1
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
2
|
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4521-4537. [PMID: 31245808 PMCID: PMC6736386 DOI: 10.1093/jxb/erz249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.
Collapse
Affiliation(s)
- Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Correspondence:
| |
Collapse
|
3
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
4
|
Elhiti M, Huang S, Mira MM, Hill RD, Stasolla C. Redirecting Cell Fate During in vitro Embryogenesis: Phytoglobins as Molecular Switches. FRONTIERS IN PLANT SCIENCE 2018; 9:1477. [PMID: 30356752 PMCID: PMC6189464 DOI: 10.3389/fpls.2018.01477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/20/2018] [Indexed: 05/18/2023]
Affiliation(s)
| | | | | | | | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Kapoor K, Mira MM, Ayele BT, Nguyen TN, Hill RD, Stasolla C. Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. PLANTA 2018; 247:1277-1291. [PMID: 29455261 DOI: 10.1007/s00425-018-2862-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/23/2018] [Indexed: 05/04/2023]
Abstract
During maize somatic embryogenesis, suppression of phytoglobins (Pgbs) reduced ABA levels leading to ethylene-induced programmed cell death in the developing embryos. These effects modulate embryonic yield depending on the cellular localization of specific phytoglobin gene expression. Suppression of Zea mays phytoglobins (ZmPgb1.1 or ZmPgb1.2) during somatic embryogenesis induces programmed cell death (PCD) by elevating nitric oxide (NO). While ZmPgb1.1 is expressed in many embryonic domains and its suppression results in embryo abortion, ZmPgb1.2 is expressed in the basal cells anchoring the embryos to the embryogenic tissue. Down-regulation of ZmPgb1.2 is required to induce PCD in these anchor cells allowing the embryos to develop further. Exogenous applications of ABA could reverse the effects caused by the suppression of either of the two ZmPgbs. A depletion of ABA, ascribed to a down-regulation of biosynthetic genes, was observed in those embryonic domains where the respective ZmPgbs were repressed. These effects were mediated by NO. Depletion in ABA content increased the transcription of genes participating in the synthesis and response of ethylene, as well as the accumulation of ethylene, which influenced embryogenesis. Somatic embryo number was reduced by high ethylene levels and increased with pharmacological treatments suppressing ethylene synthesis. The ethylene inhibition of embryogenesis was linked to the production of reactive oxygen species (ROS) and the execution of PCD. Integration of ABA and ethylene in the ZmPgb regulation of embryogenesis is proposed in a model where NO accumulates in ZmPgb-suppressing cells, decreasing the level of ABA. Abscisic acid inhibits ethylene biosynthesis and the NO-mediated depletion of ABA relieves this inhibition causing ethylene to accumulate. Elevated ethylene levels trigger production of ROS and induce PCD. Ethylene-induced PCD in the ZmPgb1.1-suppressing line [ZmPgb1.1 (A)] leads to embryo abortion, while PCD in the ZmPgb1.2-suppressing line [ZmPgb1.2 (A)] results in the elimination of the anchor cells and the successful development of the embryos.
Collapse
Affiliation(s)
- Karuna Kapoor
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mohamed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
6
|
Xiao G, Zhou J, Lu X, Huang R, Zhang H. Excessive UDPG resulting from the mutation of UAP1 causes programmed cell death by triggering reactive oxygen species accumulation and caspase-like activity in rice. THE NEW PHYTOLOGIST 2018; 217:332-343. [PMID: 28967675 DOI: 10.1111/nph.14818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/25/2017] [Indexed: 05/08/2023]
Abstract
Lesion mimic mutants are valuable to unravel the mechanisms governing the programmed cell death (PCD) process. Uridine 5'-diphosphoglucose-glucose (UDPG) functions as a signaling molecule activating multiple pathways in animals, but little is known about its function in plants. Two novel allelic mutants of spl29 with typical PCD characters and reduced pollen viability were obtained by ethane methyl sulfonate mutagenesis in rice cv Kitaake. The enzymatic analyses showed that UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) irreversibly catalyzed the decomposition of UDPG. Its activity was severely destroyed and caused excessive UDPG accumulation, with the lesion occurrence associated with the enhanced caspase-like activities in spl29-2. At the transcriptional level, several key genes involved in endoplasmic reticulum stress and the unfolded protein response were abnormally expressed. Moreover, exogenous UDPG could aggravate lesion initiation and development in spl29-2. Importantly, exogenous UDPG and its derivative UDP-N-acetylglucosamine could induce reactive oxygen species (ROS) accumulation and lesion mimics in Kitaake seedlings. These results suggest that the excessive accumulation of UDPG, caused by the mutation of UAP1, was a key biochemical event resulting in the lesion mimics in spl29-2. Thus, our findings revealed that UDPG might be an important component involved in ROS accumulation, PCD execution and lesion mimicking in rice, which also provided new clues for investigating the connection between sugar metabolism and PCD process.
Collapse
Affiliation(s)
- Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Mukhi N, Kundu S, Kaur J. NO dioxygenase- and peroxidase-like activity of Arabidopsis phytoglobin 3 and its role in Sclerotinia sclerotiorum defense. Nitric Oxide 2017; 68:150-162. [PMID: 28315469 DOI: 10.1016/j.niox.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
Phytoglobin 3 appears to be ubiquitous in plants, yet there has been dearth of evidence for their potent physiological functions. Previous crystallographic studies suggest a potential NO dioxygenase like activity of Arabidopsis phytoglobin 3 (AHb3). The present work examined the in vivo function of AHb3 in plant physiology and its role in biotic stress using Arabidopsis- Sclerotinia sclerotorium pathosystem. The gene was found to be ubiquitously expressed in all plant tissues, with moderately increased expression in roots. Its expression was induced upon NO, H2O2 and biotic stress. A C-terminal tagged GFP version of the wild type protein revealed its enhanced accumulation in the guard cells. AHb3-GFP was found to be partitioned majorly into the nucleus while residual amounts were present in the cytoplasm. The loss of function AHb3 mutant exhibited reduced root length and fresh weight. AHb3 knockout lines also displayed enhanced susceptibility towards the S. sclerotiorum. Interestingly, these lines displayed enhanced ROS accumulation upon pathogen challenge as suggested by DAB staining. Furthermore, enhanced/decreased NO accumulation in AHb3 knockout/overexpression lines upon treatment with multiple NO donors suggests a potent NO dioxygenase like activity for the protein. Taken together, our data indicate that AHb3 play a crucial role in regulating root length as well as in mediating defense response against S. sclerotiorum, possibly by modulating NO and ROS levels.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Youssef MS, Mira MM, Renault S, Hill RD, Stasolla C. Phytoglobin expression influences soil flooding response of corn plants. ANNALS OF BOTANY 2016; 118:919-931. [PMID: 27474506 PMCID: PMC5055825 DOI: 10.1093/aob/mcw146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 05/04/2023]
Abstract
Background and Aims Excess water is a limiting factor for crop productivity. Under conditions of full submergence or flooding, plants can experience prolonged oxygen depletion which compromises basic physiological and biochemical processes. Severe perturbations of the photosynthetic machinery with a concomitant decline in photosynthetic potential as a result of elevated levels of reactive oxygen species (ROS) are the major consequences of water excess. Phytoglobins (Pgbs) are ubiquitous proteins induced by several types of stress which affect plant response by modulating nitric oxide. Methods Maize plants overexpressing or downregulating two Pgb genes were subjected to soil flooding for 10 d and their performance was estimated by measuring several gas exchange parameters including photosynthetic rate. Above-ground tissue was utilized to localize ROS and to measure the expression and activities of major antioxidant enzymes. Key Results Relative to the wild type, flooded plants overexpressing Pgb genes retained a greater photosynthetic rate and enhanced activity of several antioxidant enzymes. These plants also exhibited high levels of ascorbic acid and reduced ROS staining. This was in contrast to flooded plants downregulating Pgb genes and characterized by the lowest photosynthetic rates and reduced expression and activities of many antioxidant enzymes. Conclusions Induction of Pgb genes alleviates flooding stress by limiting ROS-induced damage and ensuring a sustained photosynthetic rate. This is achieved through improvements of the ascorbate antioxidant status including an enrichment of the ascorbate pool via de novo and recycling mechanisms, and increased activities of several ROS-scavenging enzymes.
Collapse
Affiliation(s)
- Mohamed S. Youssef
- Botany Department, Faculty of Science, Kafr El-Sheikh University, 33516 Kafr El-Sheikh, Egypt
| | - Mohamed M. Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527 Gharbia, Egypt
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- *For correspondence. E-mail
| |
Collapse
|
9
|
Mira M, Hill RD, Stasolla C. Regulation of programmed cell death by phytoglobins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5901-5908. [PMID: 27371712 DOI: 10.1093/jxb/erw259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Programmed cell death (PCD) is a fundamental plant process in growth and development and in response to both biotic and abiotic stresses. Nitric oxide (NO) is a central component in determining whether a cell undergoes PCD, either as a direct elicitor of the response or as a factor in signal transduction from various hormones. Both NO and hormones that use NO as a signal transducer are mobile in the plant. Why do one set of cells die while adjacent cells remain alive, if this is the case? There is evidence to suggest that phytoglobins (Pgbs; previously termed non-symbiotic hemoglobins) may act as binary switches to determine plant cellular responses to perturbations. There are anywhere from one to five Pgb genes in plants that are expressed in response to growth and development and to stress. One of their main functions is to scavenge NO. This review will discuss how Pgb modulates cellular responses to auxin, cytokinin, and jasmonic acid during growth and development and in response to stress. The moderation in the production of reactive oxygen species (ROS) by Pgbs and the effects on PCD will also be discussed. An overall mechanism for Pgb involvement will be presented.
Collapse
Affiliation(s)
- Mohammed Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
10
|
Abstract
Embryogenesis is a fascinating event during the plant life cycle encompassing several steps whereby the zygote develops into a fully developed embryo which, in angiosperms, is composed of an axis separating the apical meristems, and two cotyledons. Recapitulation of embryogenesis can also occur in vitro through somatic embryogenesis, where somatic cells are induced to form embryos, and androgenesis, in which embryos originate from immature male gametophytes. Besides cell division and differentiation, embryo patterning in vivo and in vitro requires the dismantling and selective elimination of cells and tissues via programmed cell death (PCD). While the manifestation of the death program has long been acknowledged in vivo, especially in relation to the elimination of the suspensor during the late phases of embryo development, PCD during in vitro embryogenesis has only been described in more recent years. Independent studies using the gymnosperm Norway spruce and the angiosperm maize have shown that the death program is crucial for the proper formation and further development of immature somatic embryos. This chapter summarizes the recent advances in the field of PCD during embryogenesis and proposes novel regulatory mechanisms activating the death program in plants.
Collapse
Affiliation(s)
- Shuanglong Huang
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Canada, R3T2N2
| | - Mohamed M Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Canada, R3T2N2.
| |
Collapse
|
11
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
12
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
13
|
Shabala S, Shabala L, Barcelo J, Poschenrieder C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. PLANT, CELL & ENVIRONMENT 2014; 37:2216-33. [PMID: 24689809 DOI: 10.1111/pce.12339] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 05/20/2023]
Abstract
This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | | | |
Collapse
|
14
|
Huang S, Hill RD, Stasolla C. Plant hemoglobin participation in cell fate determination. PLANT SIGNALING & BEHAVIOR 2014; 9:e29485. [PMID: 25763627 PMCID: PMC4205130 DOI: 10.4161/psb.29485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 05/27/2023]
Abstract
Plant hemoglobins (Hbs) have been identified as master regulators in determining the developmental fate of specific cells during maize embryogenesis. Whether an embryogenic cell lives or undergoes programmed cell death (PCD) is modulated by Hbs, through their tight interactions with nitric oxide (NO) and auxin. During maize embryogenesis, Hb-suppressing cells accumulate NO, are depleted of auxin, and are committed to die. We propose that Hbs control cell fate by regulating NO and auxin homeostasis, and that this type of mechanism may influence other hormonal responses modulating plant behavior during development and stress conditions.
Collapse
|