenic capacity and the expression and activity of eNOS without changing cell viability or endothelial activation. CONCLUSION sEVs from MSPH women impair angiogenesis and nitric oxide synthesis in endothelial cells, which could contribute to MSPH-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Susana Contreras
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Escalona
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudette Cantin
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascuala Valdivia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David Zapata
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Carvajal
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Brito
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Álvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | | | - Jaime Gutiérrez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Leiva
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
9
|
Ouidir M, Chatterjee S, Wu J, Tekola-Ayele F. Genomic study of maternal lipid traits in early pregnancy concurs with four known adult lipid loci. J Clin Lipidol 2023; 17:168-180. [PMID: 36443208 PMCID: PMC9974591 DOI: 10.1016/j.jacl.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Blood lipids during pregnancy are associated with cardiovascular diseases and adverse pregnancy outcomes. Genome-wide association studies (GWAS) in predominantly male European ancestry populations have identified genetic loci associated with blood lipid levels. However, the genetic architecture of blood lipids in pregnant women remains poorly understood. OBJECTIVE Our goal was to identify genetic loci associated with blood lipid levels among pregnant women from diverse ancestry groups and to evaluate whether previously known lipid loci in predominantly European adults are transferable to pregnant women. METHODS The trans-ancestry GWAS were conducted on serum levels of total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides during first trimester among pregnant women from four population groups (608 European-, 623 African-, 552 Hispanic- and 235 East Asian-Americans) recruited in the NICHD Fetal Growth Studies cohort. The four GWAS summary statistics were combined using trans-ancestry meta-analysis approaches that account for genetic heterogeneity among populations. RESULTS Loci in CELSR2 and APOE were genome-wide significantly associated (p-value < 5×10-8) with total cholesterol and LDL levels. Loci near CETP and ABCA1 approached genome-wide significant association with HDL (p-value = 2.97×10-7 and 9.71×10-8, respectively). Less than 20% of previously known adult lipid loci were transferable to pregnant women. CONCLUSION This trans-ancestry GWAS meta-analysis in pregnant women identified associations that concur with four known adult lipid loci. Limited replication of known lipid-loci from predominantly European study populations to pregnant women underlines the need for genomic studies of lipids in ancestrally diverse pregnant women. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta 2022; 127:12-19. [DOI: 10.1016/j.placenta.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
11
|
Increased Circulating Levels of PCSK9 and Pro-Atherogenic Lipoprotein Profile in Pregnant Women with Maternal Supraphysiological Hypercholesterolemia. Antioxidants (Basel) 2022; 11:antiox11050869. [PMID: 35624732 PMCID: PMC9137759 DOI: 10.3390/antiox11050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal physiological hypercholesterolemia (MPH) occurs during pregnancy to assure fetal development. Some pregnant women develop maternal supraphysiological hypercholesterolemia (MSPH) characterized by increased levels of low-density lipoprotein (LDL). We aim to determine if proprotein convertase subtilisin/kexin type 9 (PCSK9) levels (a protein that regulate the availability of LDL receptor in the cells surface), as well as the composition and function of LDL, are modulated in MSPH women. This study included 122 pregnant women. Maternal total cholesterol (TC), LDL, triglycerides and PCSK9 increased from first (T1) to third trimester (T3) in MPH women. At T3, maternal TC, LDL, PCSK9 and placental abundances of PCSK9 were significantly higher in MPSH compared to MPH. Circulating PCSK9 levels were correlated with LDL at T3. In MSPH women, the levels of lipid peroxidation and oxidized LDL were significantly higher compared to MPH. LDL isolated from MSPH women presented significantly higher triglycerides and ApoB but lower levels of ApoAI compared to MPH. The formation of conjugated dienes was earlier in LDL from MSPH and in endothelial cells incubated with these LDLs; the levels of reactive oxygen species were significantly higher compared to LDL from MPH. We conclude that increased maternal PCSK9 would contribute to the maternal elevated levels of pro-atherogenic LDL in MSPH, which could eventually be related to maternal vascular dysfunction.
Collapse
|
12
|
Abstract
IMPORTANCE Statins are the drug class most commonly used to treat hyperlipidemia. Recently, they have been used during pregnancy for the prevention or treatment of preeclampsia. However, the safety of statin use during pregnancy has been questioned, and the sample sizes of most previous studies have been small. OBJECTIVE To examine the perinatal outcomes among offspring associated with maternal use of statins during pregnancy. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 1 443 657 pregnant women 18 years of age or older with their first infant born during the period from January 1, 2004, to December 31, 2014. Data for this study were taken from the Taiwan National Health Insurance Research Database. Statistical analysis was performed from April 7, 2020, to July 31, 2021. EXPOSURES Maternal statin use during pregnancy. MAIN OUTCOMES AND MEASURES Women who have received a diagnosis of hyperlipidemia before pregnancy and who were receiving prescription statins during pregnancy were the statin-exposed group. Data on congenital anomalies, birth weight, gestational age, preterm birth, low birth weight, very low birth weight, fetal distress, and Apgar score were compared between participants with and partcipants without statin exposure during pregnancy. Risk ratios (RRs) were calculated by multivariable analyses using Poisson regression models to adjust for potential confounders. Subgroup analysis was performed to compare offspring of women who used statins for more than 3 months prior to pregnancy and maintained or stopped statin use after pregnancy. RESULTS A total of 469 women (mean [SD] age, 32.6 [5.4] years; mean [SD] gestational age, 38.4 [1.6] weeks) who used statins during pregnancy and 4690 age-matched controls (mean [SD] age, 32.0 [4.9] years; mean [SD] gestational age, 37.3 [2.4] weeks) with no statin exposure during pregnancy were enrolled. After controlling for maternal comorbidities and age, low birth weight was more common among offspring in the statin-exposed group (RR, 1.51 [95% CI, 1.05-2.16]), with a greater chance of preterm birth (RR, 1.99 [95% CI, 1.46-2.71]), and a lower 1-minute Apgar score (RR, 1.83 [95% CI, 1.04-3.20]). Congenital anomalies were not associated with statin exposure during pregnancy. In addition, multivariable analysis showed that there was no association between statin use for periconceptual hyperlipidemia and adverse perinatal outcomes among women who had used statins prior to pregnancy. CONCLUSIONS AND RELEVANCE This study suggests that statins may be safe when used during pregnancy because there was no association with congenital anomalies, but caution is needed because of an increased risk of low birth weight and preterm labor. The data also suggest that statins could be safely used during pregnancy for women with long-term use of statins before pregnancy.
Collapse
Affiliation(s)
- Jui-Chun Chang
- Department of Obstetrics and Gynecology and Women’s Health, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Szu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
14
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
15
|
Contreras-Duarte S, Claudette C, Farias M, Leiva A. High total cholesterol and triglycerides levels increase arginases metabolism, impairing nitric oxide signaling and worsening fetoplacental endothelial dysfunction in gestational diabetes mellitus pregnancies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166216. [PMID: 34314821 DOI: 10.1016/j.bbadis.2021.166216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
During human pregnancy, maternal physiological dyslipidemia (MPD) supports fetal development. However, some women develop maternal supraphysiological dyslipidemia (MSPD: increased total cholesterol (TC) and triglycerides (TG) levels). MSPD is present in normal and pregnancies with gestational diabetes mellitus (GDM). Both pathologies associate with fetoplacental endothelial dysfunction, producing alterations in nitric oxide (NO)-L-arginine/arginase metabolism. Nevertheless, the effect of MSPD on GDM, and how this synergy alters fetoplacental endothelial function is unknown, which is the aim of this study. 123 women at term of pregnancy were classified as MPD (n=40), MSPD (n=35), GDM with normal lipids (GDM- MPD, n=23) and with increased lipids (GDM-MSPD, n=25). TC ≥291 mg/dL and TG ≥275 mg/dL were considered as MSPD. Endothelial NO synthase (eNOS), human cationic amino acid transporter 1 (hCat1), and arginase II protein abundance and activity, were assayed in umbilical vein endothelial cells. In MSPD and MSPD-GDM, TC and TG increased respect to MPD and MPD-GDM. eNOS activity was reduced in MSPD and MSPD-GDM, but increased in MPD-GDM compared with MPD. No changes were observed in eNOS protein. However, decreased tetrahydrobiopterin levels were observed in all groups compared with MPD. Increased hCat1 protein and L-arginine transport were observed in both GDM groups compared with MPD. However, the transport was higher in GDM-MSPD compared to GDM-MPD. Higher Arginase II protein and activity were observed in MSPD-GDM compared with MPD. Thus, MSPD in GDM pregnancies alters fetal endothelial function associated with NO metabolism.
Collapse
Affiliation(s)
- S Contreras-Duarte
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile.
| | - C Claudette
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - M Farias
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - A Leiva
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
16
|
Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta 2021; 106:79-87. [PMID: 33706211 DOI: 10.1016/j.placenta.2021.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022]
Abstract
Hypercholesterolemia is one of the main risk factors associated with atherosclerosis and cardiovascular disease, the leading cause of death worldwide. During pregnancy, maternal hypercholesterolemia develops, and it can occur in a physiological (MPH) or supraphysiological (MSPH) manner, where MSPH is associated with endothelial dysfunction and early atherosclerotic lesions in the fetoplacental vasculature. In the pathogenesis of atherosclerosis, endothelial activation and endothelial dysfunction, characterized by an imbalance in the bioavailability of nitric oxide, contribute to the early stages of this disease. Macrophages conversion to foam cells, cholesterol efflux from these cells and its differentiation into a pro- or anti-inflammatory phenotype are also important processes that contribute to atherosclerosis. In adults it has been reported that native and modified HDL and LDL play an important role in endothelial and macrophage function. In this review it is proposed that fetal lipoproteins could be also relevant factors involved in the detrimental vascular effects described in MSPH. Changes in the composition and function of neonatal lipoproteins compared to adults has been reported and, although in MSPH pregnancies the fetal lipid profile does not differ from MPH, differences in the lipidomic profiles of umbilical venous blood have been reported, which could have implications in the vascular function. In this review we summarize the available information regarding the effects of lipoproteins on endothelial and macrophage function, emphasizing its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy.
Collapse
|
17
|
Kooijman MN, Jaddoe VWV, Steegers EAP, Gaillard R. Associations of maternal metabolic profile with placental and fetal cerebral and cardiac hemodynamics. Eur J Obstet Gynecol Reprod Biol 2020; 257:51-58. [PMID: 33360239 DOI: 10.1016/j.ejogrb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal obesity and metabolic health affect pregnancy outcomes. We examined whether maternal metabolic profiles are associated with placental and fetal hemodynamics. STUDY DESIGN In a population-based prospective cohort study among 1175 women we examined the associations of an adverse maternal metabolic profile in early pregnancy with placental, fetal cerebral and cardiac hemodynamic development. We obtained maternal pre-pregnancy BMI by questionnaire and measured blood pressure, cholesterol, triglycerides and glucose concentrations at a median gestational age of 12.6 (95 % range 9.6-17.1) weeks. An adverse maternal metabolic profile was defined as ≥4 risk factors. Placental and fetal hemodynamics were measured by pulsed-wave-Doppler at a median gestational age of 30.3 (95 % range 28.8-32.3) weeks. RESULTS An adverse maternal metabolic profile was associated with a 0.29 Z-score higher (95 %CI 0.08-0.50) fetal cerebral middle artery pulsatility index (PI), but not with placental or fetal cardiac hemodynamic patterns. When the individual components of an adverse maternal metabolic profile were assessed, we observed that higher maternal total cholesterol and triglyceride concentrations were associated with a higher cerebral middle artery PI (Z-score, 0.09 (95 %CI 0.02-0.15), 0.09 (95 %CI 0.03-0.15) per Z-score increase). Higher total and HDL maternal cholesterol concentrations were also associated with a higher aorta ascendens peak systolic velocity (PSV) Z-score, 0.08 (95 %CI 0.01-0.14)), and a larger left cardiac output (Z-score, 0.08 (95 %CI 0.00-0.15), respectively). CONCLUSION An adverse maternal metabolic profile, especially higher cholesterol and triglycerides concentrations, are associated with increased fetal cerebral vascular resistance and larger fetal aorta ascendens diameter, PSV and left cardiac output, but not with placental vascular resistance indices. Further studies are needed to identify long-term consequences of the observed associations.
Collapse
Affiliation(s)
- Marjolein N Kooijman
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands.
| |
Collapse
|
18
|
Cantin C, Fuenzalida B, Leiva A. Maternal hypercholesterolemia during pregnancy: Potential modulation of cholesterol transport through the human placenta and lipoprotein profile in maternal and neonatal circulation. Placenta 2020; 94:26-33. [DOI: 10.1016/j.placenta.2020.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023]
|
19
|
Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10:5264. [PMID: 32210256 PMCID: PMC7093446 DOI: 10.1038/s41598-020-61629-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.
Collapse
|
20
|
Song EY, Yoon JH, Shin S, Chang JY, Hwang KT, Roh EY. Maternal lipid profiles vs. fetal growth and cord blood hematopoietic cells: weak associations in healthy Korean newborn-mother pairs. Minerva Pediatr (Torino) 2019; 74:7-15. [PMID: 31264393 DOI: 10.23736/s2724-5276.19.05408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We aimed to define the maternal lipid profiles that are associated with fetal growth and cord blood (CB) hematopoietic cells in healthy Korean full-term newborns. METHODS A total of 608 fetal-maternal pairs were enrolled; mothers voluntarily donated CB with informed consent. We analyzed birth weight (BW) as a marker of fetal growth, and we examined total nucleated cells (TNCs) and CD34+ cell concentrations of CB as markers of hematopoietic progenitor cell (HPC) contents. We also analyzed maternal lipid levels and investigated their associations with BW, TNCs and CD34+ cells. RESULTS Maternal triglycerides (TG) showed a significant positive association with BW and CD34+ cells, and low-density lipoprotein (LDL) showed a negative association with BW and CD34+ cells. Though not statistically significant, higher maternal TG showed a tendency toward higher levels of TNCs. Maternal TG was independently and positively correlated with BW, and maternal LDL was independently and negatively correlated with CD34+ cells, although the impacts were not as strong, as indicated by small beta coefficients (0.157 and -0.226, respectively). CONCLUSIONS We were able to investigate the association of maternal lipid profiles with BW and CB HPCs in healthy Korean newborn-mother pairs in this study. Both BW and the HPC contents showed independent associations with maternal TG and LDL, although the effect of maternal lipid levels on fetal growth and HPCs was not strong in the normal healthy population. Because maternal lipid levels were assessed once in the healthy fetal-maternal pairs, we could not investigate those associations across pregnancy.
Collapse
Affiliation(s)
- Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Hgun Yoon
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea.,Seoul Metropolitan Government Public Cord Blood Bank-ALLCORD, Seoul, South Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea.,Seoul Metropolitan Government Public Cord Blood Bank-ALLCORD, Seoul, South Korea
| | - Ju Young Chang
- Department of Pediatrics, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea - .,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea.,Seoul Metropolitan Government Public Cord Blood Bank-ALLCORD, Seoul, South Korea
| |
Collapse
|
21
|
Echeverria C, Eltit F, Santibanez JF, Gatica S, Cabello-Verrugio C, Simon F. Endothelial dysfunction in pregnancy metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165414. [PMID: 30794867 DOI: 10.1016/j.bbadis.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the vascular endothelium has gained attention as a key player in the initiation and development of pregnancy disorders. Endothelium acts as an endocrine organ that preserves the homeostatic balance by responding to changes in metabolic status. However, in metabolic disorders, endothelial cells adopt a dysfunctional function, losing their normal responsiveness. During pregnancy, several metabolic changes occur, in which endothelial function decisively participates. Similarly, when pregnancy metabolic disorders occur, endothelial dysfunction plays a key role in pathogenesis. This review outlines the main findings regarding endothelial dysfunction in three main metabolic pathological conditions observed during pregnancy: gestational diabetes, hypertensive disorders, and obesity and hyperlipidemia. Organ, histological and cellular characteristics were thoroughly described. Also, we focused in discussing the underlying molecular mechanisms involved in the cellular signaling pathways that mediate responses in these pathological conditions.
Collapse
Affiliation(s)
- Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772 Copiapo, Chile
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370146 Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile.
| |
Collapse
|
22
|
Saraf-Bank S, Tehrani H, Haghighatdoost F, Moosavian SP, Azadbakht L. The acidity of early pregnancy diet and risk of gestational diabetes mellitus. Clin Nutr 2018; 37:2054-2059. [DOI: 10.1016/j.clnu.2017.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
|
23
|
Contreras-Duarte S, Carvajal L, Fuenzalida B, Cantin C, Sobrevia L, Leiva A. Maternal Dyslipidaemia in Pregnancy with Gestational Diabetes Mellitus: Possible Impact on Foetoplacental Vascular Function and Lipoproteins in the Neonatal Circulation. Curr Vasc Pharmacol 2018; 17:52-71. [DOI: 10.2174/1570161115666171116154247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/06/2023]
Abstract
Dyslipidaemia occurs in pregnancy to secure foetal development. The mother shows a physiological
increase in plasma total cholesterol and Triglycerides (TG) as pregnancy progresses (i.e. maternal
physiological dyslipidaemia in pregnancy). However, in some women pregnancy-associated dyslipidaemia
exceeds this physiological adaptation. The consequences of this condition on the developing
fetus include endothelial dysfunction of the foetoplacental vasculature and development of foetal aortic
atherosclerosis. Gestational Diabetes Mellitus (GDM) associates with abnormal function of the foetoplacental
vasculature due to foetal hyperglycaemia and hyperinsulinaemia, and associates with development
of cardiovascular disease in adulthood. Supraphysiological dyslipidaemia is also detected in
GDM pregnancies. Although there are several studies showing the alteration in the maternal and neonatal
lipid profile in GDM pregnancies, there are no studies addressing the effect of dyslipidaemia in the
maternal and foetal vasculature. The literature reviewed suggests that dyslipidaemia in GDM pregnancy
should be an additional factor contributing to worsen GDM-associated endothelial dysfunction by altering
signalling pathways involving nitric oxide bioavailability and neonatal lipoproteins.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Lorena Carvajal
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Claudette Cantin
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| |
Collapse
|
24
|
Maternal supraphysiological hypercholesterolemia associates with endothelial dysfunction of the placental microvasculature. Sci Rep 2018; 8:7690. [PMID: 29769708 PMCID: PMC5955926 DOI: 10.1038/s41598-018-25985-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/27/2018] [Indexed: 01/24/2023] Open
Abstract
Maternal physiological or supraphysiological hypercholesterolemia (MPH, MSPH) occurs during pregnancy. MSPH is associated with foetal endothelial dysfunction and atherosclerosis. However, the potential effects of MSPH on placental microvasculature are unknown. The aim of this study was to determine whether MSPH alters endothelial function in the placental microvasculature both ex vivo in venules and arterioles from the placental villi and in vitro in primary cultures of placental microvascular endothelial cells (hPMEC). Total cholesterol < 280 mg/dL indicated MPH, and total cholesterol ≥280 mg/dL indicated MSPH. The maximal relaxation to histamine, calcitonin gene-related peptide and adenosine was reduced in MSPH venule and arteriole rings. In hPMEC from MSPH placentas, nitric oxide synthase (NOS) activity and L-arginine transport were reduced without changes in arginase activity or the protein levels of endothelial NOS (eNOS), human cationic amino acid 1 (hCAT-1), hCAT-2A/B or arginase II compared with hPMEC from MPH placentas. In addition, it was shown that adenosine acts as a vasodilator of the placental microvasculature and that NOS is active in hPMEC. We conclude that MSPH alters placental microvascular endothelial function via a NOS/L-arginine imbalance. This work also reinforces the concept that placental endothelial cells from the macro- and microvasculature respond differentially to the same pathological condition.
Collapse
|
25
|
Maierean SM, Mikhailidis DP, Toth PP, Grzesiak M, Mazidi M, Maciejewski M, Banach M. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs 2018; 27:427-435. [DOI: 10.1080/13543784.2018.1465927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, University College London Medical School, University College London (UCL), London, UK
| | - Peter P. Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mariusz Grzesiak
- Department of Gynecology and Obstetrics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Moshen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Marek Maciejewski
- Department of Cardiology, Chair of Cardiology and Cardiac Surgery Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| |
Collapse
|
26
|
Kerr B, Leiva A, Farías M, Contreras-Duarte S, Toledo F, Stolzenbach F, Silva L, Sobrevia L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69:146-152. [PMID: 29699712 DOI: 10.1016/j.placenta.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Metabolic-related diseases are attributed to a sedentary lifestyle and eating habits, and there is now an increased awareness regarding pregnancy as a preponderant window in the programming of adulthood health and disease. The developing foetus is susceptible to the maternal environment; hence, any unfavourable condition will result in foetal physiological adaptations that could have a permanent impact on its health. Some of these alterations are maintained via epigenetic modifications capable of modifying gene expression in metabolism-related genes. Children born to mothers with dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus, have a predisposition to develop metabolic alterations during adulthood. CpG methylation-associated alterations to the expression of several genes in the human placenta play a crucial role in the mother-to-foetus transfer of nutrients and macromolecules. Identification of epigenetic modifications in metabolism-related tissues of offspring from metabolic-altered pregnancies is essential to obtain insights into foetal programming controlling newborn, childhood, and adult metabolism. This review points out the importance of the foetal milieu in the programming and development of human disease and provides evidence of this being the underlying mechanism for the development of adulthood metabolic disorders in maternal dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Bredford Kerr
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile.
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Francisca Stolzenbach
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile; Faculty of Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
27
|
Geraghty AA, Alberdi G, O'Sullivan EJ, O'Brien EC, Crosbie B, Twomey PJ, McAuliffe FM. Maternal and fetal blood lipid concentrations during pregnancy differ by maternal body mass index: findings from the ROLO study. BMC Pregnancy Childbirth 2017; 17:360. [PMID: 29037224 PMCID: PMC5644148 DOI: 10.1186/s12884-017-1543-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 10/08/2017] [Indexed: 12/03/2022] Open
Abstract
Background Pregnancy is a time of altered metabolic functioning and maternal blood lipid profiles change to accommodate the developing fetus. While these changes are physiologically necessary, blood lipids concentrations have been associated with adverse pregnancy outcomes such as gestational diabetes, pregnancy-induced hypertension and high birth weight. As blood lipids are not routinely measured during pregnancy, there is limited information on what is considered normal during pregnancy and in fetal blood. Methods Data from 327 mother-child pairs from the ROLO longitudinal birth cohort study were analysed. Fasting total cholesterol and triglycerides were measured in early and late pregnancy and fetal cord blood. Intervals were calculated using the 2.5th, 50th and 97.5th centile. Data was stratified based on maternal body mass index (BMI) measured during early pregnancy. Differences in blood lipids between BMI categories were explored using ANOVA and infant outcomes of macrosomia and large-for-gestational-age (LGA) were explored using independent student T-tests and binary logistic regression. Results All maternal blood lipid concentrations increased significantly from early to late pregnancy. In early pregnancy, women with a BMI < 25 kg/m2 had lower concentrations of total cholesterol compared to women with a BMI of 25–29.9 kg/m2 (P = 0.02). With triglycerides, women in the obese category (BMI > 30 kg/m2) had higher concentrations than both women in the normal-weight and overweight category in early and late pregnancy (P < 0.001 and P = 0.03, respectively). In late pregnancy, triglyceride concentrations remained elevated in women in the obese category compared to women in the normal-weight category (P = 0.01). Triglyceride concentrations were also elevated in late pregnancy in mothers that then gave birth to infants with macrosomia and LGA (P = 0.01 and P = 0.03, respectively). Conclusion Blood lipid concentrations increase during pregnancy and differ by maternal BMI. These intervals could help to inform the development of references for blood lipid concentrations during pregnancy. Trial registration ROLO Study - ISRCTN54392969. Date of registration: 22/04/2009.
Collapse
Affiliation(s)
- Aisling A Geraghty
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Goiuri Alberdi
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Elizabeth J O'Sullivan
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Eileen C O'Brien
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Brenda Crosbie
- Clinical Chemistry, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Patrick J Twomey
- Clinical Chemistry, St. Vincent's University Hospital, Dublin 4, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland.
| |
Collapse
|
28
|
Nie M, Wang Y, Li W, Ping F, Liu J, Wu X, Mao J, Wang X, Ma L. The association between six genetic variants and blood lipid levels in pregnant Chinese Han women. J Clin Lipidol 2017; 11:938-944. [DOI: 10.1016/j.jacl.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
|
29
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
30
|
Zhang R, Dong S, Ma WW, Cai XP, Le ZY, Xiao R, Zhou Q, Yu HL. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One 2017; 12:e0171934. [PMID: 28199412 PMCID: PMC5310867 DOI: 10.1371/journal.pone.0171934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/29/2017] [Indexed: 02/06/2023] Open
Abstract
The significance of maternal cholesterol transporting to the fetus under normal as well as pathological circumstances is less understood. The objective of this study was to observe the effects of maternal hypercholesterolemia on placental cholesterol transportation. Human full-time placenta, maternal and venous cord blood were sampled at delivery from the pregnant women with serum total cholesterol (TC) concentrations at third trimester higher than 7.25 mM (n = 19) and the pregnant women with normal TC concentrations (n = 19). Serum lipids and expression of genes related to cholesterol transportation were measured by western blot or real-time PCR. The results indicated that serum TC, high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) levels were significantly increased, in pregnancies, but decreased in cord blood in hypercholesterolemic group compared to the matched control group. All the subjects were no-drinking, non-smoker, and gestational disease free. The mRNA expression of lipoprotein receptors, including LDLR and VLDLR were significantly increased, while the protein expression of PCSK9 was significantly increased in hypercholesterolemic placenta. In conclusion, maternal hypercholesterolemia might decrease the transportation of cholesterol from mother to fetus because of the high levels of PCSK9 protein expression.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Adult
- Case-Control Studies
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Female
- Fetal Blood/metabolism
- Humans
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/metabolism
- Placenta/metabolism
- Pregnancy
- Pregnancy Trimester, Third
- Proprotein Convertase 9/metabolism
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
Collapse
Affiliation(s)
- Ran Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Shan Dong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Wei-wei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xue-ping Cai
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhi-yin Le
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| | - Qi Zhou
- Xuanwu hospital, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| | - Huan-ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| |
Collapse
|
31
|
Leiva A, Fuenzalida B, Salsoso R, Barros E, Toledo F, Gutiérrez J, Pardo F, Sobrevia L. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2016; 1862:536-544. [DOI: 10.1016/j.bbadis.2016.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/03/2016] [Accepted: 01/19/2016] [Indexed: 01/20/2023]
|
32
|
Sobrevia L, Salsoso R, Fuenzalida B, Barros E, Toledo L, Silva L, Pizarro C, Subiabre M, Villalobos R, Araos J, Toledo F, González M, Gutiérrez J, Farías M, Chiarello DI, Pardo F, Leiva A. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus. Front Physiol 2016; 7:119. [PMID: 27065887 PMCID: PMC4815008 DOI: 10.3389/fphys.2016.00119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies.
Collapse
Affiliation(s)
- Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, University of QueenslandHerston, QLD, Australia; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Eric Barros
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Lilian Toledo
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Carolina Pizarro
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Roberto Villalobos
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Joaquín Araos
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Cellular Signaling and Differentiation Laboratory, Health Sciences Faculty, Universidad San SebastiánSantiago, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|