1
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Lakhneko O, Stasik O, Škultéty Ľ, Kiriziy D, Sokolovska-Sergiienko O, Kovalenko M, Danchenko M. Transient drought during flowering modifies the grain proteome of bread winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1181834. [PMID: 37441186 PMCID: PMC10333505 DOI: 10.3389/fpls.2023.1181834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Drought is among the most limiting factors for sustainable agricultural production. Water shortage at the onset of flowering severely affects the quality and quantity of grain yield of bread wheat (Triticum aestivum). Herein, we measured oxidative stress and photosynthesis-related parameters upon applying transient drought on contrasting wheat cultivars at the flowering stage of ontogenesis. The sensitive cultivar (Darunok Podillia) showed ineffective water management and a more severe decline in photosynthesis. Apparently, the tolerant genotype (Odeska 267) used photorespiration to dissipate excessive light energy. The tolerant cultivar sooner induced superoxide dismutase and showed less inhibited photosynthesis. Such a protective effect resulted in less affected yield and spectrum of seed proteome. The tolerant cultivar had a more stable gluten profile, which defines bread-making quality, upon drought. Water deficit caused the accumulation of medically relevant proteins: (i) components of gluten in the sensitive cultivar and (ii) metabolic proteins in the tolerant cultivar. We propose specific proteins for further exploration as potential markers of drought tolerance for guiding efficient breeding: thaumatin-like protein, 14-3-3 protein, peroxiredoxins, peroxidase, FBD domain protein, and Ap2/ERF plus B3 domain protein.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Oleg Stasik
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dmytro Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Mariia Kovalenko
- Educational and Scientific Centre (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
3
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
4
|
Smolikova G, Strygina K, Krylova E, Vikhorev A, Bilova T, Frolov A, Khlestkina E, Medvedev S. Seed-to-Seedling Transition in Pisum sativum L.: A Transcriptomic Approach. PLANTS 2022; 11:plants11131686. [PMID: 35807638 PMCID: PMC9268910 DOI: 10.3390/plants11131686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The seed-to-seedling transition is a crucial step in the plant life cycle. The transition occurs at the end of seed germination and corresponds to the initiation of embryonic root growth. To improve our understanding of how a seed transforms into a seedling, we germinated the Pisum sativum L. seeds for 72 h and divided them into samples before and after radicle protrusion. Before radicle protrusion, seeds survived after drying and formed normally developed seedlings upon rehydration. Radicle protrusion increased the moisture content level in seed axes, and the accumulation of ROS first generated in the embryonic root and plumule. The water and oxidative status shift correlated with the desiccation tolerance loss. Then, we compared RNA sequencing-based transcriptomics in the embryonic axes isolated from pea seeds before and after radicle protrusion. We identified 24,184 differentially expressed genes during the transition to the post-germination stage. Among them, 2101 genes showed more prominent expression. They were related to primary and secondary metabolism, photosynthesis, biosynthesis of cell wall components, redox status, and responses to biotic stress. On the other hand, 415 genes showed significantly decreased expression, including the groups related to water deprivation (eight genes) and response to the ABA stimulus (fifteen genes). We assume that the water deprivation group, especially three genes also belonging to ABA stimulus (LTI65, LTP4, and HVA22E), may be crucial for the desiccation tolerance loss during a metabolic switch from seed to seedling. The latter is also accompanied by the suppression of ABA-related transcription factors ABI3, ABI4, and ABI5. Among them, HVA22E, ABI4, and ABI5 were highly conservative in functional domains and showed homologous sequences in different drought-tolerant species. These findings elaborate on the critical biochemical pathways and genes regulating seed-to-seedling transition.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
- Correspondence:
| | - Ksenia Strygina
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources of Russian Academy of Sciences, 190000 St. Petersburg, Russia;
| | - Aleksander Vikhorev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources of Russian Academy of Sciences, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| |
Collapse
|
5
|
Cueff G, Rajjou L, Hoang HH, Bailly C, Corbineau F, Leymarie J. In-Depth Proteomic Analysis of the Secondary Dormancy Induction by Hypoxia or High Temperature in Barley Grains. PLANT & CELL PHYSIOLOGY 2022; 63:550-564. [PMID: 35139224 DOI: 10.1093/pcp/pcac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Hai Ha Hoang
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Christophe Bailly
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Françoise Corbineau
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Juliette Leymarie
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
- Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES Paris-Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du Général de Gaulle, Créteil 94010, France
| |
Collapse
|
6
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
7
|
Nava-Ramírez T, Hansberg W. Chaperone activity of large-size subunit catalases. Free Radic Biol Med 2020; 156:99-106. [PMID: 32502516 DOI: 10.1016/j.freeradbiomed.2020.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Large-size subunit catalases (LSCs) have a C-terminal domain that is structurally similar to DJ-1 and Hsp31 proteins, which have well documented molecular chaperone activity. Like chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in different microorganisms. Here we document that the C-terminal domain of LSCs assist other proteins to preserve their active conformation. Heat, urea, or H2O2 denaturation of alcohol dehydrogenase was prevented by LSCs or the C-terminal domain of Catalase-3 (TDC3); in contrast, small-size subunit catalases (SSCs) or LSCs without the C-terminal domain (C3ΔTD or C63) did not have this effect. Similar results were obtained if the alcohol dehydrogenase was previously denatured by heat and then the different catalases or truncated enzymes were added. The TDC3 also protected both the C3ΔTD and the bovine liver catalase from heat denaturation. The chaperone activity of CAT-3 or the TDC3 increased survival of E. coli under different stress conditions whereas the C3ΔTD did not. It is concluded that the C-terminal domain of LSCs has a chaperone activity that is instrumental for cellular resistance to stress conditions, such as oxidative stress that leads to cell differentiation in filamentous fungi.
Collapse
Affiliation(s)
- Teresa Nava-Ramírez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Wilhelm Hansberg
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico.
| |
Collapse
|
8
|
Brazier-Hicks M, Howell A, Cohn J, Hawkes T, Hall G, Mcindoe E, Edwards R. Chemically induced herbicide tolerance in rice by the safener metcamifen is associated with a phased stress response. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:411-421. [PMID: 31565749 PMCID: PMC6913702 DOI: 10.1093/jxb/erz438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/22/2019] [Indexed: 05/22/2023]
Abstract
The closely related sulphonamide safeners, metcamifen and cyprosulfamide, were tested for their ability to protect rice from clodinafop-propargyl, a herbicide normally used in wheat. While demonstrating that both compounds were equally bioavailable in planta, only metcamifen prevented clodinafop from damaging seedlings, and this was associated with the enhanced detoxification of the herbicide. Transcriptome studies in rice cultures demonstrated that whereas cyprosulfamide had a negligible effect on gene expression over a 4 h exposure, metcamifen perturbed the abundance of 590 transcripts. Changes in gene expression with metcamifen could be divided into three phases, corresponding to inductions occurring over 30 min, 1.5 h and 4 h. The first phase of gene induction was dominated by transcription factors and proteins of unknown function, the second by genes involved in herbicide detoxification, while the third was linked to cellular homeostasis. Analysis of the inducible genes suggested that safening elicited similar gene families to those associated with specific biotic and abiotic stresses, notably those elicited by abscisic acid, salicylic acid, and methyl jasmonate. Subsequent experiments with safener biomarker genes induced in phase 1 and 2 in rice cell cultures provided further evidence of similarities in signalling processes elicited by metcamifen and salicylic acid.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Jonathan Cohn
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC, USA
| | - Tim Hawkes
- Syngenta, Jealott’s Hill, Bracknell, Berkshire, UK
| | - Gavin Hall
- Syngenta, Jealott’s Hill, Bracknell, Berkshire, UK
| | | | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Correspondence:
| |
Collapse
|
9
|
Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C, Huang S. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:310-323. [PMID: 31536657 DOI: 10.1111/tpj.14542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed-plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed-specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss-of-function atper1 mutants, atper1-1 and atper1-2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild-type seeds. The suppressed primary seed dormancy of atper1-1 was completely reduced by deletion of CYP707A genes. Furthermore, loss-of-function of AtPER1 cannot enhance the seed germination ratio of aba2-1 or ga1-t, suggesting that AtPER1-enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild-type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.
Collapse
Affiliation(s)
- Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| |
Collapse
|
10
|
Sun LR, Yue CM, Hao FS. Update on roles of nitric oxide in regulating stomatal closure. PLANT SIGNALING & BEHAVIOR 2019; 14:e1649569. [PMID: 31370725 PMCID: PMC6768244 DOI: 10.1080/15592324.2019.1649569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) as an important secondary messager plays crucial roles in modulating stomatal movement, especially abscisic acid (ABA)-induced stomatal closure. Accumulating evidence indicates that NO positively and negatively regulates guard cell ABA signaling. NO is also implicated in stomatal closure mediated by hydrogen sulfide, small peptides, polyamines, and methyl jasmonate. In this review, we summarize recent advances on the roles and the underlying mechanisms of NO in regulating stomatal closure in plants.
Collapse
Affiliation(s)
- Li Rong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Cai Meng Yue
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fu Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
12
|
Ding S, Zhang J, Wang R, Ou S, Shan Y. Changes in cuticle compositions and crystal structure of ‘Bingtang’ sweet orange fruits (Citrus sinensis) during storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1528272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jing Zhang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shiyi Ou
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
13
|
Maintaining Genome Integrity during Seed Development in Phaseolus vulgaris L.: Evidence from a Transcriptomic Profiling Study. Genes (Basel) 2018; 9:genes9100463. [PMID: 30241355 PMCID: PMC6209899 DOI: 10.3390/genes9100463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of genome integrity is crucial in seeds, due to the constant challenge of several endogenous and exogenous factors. The knowledge concerning DNA damage response and chromatin remodeling during seed development is still scarce, especially in Phaseolus vulgaris L. A transcriptomic profiling of the expression of genes related to DNA damage response/chromatin remodeling mechanisms was performed in P. vulgaris seeds at four distinct developmental stages, spanning from late embryogenesis to seed desiccation. Of the 14,001 expressed genes identified using massive analysis of cDNA ends, 301 belong to the DNA MapMan category. In late embryogenesis, a high expression of genes related to DNA damage sensing and repair suggests there is a tight control of DNA integrity. At the end of filling and the onset of seed dehydration, the upregulation of genes implicated in sensing of DNA double-strand breaks suggests that genome integrity is challenged. The expression of chromatin remodelers seems to imply a concomitant action of chromatin remodeling with DNA repair machinery, maintaining genome stability. The expression of genes related to nucleotide excision repair and chromatin structure is evidenced during the desiccation stage. An overview of the genes involved in DNA damage response and chromatin remodeling during P. vulgaris seed development is presented, providing insights into the mechanisms used by developing seeds to cope with DNA damage.
Collapse
|
14
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Lee ES, Kang CH, Park JH, Lee SY. Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1. Antioxid Redox Signal 2018; 28:625-639. [PMID: 29113450 DOI: 10.1089/ars.2017.7400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Sessile plants respond to oxidative stress caused by internal and external stimuli by producing diverse forms of enzymatic and nonenzymatic antioxidant molecules. Peroxiredoxins (Prxs) in plants, including the Prx1, Prx5, Prx6, and PrxQ isoforms, constitute a family of antioxidant enzymes and play important functions in cells. Each Prx localizes to a specific subcellular compartment and has a distinct function in the control of plant growth, development, cellular metabolism, and various aspects of defense signaling. Recent Advances: Prx1, a typical Prx in plant chloroplasts, has redox-dependent multiple functions. It acts as a hydrogen peroxide (H2O2)-catalyzing peroxidase, a molecular chaperone, and a biological circadian marker. Prx1 undergoes a functional switching from a peroxidase to a molecular chaperone in response to oxidative stress, concomitant with the structural changes from a low-molecular-weight species to high-molecular-weight complexes mediated by the post-translational modification of its active site Cys residues. The redox status of the protein oscillates diurnally between hyperoxidation and reduction, showing a circadian rhythmic output. These dynamic structural and functional transformations mediate the effect of plant Prx1 on protecting plants from a myriad of harsh environmental stresses. CRITICAL ISSUES The multifunctional diversity of plant Prxs and their roles in cellular defense signaling depends on their specific interaction partners, which remain largely unidentified. Therefore, the identification of Prx-interacting proteins is necessary to clarify their physiological significance. FUTURE DIRECTIONS Since the functional specificity of the four plant Prx isoforms remains unclear, future studies should focus on investigating the physiological importance of each Prx isotype. Antioxid. Redox Signal. 28, 625-639.
Collapse
Affiliation(s)
- Eun Seon Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| |
Collapse
|
16
|
Mujahid H, Meng X, Xing S, Peng X, Wang C, Peng Z. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. J Proteomics 2017; 170:88-98. [PMID: 28882676 DOI: 10.1016/j.jprot.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/29/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
In recent years, lysine malonylation has garnered wide spread interest due to its potential regulatory roles. While studies have been performed in bacteria, mouse, and human, the involvement and the biological function of this modification in plant are still largely unknown. We examined the global proteome profile of lysine malonylation in developing rice seeds using affinity enrichment followed by LC-MS/MS analysis. We identified 421 malonylated lysine sites across 247 proteins. Functional analyses showed predominant presence of malonylated proteins in metabolic processes, including carbon metabolism, glycolysis/gluconeogenesis, TCA cycle, as well as photosynthesis. Malonylation was also detected on enzymes in starch biosynthesis pathway in developing rice seeds. In addition, we found a remarkable overlap among the malonylated, succinylated and acetylated sites identified in rice. Furthermore, malonylation at conserved sites of homologous proteins was observed across organisms of different kingdoms, including mouse, human, and bacteria. Finally, distinct motifs were identified when the rice malonylation sites were analyzed and conserved motifs were observed from bacterium to human and rice. Our results provide an initial understanding of the lysine malonylome in plants. The study has critical reference value for future understanding of the biological function of protein lysine malonylation in plants. BIOLOGICAL SIGNIFICANCE Lysine malonylation is a newly discovered acylation with functional potential in regulating cellular metabolisms and activities. However, the malonylation status has not been reported in plants. Grain yield and quality, mainly determined during cereal seed development, are closely related to food security, human health and economic value. To evaluate malonylation level in plants and the possible regulatory functions of malonylation in seed development, we conducted comprehensive analyses of malonylome in developing rice seeds. A total of 421 malonylated lysine sites from 247 proteins were identified, which involved in multiple critical metabolic processes, including central carbon metabolism, lipid metabolism, photosynthesis, and starch biosynthesis. We found that charged amino acids, lysine and arginine, were the preferred residues in positions flanking the modified lysines. Highly conserved modification sites on both histone and non-histone proteins were observed among different organisms through sequence alignment analysis. More interestingly, a large number of modification sites shared by malonylation, acetylation and succinylation were identified in rice. The study presents a comprehensive understanding of malonylome in plants, which will serve as an initial platform for further investigation of the functions of lysine malonylation, especially in cereal seeds development.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang 310018, China
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
17
|
Yu T, Li G, Dong S, Liu P, Zhang J, Zhao B. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes. BMC PLANT BIOLOGY 2016; 16:241. [PMID: 27809771 PMCID: PMC5095984 DOI: 10.1186/s12870-016-0878-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. RESULTS Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. CONCLUSIONS Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also provide new insights into the potential protein regulatory networks that control grain yield and quality.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| |
Collapse
|
18
|
Chen HH, Chu P, Zhou YL, Ding Y, Li Y, Liu J, Jiang LW, Huang SZ. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:608-619. [PMID: 27464651 DOI: 10.1111/tpj.13286] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 05/07/2023]
Abstract
Seed longevity, the maintenance of viability during storage, is a major factor for conservation of genetic resources and biodiversity. Seed longevity is an important trait of agriculture crop and is impaired by reactive oxygen species (ROS) during seed desiccation, storage and germination (C. R. Biol., 331, 2008 and 796). Seeds possess a wide range of systems (protection, detoxification, repair) allowing them to survive during storage and to preserve a high germination ability. In many plants, 1-cys peroxiredoxin (1-Cys Prx, also named PER1) is a seed-specific antioxidant which eliminates ROS with cysteine residues. Here we identified and characterized a seed-specific PER1 protein from seeds of sacred lotus (Nelumbo nucifera Gaertn.). Purified NnPER1 protein protects DNA against the cleavage by ROS in the mixed-function oxidation system. The transcription and protein accumulation of NnPER1 increased during seed desiccation and imbibition and under abiotic stress treatment. Ectopic expression of NnPER1 in Arabidopsis enhanced the seed germination ability after controlled deterioration treatment (CDT), indicating that NnPER1 improves seed longevity of transgenic plants. Consistent with the function of NnPER1 on detoxifying ROS, we found that the level of ROS release and lipid peroxidation was strikingly lower in transgenic seeds compared to wild-type with or without CDT. Furthermore, transgenic Arabidopsis seeds ectopic-expressing NnPER1 displayed enhanced tolerance to high temperature and abscisic acid (ABA), indicating that NnPER1 may participate in the thermotolerance and ABA signaling pathway.
Collapse
Affiliation(s)
- Hu-Hui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yu-Liang Zhou
- Guangdong Provincial Key Lab of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
- School of Life Sciences, Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li-Wen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang-Zhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Parreira J, Bouraada J, Fitzpatrick M, Silvestre S, Bernardes da Silva A, Marques da Silva J, Almeida A, Fevereiro P, Altelaar A, Araújo S. Differential proteomics reveals the hallmarks of seed development in common bean ( Phaseolus vulgaris L.). J Proteomics 2016; 143:188-198. [DOI: 10.1016/j.jprot.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
|
20
|
Xu HH, Liu SJ, Song SH, Wang RX, Wang WQ, Song SQ. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:219-42. [PMID: 27035683 DOI: 10.1016/j.plaphy.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 05/09/2023]
Abstract
Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Rui-Xia Wang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Wei-Qing Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
21
|
Pawłowski TA, Staszak AM. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:9-22. [PMID: 26970688 DOI: 10.1016/j.jplph.2016.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance.
Collapse
|
22
|
Proteomic Analysis of Isogenic Rice Reveals Proteins Correlated with Aroma Compound Biosynthesis at Different Developmental Stages. Mol Biotechnol 2015; 58:117-29. [DOI: 10.1007/s12033-015-9906-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chen T, Xu G, Wang Z, Zhang H, Yang J, Zhang J. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics 2015; 16:102-21. [PMID: 26442785 DOI: 10.1002/pmic.201500070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Poor grain filling of later-flowering inferior spikelets is a serious problem in modern rice cultivars, but the reason and regulation remain unclear. This study investigated post-anthesis protein expression in relation with grain filling and the possibility to use irrigation methods to enhance grain filling through regulating protein expression. One japonica rice cultivar was field-grown under three irrigation treatments imposed during the grain filling period: alternate wetting and moderate soil-drying (WMD), alternate wetting and severe soil-drying (WSD), and conventional irrigation. High resolution 2DE, combined with MALDI/TOF, was used to compare differential protein expression between superior and inferior spikelets. Results showed that the expression of proteins that function in photosynthesis, carbohydrate and energy metabolism, amino acids metabolism and defense responses were largely down-regulated in inferior spikelets compared to those in superior spikelets. The WMD treatment enhanced grain filling rate and the expression of these proteins, whereas the WSD treatment decreased them. Similar results were observed for transcript levels of the genes encoding these proteins. These results suggest that down-regulated expression of the proteins associated with grain filling contribute to the poor grain filling of inferior spikelets, and post-anthesis WMD could improve grain filling through regulating protein expression in the spikelets.
Collapse
Affiliation(s)
- Tingting Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, P. R. China
| | - Genwen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
24
|
Abstract
The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice ( Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Shinya Kitajima
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
25
|
Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Li D. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC PLANT BIOLOGY 2014; 14:205. [PMID: 25084812 PMCID: PMC4236756 DOI: 10.1186/s12870-014-0205-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/22/2014] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coconut (Cocos nucifera L.) is one of the world's most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. RESULTS Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as high as 66.6%. Based on determination of coconut endosperm fatty acids content by gas chromatography-mass spectrometry, a number of candidate genes in fatty acid anabolism were selected for further study. CONCLUSION Functional annotation of genes differentially expressed in coconut pulp development helped determine the molecular basis of coconut endosperm development. The SSH method identified genes related to fatty acids, carbohydrate and secondary metabolites. The results will be important for understanding gene functions and regulatory networks in coconut fruit.
Collapse
Affiliation(s)
- Yuanxue Liang
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yijun Yuan
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Tao Liu
- Annoroad Gene Technology Co. Ltd, Beijing 100176, PR China
| | - Wei Mao
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yusheng Zheng
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Dongdong Li
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, Hainan, PR China
| |
Collapse
|
26
|
Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Khan A, Seneweera S. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem 2014; 170:448-54. [PMID: 25306370 DOI: 10.1016/j.foodchem.2014.07.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/14/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Wheat cv. H45 was grown under ambient CO2 concentration and Free Air CO2 Enrichment (FACE; e[CO2], ∼550 μmol CO2 mol(-1)). The effect of FACE on wheat grain proteome and associated changes in the flour rheological properties was investigated. A comparative proteomic analysis was performed using 2-D-DIGE followed by MALDI/TOF-MS. Total grain protein concentration was decreased by 9% at e[CO2]. Relative abundance of three high molecular weight glutenin sub units (HMW-GS) were decreased at e[CO2]. In contrast, relative abundance of serpins Z1C and 1-Cys peroxiredoxin was increased at e[CO2]. Elevated [CO2] also decreased the bread volume (by 11%) and dough strength (by 7%) while increased mixing time. However, dough extensibility and dough stability were unchanged at elevated [CO2]. These findings suggest that e[CO2] has a major impact on gluten protein concentration which is associated lower bread quality at e[CO2].
Collapse
Affiliation(s)
- Nimesha Fernando
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia
| | - Joe Panozzo
- Department of Primary Industries, Natimuk Road, Private Box 260, Horsham, Victoria 3401, Australia
| | - Michael Tausz
- Department of Forest and Ecosystem Science, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia
| | - Robert Norton
- International Plant Nutrition Institute, 54 Florence St, Horsham, Victoria 3400, Australia
| | - Glenn Fitzgerald
- Department of Primary Industries, Natimuk Road, Private Box 260, Horsham, Victoria 3401, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Level 4, Building F7B, Research Park Drive, Macquarie University, Sydney, NSW 2109, Australia
| | - Saman Seneweera
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia; Centre for Systems Biology, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
27
|
Tan L, Chen S, Wang T, Dai S. Proteomic insights into seed germination in response to environmental factors. Proteomics 2014; 13:1850-70. [PMID: 23986916 DOI: 10.1002/pmic.201200394] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination.
Collapse
Affiliation(s)
- Longyan Tan
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Northeast Forestry University, Harbin, China
| | | | | | | |
Collapse
|
28
|
Barba-Espín G, Dedvisitsakul P, Hägglund P, Svensson B, Finnie C. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2014; 164:951-65. [PMID: 24344171 PMCID: PMC3912118 DOI: 10.1104/pp.113.233163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.
Collapse
Affiliation(s)
- Gregorio Barba-Espín
- Agricultural and Environmental Proteomics , Department of Systems Biology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
29
|
García-Mata C, Lamattina L. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:52-65. [PMID: 23352403 DOI: 10.1016/j.plantsci.2012.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 05/21/2023]
Abstract
Specialized guard cells modulate plant gas exchange through the regulation of stomatal aperture. The size of the stomatal pore is a direct function of the volume of the guard cells. The transport of solutes across channels in plasma membrane is a crucial process in the maintenance of guard cell water status. The fine tuned regulation of that transport requires an integrated convergence of multiple endogenous and exogenous signals perceived at both the cellular and the whole plant level. Gasotransmitters are novel signaling molecules with key functions in guard cell physiology. Three gasotransmitters, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S) are involved in guard cell regulatory processes. These molecules are endogenously produced by plant cells and are part of the guard cells responses to drought stress conditions through ABA-dependent pathways. In this review, we summarize the current knowledge of gasotransmitters as versatile molecules interacting with different components of guard cell signaling network and propose them as players in new paradigms to study ABA-independent guard cell responses to water deficit.
Collapse
Affiliation(s)
- Carlos García-Mata
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, UNMdP-CONICET, CC 1245, (7600) Mar del Plata, Argentina
| | | |
Collapse
|
30
|
Gao C, Zhang K, Yang G, Wang Y. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA). Int J Mol Sci 2012; 13:3751-3764. [PMID: 22489180 PMCID: PMC3317740 DOI: 10.3390/ijms13033751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.
Collapse
Affiliation(s)
| | | | | | - Yucheng Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-451-82190607-12; Fax: +86-451-82190607-11
| |
Collapse
|
31
|
Kowald A, Hamann A, Zintel S, Ullrich S, Klipp E, Osiewacz HD. A systems biological analysis links ROS metabolism to mitochondrial protein quality control. Mech Ageing Dev 2012; 133:331-7. [PMID: 22449407 DOI: 10.1016/j.mad.2012.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical model consisting of a set of differential equations describing the time course of various ROS (reactive oxygen species), components of the cellular antioxidant system (PaSOD3 and mitochondrial peroxiredoxin, PaPRX1), and PaCLPP, a mitochondrial matrix protease involved in protein quality control. Incorporating these components we could identify a positive feed-back loop and demonstrate that the role of superoxide as the primary ROS responsible for age-related molecular damage is more complicated than originally stated by the FRTA. Our study is a first step towards the integration of the various pathways known to be involved in the control of biological aging.
Collapse
Affiliation(s)
- Axel Kowald
- Humboldt-Universität zu Berlin, Institute for Biology, Theoretical Biophysics, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Kim SY, Jung YJ, Shin MR, Park JH, Nawkar GM, Maibam P, Lee ES, Kim KS, Paeng SK, Kim WY, Lee KO, Yun DJ, Kang CH, Lee SY. Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage. Mol Cells 2012; 33:27-33. [PMID: 22228209 PMCID: PMC3887738 DOI: 10.1007/s10059-012-2166-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 01/11/2023] Open
Abstract
Peroxiredoxins (Prxs), which are classified into three isotypes in plants, play important roles in protection systems as peroxidases or molecular chaperones. The three Prx isotypes of Chinese cabbage, namely C1C-Prx, C2C-Prx, and C-PrxII, have recently been identified and characterized. The present study compares their molecular properties and biochemical functions to gain insights into their concerted roles in plants. The three Prx isotype genes were differentially expressed in tissue- and developmental stage-specific manners. The transcript level of the C1C-Prx gene was abundant at the seed stage, but rapidly decreased after imbibitions. In contrast, the C2C-Prx transcript was not detected in the seeds, but its expression level increased at germination and was maintained thereafter. The C-PrxII transcript level was mild at the seed stage, rapidly increased for 10 days after imbibitions, and gradually disappeared thereafter. In the localization analysis using GFP-fusion proteins, the three isotypes showed different cellular distributions. C1C-Prx was localized in the cytosol and nucleus, whereas C2C-Prx and C-Prx were found mainly in the chloroplast and cytosol, respectively. In vitro thiol-dependent antioxidant assays revealed that the relative peroxidase activities of the isotypes were CPrxII > C2C-Prx > C1C-Prx. C1C-Prx and C2C-Prx, but not C-PrxII, prevented aggregation of malate dehydrogenase as a molecular chaperone. Taken together, these results suggest that the three isotypes of Prx play specific roles in the cells in timely and spatially different manners, but they also cooperate with each other to protect the plant.
Collapse
Affiliation(s)
- Sun Young Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Young Jun Jung
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Mi Rim Shin
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Jung Hoon Park
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Ganesh M. Nawkar
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Punyakishore Maibam
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Kang-San Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Kyun Oh Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|