1
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
2
|
Liu J, Yu Q, Ye B, Zhu K, Yin J, Zheng T, Xu S, Sun Q, Li Y, Zuo Z. Programmed cell death of Chlamydomonas reinhardtii induced by three cyanobacterial volatiles β-ionone, limonene and longifolene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144539. [PMID: 33360449 DOI: 10.1016/j.scitotenv.2020.144539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
β-Ionone, limonene and longifolene are 3 main components in cyanobacterial volatile organic compounds, which are formed through different pathways and can poison and even kill other algae. To uncover their toxic mechanism from programmed cell death (PCD), the photosynthetic pigments, chlorophyll fluorescence, caspase-like activities, cell size, nuclear variations and DNA ladders were investigated in Chlamydomonas reinhardtii treated with β-ionone (0.2 mM), limonene (0.2 mM) and longifolene (0.4 mM) at lethal concentration during 24 h. In the treatments with the 3 compounds, the photosynthetic pigments in C. reinhardtii cells gradually degraded, and Fv/Fm gradually decreased and disappeared at 24 h, suggesting that the cell death might be a PCD, due to the physiological activities gradually disappearing. During the cell death, the activities of caspase-9-like and caspase-3-like significantly increased, with the highest at 1 h. With prolonging the treatment time, C. reinhardtii cells gradually shrank, and the nuclei concentrated firstly following by a broken process, with moving to the cell edge. For DNA, obvious ladders were detected at 1 h, and then they gradually degraded to fragments of 100-250 bp at 24 h. These hallmarks suggested that β-ionone, limonene and longifolene may poison other algae by inducing PCD.
Collapse
Affiliation(s)
- Jialu Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Qianpeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingqi Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiqi Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiawen Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Sun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Qing Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Plant Cell Cultures as a Tool to Study Programmed Cell Death. Int J Mol Sci 2021; 22:ijms22042166. [PMID: 33671566 PMCID: PMC7926860 DOI: 10.3390/ijms22042166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Programmed cell death (PCD) is a genetically controlled suicide process present in all living beings with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In plants, PCD plays a pivotal role in many developmental processes such as sex determination, senescence, and aerenchyma formation and is involved in the defense responses against abiotic and biotic stresses. Thus, its study is a main goal for plant scientists. However, since PCD often occurs in a small group of inaccessible cells buried in a bulk of surrounding uninvolved cells, its study in whole plant or complex tissues is very difficult. Due to their uniformity, accessibility, and reproducibility of application of stress conditions, cultured cells appear a useful tool to investigate the different aspects of plant PCD. In this review, we summarize how plant cell cultures can be utilized to clarify the plant PCD process.
Collapse
|
4
|
Bouteau F, Reboutier D, Tran D, Laurenti P. Ion Transport in Plant Cell Shrinkage During Death. Front Cell Dev Biol 2020; 8:566606. [PMID: 33195198 PMCID: PMC7604285 DOI: 10.3389/fcell.2020.566606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- François Bouteau
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - David Reboutier
- UMR 6290-IGDR Expression Génétique et Développement Faculté de Médecine, Rennes, France
| | - Daniel Tran
- Agroscope, Institute for Plant Production Systems, Conthey, Switzerland
| | - Patrick Laurenti
- Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| |
Collapse
|
5
|
Sun Q, Zhou M, Zuo Z. Toxic mechanism of eucalyptol and β-cyclocitral on Chlamydomonas reinhardtii by inducing programmed cell death. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121910. [PMID: 31879110 DOI: 10.1016/j.jhazmat.2019.121910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Eucalyptol and β-cyclocitral are 2 main compounds in cyanobacterial volatile organic compounds and can poison other algae. To uncover the toxic mechanism of the 2 compounds, the cell growth, photosynthetic abilities, H2O2 production, caspase-like activities, nuclear variation and DNA laddering were investigated in Chlamydomonas reinhardtii treated with eucalyptol and β-cyclocitral. Eucalyptol at ≥ 0.1 mM and β-cyclocitral at ≥ 0.05 mM showed toxic effects on C. reinhardtii cells, and 1.2 mM eucalyptol and 0.4 mM β-cyclocitral killed the whole of the cells during 24 h. During the death process, the photosynthetic pigment gradually degraded, and Fv/Fm gradually declined, indicating that the death is not a necrosis due to the gradual disappearance of the physiological process. In the treatments with 1.2 mM eucalyptol and 0.4 mM β-cyclocitral, H2O2 content burst at 10 min and 30 min, respectively. Caspase-9-like and caspase-3-like were activated, and cell nucleuses concentrated firstly and then broke with prolonging the treatment time. Meanwhile, DNA showed laddering after 1 h, and was gradually cleaved by Ca2+-dependent endonucleases to mainly about 100-250 bp fragments. These hallmarks indicated that eucalyptol and β-cyclocitral may poison other algal cells by inducing programmed cell death triggered by the increased H2O2.
Collapse
Affiliation(s)
- Qing Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Yang Y, Yu S, Liu N, Xu H, Gong Y, Wu Y, Wang P, Su X, Liao Y, De Saeger S, Humpf HU, Wu A. Transcription Factor FOXO3a Is a Negative Regulator of Cytotoxicity of Fusarium mycotoxin in GES-1 Cells. Toxicol Sci 2019; 166:370-381. [PMID: 30169763 DOI: 10.1093/toxsci/kfy216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Molecular mechanism and key factors responsible for cytotoxicity against mycotoxin deoxynivalenol (DON) from Fusarium pathogens are rarely elucidated. In this study, rapid increases of ROS were first observed in human gastric epithelial (GES-1) cells under DON exposure. Mitochondrial DNA damage, impaired respiratory chain, and decreased oxygen consumption rate (OCR) values, as well as G2/M cell cycle arrest and apoptosis, were also detected. Via combinatorial approaches of a large-scale microarray of differentially expressed genes, high content and RNAi analysis, a transcription factor of Forkhead box O3 (FOXO3a) was found with crucial functionalities, regulated some apoptotic genes associated with mitochondrial toxicity and cell death after activation by nuclear translocation. Namely, knockdown of FOXO3a decreased the cytotoxicity of DON to GES-1 cells. Moreover, knockdown of the FOXO ortholog DAF16 in Caenorhabditis elegans increased the resistance to DON-induced cytotoxicity. Simultaneously, the signaling pathway of ROS/JNK/FOXO3a of DON-induced cytotoxicity was newly proposed. In total, FOXO3a via ROS/JNK/FOXO3a plays a critical role to function as negative regulator associating with DON-induced cytotoxicity, with the potential extending to other substances.
Collapse
Affiliation(s)
- Yunxia Yang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Haibin Xu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Yunyun Gong
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China.,School of Food Sciences and Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | - Yongning Wu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, 430000, Wuhan, P. R. China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 00329, Ghent, Belgium
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149 Münster, Germany
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| |
Collapse
|
7
|
Chen Y, Weng Y, Zhou M, Meng Y, Liu J, Yang L, Zuo Z. Linalool- and α-terpineol-induced programmed cell death in Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:435-440. [PMID: 30368137 DOI: 10.1016/j.ecoenv.2018.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Plant allelochemicals effectively inhibit and/ or control algal growth, and have potential to use as algaecide. To uncover the lethal mechanism of 2 anti-algal compounds linalool and α-terpineol identified from Cinnamomum camphora extracts, and promote their development as algaecide, the H2O2 production, photosynthetic abilities, caspase-like activities, nuclear changes and DNA degradation were investigated in Chlamydomonas reinhardtii treated with the 2 compounds. H2O2 content burst in linalool treatment at 0.5 h and in α-terpineol treatment at 1 h, with increases of 2.7 folds and 1.3 folds, respectively, compared to that at 0 h. The photosynthetic pigments gradually degraded, and Fv/Fm gradually declined to zero, indicating that the cell death was not a necrosis due to the gradual disappearance of physiological process. In C. reinhardtii cells, the caspase-9-like and caspase-3-like were activated in the treatments with the 2 compounds for 1 h. With prolonging the treatment time, the fluorescent intensity of the cell nucleuses stained by DAPI gradually enhanced and then faded, and the genomic DNA isolated from the cells gradually degraded. These hallmarks indicated that the death of C. reinhardtii cells in linalool and α-terpineol treatments was a programmed cell death (PCD) triggered by the increased reactive oxygen species (ROS). Compared to α-terpineol treatment, linalool treatment showed stronger promoting effects on PCD at the same time point, which may be caused by the higher ROS content inducing higher caspase-9-like and caspase-3-like activities in a short time.
Collapse
Affiliation(s)
- Yueting Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuanyuan Weng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Min Zhou
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yiyu Meng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Jialu Liu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, e Sousa JMDC, Rolim HML, de Medeiros MDGF, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, Melo-Cavalcante AADC. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB Life 2018; 70:1084-1092. [DOI: 10.1002/iub.1932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory; School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University; Sagar 470003 Madhya Pradesh India
| | - Swati Tripathi
- Amity Institute of Microbial Technology; Amity University; Noida 201313 Uttar Pradesh India
| | | | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
| | - Maria das Graças Freire de Medeiros
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí 64 049-550 Brazil
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline; Life Science School, Khulna University; Khulna Bangladesh
| | | | | |
Collapse
|
9
|
Li Y, Li Q, Hong Q, Lin Y, Mao W, Zhou S. Reactive oxygen species triggering systemic programmed cell death process via elevation of nuclear calcium ion level in tomatoes resisting tobacco mosaic virus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:166-175. [PMID: 29576070 DOI: 10.1016/j.plantsci.2018.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) plays a positive role in the systemic response of plants to pathogen resistance. It has been confirmed that local tobacco mosaic virus (TMV) infecting tomato leaves can induce systemic PCD process in root-tip tissues. But up to now the underlying physiological mechanisms are poorly understood. This study focused on the detailed investigation of the physiological responses of root-tip cells during the initiation of systemic PCD. Physiological, biochemical examination and cytological observation showed that 1 day post-inoculation (dpi) of TMV inoculation there was an increase in calcium fluorescence intensity in root tip tissue cells. Then at 2 dpi, 4 dpi, 8 dpi and 15 dpi, the fluorescence intensity of calcium ion continued to increase. However, at 5 dpi, the reactive oxygen species (ROS) began to accumulate in the root-tip cells. And finally at 20 dpi, the obvious PCD reaction was detected. In addition, the experimental results also showed that the above process involved the elevation of two types of intracellular Ca2+, including cytoplasmic calcium ([Ca2+]cyt) and nuclear calcium ([Ca2+]nuc). The [Ca2+]cyt, as a pilot signal could lead to the subsequent elevation of intracellular ROS concentration. Then, the high levels of ROS stimulated an increase of [Ca2+]nuc and eventually caused PCD reactions in the root-tip tissues. In particular, the high level of nuclear calcium is an essential mediator in systemic PCD of plants.
Collapse
Affiliation(s)
- Yang Li
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Li
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China; Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | - Qiang Hong
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yichun Lin
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wang Mao
- College of Biology, China Agriculture University, Beijing, China.
| | - Shumin Zhou
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
10
|
Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM. NO-Dependent programmed cell death is involved in the formation of Zn-related lesions in tobacco leaves. Metallomics 2017; 9:924-935. [PMID: 28607992 DOI: 10.1039/c7mt00076f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A recent study indicated that the development of lesions on the leaf blades of tobacco exposed to zinc (Zn) excess can be considered a manifestation of a Zn-tolerance strategy at the organ level. Here, we investigated whether cell death leading to the formation of localized lesions is destructive in character (necrosis type) or results from programmed self-induced cell death (PCD). Selected parameters, including PCD markers, were determined in the leaves from tobacco plants grown in the presence of 200 μM Zn and compared with control conditions. TUNEL assay results showing internucleosomal DNA fragmentation in the nuclei of the cells from Zn-exposed leaves, together with an enhanced expression of three PCD marker genes (NtBI-1, Ntrboh, and NtSIPK), indicated the involvement of PCD in the formation of Zn-related lesions. It is known that NO is a key factor in the execution of PCD. Interestingly, upon exposure to high Zn, in situ localization of NO (visualized using DAF-2DA fluorescence) was restricted to groups of mesophyll cells, and was correlated with the pattern of Zn localization (determined using the fluorophore Zinpyr-1), similarly limited primarily to groups of "Zn accumulating cells". Furthermore, inhibition of the formation of lesions in the presence of l-NAME (an NO synthase inhibitor) was accompanied by the delayed appearance of Zn and by NO localization limited to these groups of cells. Altogether, we provide the first demonstration that Zn-related lesions in leaves develop from groups of mesophyll cells in which accumulation of high concentrations of Zn contributes to enhancement of the NO level and to initiation of PCD processes.
Collapse
Affiliation(s)
- Aleksandra Weremczuk
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa str 1, 02-096 Warszawa, Poland.
| | | | | | | |
Collapse
|
11
|
Wang J, Wang Y, Shen L, Qian Y, Yang J, Wang F. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:27-35. [PMID: 28364801 DOI: 10.1016/j.pestbp.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 06/07/2023]
Abstract
Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H2O2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H2DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD.
Collapse
Affiliation(s)
- Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yaofeng Wang
- Qingyang Oriental Tobacco Company Ltd., Gansu, China
| | - Lili Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yumei Qian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| | - Fenglong Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| |
Collapse
|
12
|
Ben Hamed-Laouti I, Arbelet-Bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K, Bouteau F. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:49-59. [PMID: 27095399 DOI: 10.1016/j.plantsci.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.
Collapse
Affiliation(s)
- Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Linda De Bont
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Bertrand Gakière
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
13
|
Chang HX, Domier LL, Radwan O, Yendrek CR, Hudson ME, Hartman GL. Identification of Multiple Phytotoxins Produced by Fusarium virguliforme Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:96-108. [PMID: 26646532 DOI: 10.1094/mpmi-09-15-0219-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sudden death syndrome (SDS) of soybean is caused by a soilborne pathogen, Fusarium virguliforme. Phytotoxins produced by F. virguliforme are translocated from infected roots to leaves, in which they cause SDS foliar symptoms. In this study, additional putative phytotoxins of F. virguliforme were identified, including three secondary metabolites and 11 effectors. While citrinin, fusaric acid, and radicicol induced foliar chlorosis and wilting, Soybean mosaic virus (SMV)-mediated overexpression of F. virguliforme necrosis-inducing secreted protein 1 (FvNIS1) induced SDS foliar symptoms that mimicked the development of foliar symptoms in the field. The expression level of fvnis1 remained steady over time, although foliar symptoms were delayed compared with the expression levels. SMV::FvNIS1 also displayed genotype-specific toxicity to which 75 of 80 soybean cultivars were susceptible. Genome-wide association mapping further identified three single nucleotide polymorphisms at two loci, where three leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes were found. Culture filtrates of fvnis1 knockout mutants displayed a mild reduction in phytotoxicity, indicating that FvNIS1 is one of the phytotoxins responsible for SDS foliar symptoms and may contribute to the quantitative susceptibility of soybean by interacting with the LRR-RLK genes.
Collapse
Affiliation(s)
| | - Leslie L Domier
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| | | | - Craig R Yendrek
- 1 University of Illinois
- 3 Institute for Genomic Biology, Urbana, IL, U.S.A
| | | | - Glen L Hartman
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| |
Collapse
|