1
|
López-González D, Muñoz Usero M, Hermida-Ramón JM, Álvarez-Rodríguez S, Araniti F, Teijeira M, Verdeguer M, Sánchez-Moreiras AM. Pelargonic acid's interaction with the auxin transporter PIN1: A potential mechanism behind its phytotoxic effects on plant metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112278. [PMID: 39395675 DOI: 10.1016/j.plantsci.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Pelargonic acid (PA) is a saturated fatty acid commonly found in several organisms, that is known for its phytotoxic effect and its use as bioherbicide for sustainable weed management. Although PA is already commercialised as bioherbicide, its molecular targets and mode of action is unknown according to the Herbicide Resistance Action Committee. Therefore, the aim of this work was focusing on the way this natural active substance impacts the plant metabolism of the model species Arabidopsis thaliana. PA caused increase of secondary and adventitious roots, as well as torsion, loss of gravitropism and phytotoxic effects. Moreover, PA altered the cellular arrangement and the PIN proteins activity. Computational simulations revealed that the intermolecular interactions between PA and the polar auxin transporter protein PIN1 are very similar to those established between the natural auxin IAA and PIN1. However, under intracellular conditions, the PA-PIN1 binding is more energetically stable than the IAA-PIN1. These results suggest that PA could act as an auxin-mimics bioherbicide. The exogenous application of PA would be responsible for the alterations observed both at structural and ultrastructural levels, which would be caused by the alteration on the transport of auxins into the plant, inducing root inhibition and ultimately total stop of root growth.
Collapse
Affiliation(s)
- David López-González
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Marta Muñoz Usero
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - José M Hermida-Ramón
- Departamento de Química Física, Facultade de Química, Universidade de Vigo, Vigo 36310, Spain; Biologically Active Organic Compounds and Ionic Liquids Group (BIOILS), Instituto de Investigación Sanitaria Galicia Sur, (IIS Galicia Sur). SERGAS-UVIGO, Spain.
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Fabrizio Araniti
- Dipartamento di Science Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, Milano 20133, Italy.
| | - Marta Teijeira
- Biologically Active Organic Compounds and Ionic Liquids Group (BIOILS), Instituto de Investigación Sanitaria Galicia Sur, (IIS Galicia Sur). SERGAS-UVIGO, Spain; Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Vigo, Spain.
| | - Mercedes Verdeguer
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo 36310, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| |
Collapse
|
2
|
Zhu L, Liu L, Sun H, Zhang Y, Zhu J, Zhang K, Li A, Bai Z, Wang G, Li C. Physiological and Comparative Transcriptomic Analysis Provide Insight Into Cotton ( Gossypium hirsutum L.) Root Senescence in Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748715. [PMID: 34733305 PMCID: PMC8558499 DOI: 10.3389/fpls.2021.748715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deficiency is one of the pivotal environmental factors that induce leaf senescence. However, little is known regarding the impact of low N on root senescence in cotton. Thus, the objective of this study was to investigate the effect of low nitrogen on root senescence. In this study, the molecular mechanism of cotton root senescence in response to nitrogen deficiency was investigated by combing physiological and transcriptomic analysis when no nitrogen and normal nitrogen (138mg N·kg-1 soil). The results showed that: (1) nitrogen starvation induced the premature senescence of leaf, while delaying root senescence. (2) The increase in catalase (CAT) activity at 60, 80, and 100days after emergence (DAE), combined with decrease of malonaldehyde content at 60, 80, and 100 DAE, and the content of abscisic acid (ABA), all of these contributed to the delay of root senescence by low nitrogen treatment. (3) To study the molecular mechanisms underlying root senescence, the gene expression profiling between low nitrogen and normal nitrogen treatments were compared pairwise at 20, 40, 60, 80, and 100 DAE. A total of 14,607 genes were identified to be differentially expressed at these five points. (5) Most genes involved in glutathione (GSH) and ascorbate peroxidase (APX) synthesis were upregulated, while ABA, apoptosis, caspase, and cell cycle-related differentially expressed genes (DEGs) were downregulated. Coupled with the physiology data, these results provide new insights into the effect of nitrogen starvation on root senescence.
Collapse
Affiliation(s)
- Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Guiyan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Antonietta M, Maydup ML, Cano MG, Fanello DD, Acciaresi HA, Guiamet JJ. Yield determinants, root distribution and soil water uptake in maize (Zea mays) hybrids differing in canopy senescence under post-silking drought. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1124-1138. [PMID: 34587473 DOI: 10.1071/fp21138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Delayed canopy senescence or 'stay-green' (SG) trait in maize (Zea mays L.) could improve drought tolerance. Two field trials comparing four to six maize hybrids with different senescence rate were carried out at Buenos Aires, Argentina, varying water availability during the reproductive period. Green leaf area at maturity was related to kernel weight (r2=0.94***) but its relationship with yield was weaker (r2=0.51-53*) and post-silking dry matter remobilisation was negatively related with the SG trait (r2=0.84**). Two additional experiments were carried out in 63 L pots by withholding irrigation in half of the pots after silking. The SG hybrid achieved lower root biomass at silking, a shallower root distribution and larger root growth in the post-silking period. Under drought conditions, stomatal conductance was lower in the SG hybrid but photosynthetic electron transport rate was higher. Higher post-silking dry matter assimilation in the SG hybrid was compensated for by higher dry matter remobilisation in the non-SG. Higher kernel number per plant in the non-SG hybrid with no ability to compensate for by higher kernel weight in the SG, resulted in slightly higher yields in the non-SG under drought. A water conservation strategy associated with a shallower root system could be linked to the SG trait, promoting faster water depletion at upper soil levels and reduced stomatal conductance at the leaf level but with no conclusive yield advantage.
Collapse
Affiliation(s)
- M Antonietta
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
| | - M L Maydup
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
| | - M G Cano
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
| | - D D Fanello
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
| | - H A Acciaresi
- Cátedra de Cerealicultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, 1900 La Plata, Buenos Aires, Argentina; and Present address: EEA Pergamino, INTA, Av. Frondizi (Ruta 32) Km 4.5, 2700 Pergamino, Buenos Aires, Argentina
| | - J J Guiamet
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata - CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic Exercise Improves Mitochondrial Function in Sarcopenia Mice Through Sestrin2 in an AMPKα2-Dependent Manner. J Gerontol A Biol Sci Med Sci 2021; 76:1161-1168. [PMID: 33512470 DOI: 10.1093/gerona/glab029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, contributes to high morbidity and mortality in the older population. Regular exercise is necessary to avoid the initiation and progression of sarcopenia, in which the underlying molecular mechanism is still not clear. Our data revealed that the outcomes induced by sarcopenia, including muscle mass and strength loss, decreased cross-sectional area of gastrocnemius fiber, chronic inflammation, and increased dysfunctional mitochondria, were reversed by regulation exercise. Knockout or silencing of Sestrin2 (Sesn2) resulted in imbalanced mitochondrial fusion and fission, mitochondrial biogenesis, and mitophagy damage in vivo and in vitro, which was attenuated by aerobic exercise or overexpression of Sesn2. Moreover, we found that the effects of Sesn2 on mitochondrial function are dependent on AMP-activated protein kinase α2 (AMPKα2). This study indicates that aerobic exercise alleviates the negative effects resulting from sarcopenia via the Sesn2/AMPKα2 pathway and provides new insights into the molecular mechanism by which the Sesn2/AMPKα2 signaling axis mediates the beneficial impact of exercise on sarcopenia.
Collapse
Affiliation(s)
- Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, China
| | - Chunxia Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Lingjian Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China.,Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, China
| |
Collapse
|
5
|
Fanello DD, Kelly SJ, Bartoli CG, Cano MG, Martínez Alonso S, Guiamet JJ. Plasticity of root growth and respiratory activity: Root responses to above-ground senescence, fruit removal or partial root pruning in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110296. [PMID: 31779891 DOI: 10.1016/j.plantsci.2019.110296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 05/09/2023]
Abstract
This work focuses on the alterations in soybean root growth and activity during whole plant senescence and the contribution of roots to source-sink relations during plant development. The experiments were designed to analyze the activity of roots in relation to: a) whole plant senescence, b) total pod removal and c) root pruning (15, 25 and 50% of DW) during seed growth stages. Roots can grow until an advanced R5 stage and their specific activity decreases along the reproductive development but whole root activity declines from R6. However root respiration is maintained at a basal level until R8. Depodded plants showed a large increase of root dry matter (about 470%) and a large increase of AOX protein. Root pruning treatments showed a proportional increase of specific root respiration in 25 and 50% treatments but no differences of whole root respiration and dry matter partitioning at R7. These results indicate that roots are under the control of the requirements of above ground organs until final stages of seed growth but, after this, roots may survive independently for some time. This suggests that roots do not suffer a senescence-like process as leaves do. Also, plants have a high capacity to buffer changes in root biomass production and specific root activity under pod removal or partial root pruning.
Collapse
Affiliation(s)
- Diego Darío Fanello
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina.
| | - Santiago Julián Kelly
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina
| | - Carlos Guillermo Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina
| | - María Gabriela Cano
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina
| | - Santiago Martínez Alonso
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina
| | - Juan José Guiamet
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales (FCAyF) y de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-La Plata, cc 327, 1900, La Plata, Argentina
| |
Collapse
|
6
|
Zhou Q, Jiang Z, Zhang X, Lai Q, Li Y, Zhao F, Zhao Z. Tree age did not affect the leaf anatomical structure or ultrastructure of Platycladus orientalis L. (Cupressaceae). PeerJ 2019; 7:e7938. [PMID: 31681514 PMCID: PMC6824329 DOI: 10.7717/peerj.7938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Tree aging is a new research area and has attracted research interest in recent years. Trees show extraordinary longevity; Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees are precious historical heritage and scientific research materials. However, tree aging and tree senescence have different definitions and are poorly understood. Since leaves are the most sensitive organ of a tree, we studied the structural response of leaves to tree age. Experiments investigating the leaf morphological structure, anatomical structure and ultrastructure were conducted in healthy P. orientalis at three different ages (ancient trees >2,000 years, 200 years < middle-aged trees <500 years, young trees <50 years) at the world’s largest planted pure forest in the Mausoleum of the Yellow Emperor, Shaanxi Province, China. Interestingly, tree age did not significantly impact leaf cellular structure. Ancient P. orientalis trees in forests older than 2,000 years still have very strong vitality, and their leaves still maintained a perfect anatomical structure and ultrastructure. Our observations provide new evidence for the unique pattern of tree aging, especially healthy aging. Understanding the relationships between leaf structure and tree age will enhance the understanding of tree aging.
Collapse
Affiliation(s)
- Qianyi Zhou
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Zhaohong Jiang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xin Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Qing Lai
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing, China
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| |
Collapse
|
7
|
Zhou Q, Jiang Z, Zhang X, Zhang T, Zhu H, Cui B, Li Y, Zhao F, Zhao Z. Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). PeerJ 2019; 7:e6766. [PMID: 30997297 PMCID: PMC6462394 DOI: 10.7717/peerj.6766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 01/25/2023] Open
Abstract
Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees have very high scientific, economic and cultural values. The senescence of ancient trees is a new research area but is poorly understood. Leaves are the primary and the most sensitive organ of a tree. To understand leaf structural response to tree senescence in ancient trees, experiments investigating the morphology, anatomy and ultrastructure were conducted with one-year leaves of ancient P. orientalis (ancient tree >2,000 years) at three different tree senescent levels (healthy, sub-healthy and senescent) at the world's largest planted pure forest in the Mausoleum of Yellow Emperor, Shaanxi Province, China. Observations showed that leaf structure significantly changed with the senescence of trees. The chloroplast, mitochondria, vacuole and cell wall of mesophyll cells were the most significant markers of cellular ultrastructure during tree senescence. Leaf ultrastructure clearly reflected the senescence degree of ancient trees, confirming the visual evaluation from above-ground parts of trees. Understanding the relationships between leaf structure and tree senescence can support decision makers in planning the protection of ancient trees more promptly and effectively by adopting the timely rejuvenation techniques before the whole tree irreversibly recesses.
Collapse
Affiliation(s)
- Qianyi Zhou
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Zhaohong Jiang
- College of Life Sciences, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Xin Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Tian Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Hailan Zhu
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Bei Cui
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing, China
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| |
Collapse
|