1
|
Yan XC, Liu Q, Yang Q, Wang KL, Zhai XZ, Kou MY, Liu JL, Li ST, Deng SH, Li MM, Duan HJ. Single-cell transcriptomic profiling of maize cell heterogeneity and systemic immune responses against Puccinia polysora Underw. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39612313 DOI: 10.1111/pbi.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Southern corn rust (SCR), caused by Puccinia polysora Underw (P. polysora), is a catastrophic disease affecting maize, leading to significant global yield losses. The disease manifests primarily as pustules on the upper surface of corn leaves, obscuring our understanding of its cellular heterogeneity, the maize's response to its infection and the underlying gene expression regulatory mechanisms. In this study, we dissected the heterogeneity of maize's response to P. polysora infection using single-cell RNA sequencing. We delineated cell-type-specific gene expression alterations in six leaf cell types, creating the inaugural single-cell atlas of a maize leaf under fungal assault. Crucially, by reconstructing cellular trajectories in susceptible line N110 and resistant line R99 during infection, we identified diverse regulatory programs that fortify R99's resistance across different leaf cell types. This research uncovers an immune-like state in R99 leaves, characterized by the expression of various fungi-induced genes in the absence of fungal infection, particularly in guard and epidermal cells. Our findings also highlight the role of the fungi-induced glycoside hydrolase family 18 chitinase 7 protein (ZmChit7) in conferring resistance to P. polysora. Collectively, our results shed light on the mechanisms of maize resistance to fungal pathogens through comparative single-cell transcriptomics, offering a valuable resource for pinpointing novel genes that bolster resistance to P. polysora.
Collapse
Affiliation(s)
- Xiao-Cui Yan
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Qing Liu
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Qian Yang
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | | | - Xiu-Zhen Zhai
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Meng-Yun Kou
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Jia-Long Liu
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | | | | | - Miao-Miao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Jun Duan
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Feng K, Yan YJ, Sun N, Yang ZY, Zhao SP, Wu P, Li LJ. Exogenous methyl jasmonate treatment induced the transcriptional responses and accumulation of volatile terpenoids in Oenanthe javanica (Blume) DC. Int J Biol Macromol 2024; 265:131017. [PMID: 38513909 DOI: 10.1016/j.ijbiomac.2024.131017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Ko CS, Kim JB, Kim DY, Seo YW, Hong MJ. Unveiling differential expression profiles of the wheat DOG1 gene family and functional analysis of the association between TaDOG1-1 and heat stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108325. [PMID: 38176188 DOI: 10.1016/j.plaphy.2023.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
High temperatures can significantly impact wheat growth and grain yields during the grain-filling stage. In this study, we identified genes that respond to high-temperature stress during the grain-filling stage. We also identified and characterized 24 novel genes of the DOG1 gene family in hexaploid wheat. Motif analysis and conserved domain search revealed substantial similarities among TaDOG1 family members. Phylogenetic analysis demonstrated the evolutionary conservation of the TaDOG1 family across various plant species. Tissue-specific expression profiling indicated consistent patterns, with TaDOG1 genes predominantly expressed in stem tissues. Only TaDOG1-1 exhibited enhanced expression, particularly during hard dough and ripening stages. TaDOG1-1 and TaDOG1-7 exhibited increased expression under heat stress during the grain-filling stage, indicating their heat-responsive nature. Cis-element analysis revealed potential regulatory motifs, suggesting the involvement of TaDOG1-1 and TaDOG1-7 in stress tolerance mechanisms. Yeast two-hybrid screening revealed interacting proteins, including stress-responsive and grain development-associated proteins. To understand the biological function, we overexpressed TaDOG1-1 in Arabidopsis plants and observed enhanced thermotolerance under basal heat stress. Under heat stress, the transgenic plants exhibited increased biomass and elevated expression levels of heat-responsive genes. Furthermore, TaDOG1-1-overexpressing plants showed improved survival rates under soil heat stress, along with a greater accumulation of antioxidant enzymes in leaves. In this study, the identification and functions of the DOG1 gene family provide valuable insights for developing genetic engineering strategies aimed at improving wheat yield under high-temperature stress.
Collapse
Affiliation(s)
- Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan, 32439, Republic of Korea
| | - Yong Weon Seo
- Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
4
|
Jiang J, Xie X, Li X. Acetyl-Proteomic Profiling of Sorghum bicolor Seedlings after Chitin Treatment Reveals the Involvement of Acetylated Chlorophyll a/b Binding Proteins in the Innate Immune Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384550 DOI: 10.1021/acs.jafc.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Plant pathogen-associated molecular pattern-triggered immunity (PTI) is affected by post-translational modifications, but the role of acetylation in the PTI responses of Sorghum bicolor remains unclear. In this study, a comprehensive acetyl-proteomic analysis was performed on sorghum seedlings treated with chitin based on label-free protein quantification. Chitin rapidly induced 15 PTI-related genes and 5 defense enzymes. Acetylation was upregulated in sorghum after the chitin treatment, and 579, 895, and 929 acetylated proteins, peptides, and sites, respectively, were identified using high-performance liquid chromatography-tandem mass spectrometry. Acetylation and expression of chlorophyll a/b binding proteins (Lhcs) were significantly upregulated, and they were localized in chloroplasts. Additionally, we found that the expression of Lhcs in vivo enhanced chitin-mediated acetylation. The findings of this study provide a comprehensive assessment of the lysine acetylome in sorghum and a foundation for future study into the regulatory mechanisms of acetylation during chlorophyll synthesis.
Collapse
Affiliation(s)
- Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
6
|
Wang F, Lu T, Zhu L, Cao A, Xie S, Chen X, Shen H, Xie Q, Li R, Zhu J, Jin X, Li H. Multicopper oxidases GbAO and GbSKS are involved in the Verticillium dahliae resistance in Gossypium barbadense. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153887. [PMID: 36543064 DOI: 10.1016/j.jplph.2022.153887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Tianxin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China; College of Science, Qiongtai Normal University, Haikou, 571127, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Man M, Zhu Y, Liu L, Luo L, Han X, Qiu L, Li F, Ren M, Xing Y. Defense Mechanisms of Cotton Fusarium and Verticillium Wilt and Comparison of Pathogenic Response in Cotton and Humans. Int J Mol Sci 2022; 23:12217. [PMID: 36293072 PMCID: PMC9602609 DOI: 10.3390/ijms232012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.
Collapse
Affiliation(s)
- Mingwu Man
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinpei Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
8
|
Kong WL, Ni H, Wang WY, Wu XQ. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front Microbiol 2022; 13:1013468. [PMID: 36212874 PMCID: PMC9533717 DOI: 10.3389/fmicb.2022.1013468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered promising environmental-safety fumigants for controlling soil-borne diseases. Verticillium dahliae, a notorious fungal pathogen, causes economically important wilt diseases in agriculture and forestry industries. Here, we determined the antifungal activity of VOCs produced by Trichoderma koningiopsis T2. The VOCs from T. koningiopsis T2 were trapped by solid-phase microextraction (SPME) and tentatively identified through gas chromatography–mass spectrometry (GC/MS). The microsclerotia formation, cell wall-degrading enzymes and melanin synthesis of V. dahliae exposed to the VOC mixtures and selected single standards were examined. The results showed that the VOCs produced by strain T2 significantly inhibited the growth of V. dahliae mycelium and reduced the severity of Verticillium wilt in tobacco and cotton. Six individual compounds were identified in the volatilome of T. koningiopsis T2, and the dominant compounds were 3-octanone, 3-methyl-1-butanol, butanoic acid ethyl ester and 2-hexyl-furan. The VOCs of strain T2 exert a significant inhibitory effect on microsclerotia formation and decreased the activities of pectin lyase and endo-β-1,4-glucanase in V. dahliae. VOCs also downregulated the VdT3HR, VdT4HR, and VdSCD genes related to melanin synthesis by 29. 41-, 10. 49-, and 3.11-fold, respectively. Therefore, T. koningiopsis T2 has potential as a promising biofumigant for the biocontrol of Verticillium wilt disease.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Hang Ni
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiao-Qin Wu,
| |
Collapse
|
9
|
Guo C, Yang X, Shi H, Chen C, Hu Z, Zheng X, Yang X, Xie C. Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol 2022; 15:2040-2054. [PMID: 35478269 PMCID: PMC9249328 DOI: 10.1111/1751-7915.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species. The melanized microsclerotia enable V. dahliae to survive for years in soil and are crucial for its disease cycle. In a previous study, we characterized the secretory protein VdASP F2 from V. dahliae and found that VdASP F2 deletion significantly affected the formation of microsclerotia under adverse environmental conditions. In this study, we clarified that VdASP F2 is localized to the cell wall. However, the underlying mechanism of VdASP F2 in microsclerotial formation remains unclear. Transmembrane ion channel protein VdTRP was identified as a candidate protein that interacts with VdASP F2 using pull‐down assays followed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) analysis, and interaction of VdASP F2 and VdTRP was confirmed by bimolecular fluorescence complementary and coimmunoprecipitation assays. The deletion mutant was analysed to reveal that VdTRP is required for microsclerotial production, but it is not essential for stress resistance, carbon utilization and pathogenicity of V. dahliae. RNA‐seq revealed some differentially expressed genes related to melanin synthesis and microsclerotial formation were significantly downregulated in the VdTRP deletion mutants. Taken together, these results indicate that VdASP F2 regulates the formation of melanized microsclerotia by interacting with VdTRP.
Collapse
Affiliation(s)
- Cuimei Guo
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Hongli Shi
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chi Chen
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xinyao Zheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
10
|
Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiol Spectr 2022; 10:e0247821. [PMID: 35377232 PMCID: PMC9045179 DOI: 10.1128/spectrum.02478-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.
Collapse
|
11
|
Huang W, Zhang Y, Zhou J, Wei F, Feng Z, Zhao L, Shi Y, Feng H, Zhu H. The Respiratory Burst Oxidase Homolog Protein D ( GhRbohD) Positively Regulates the Cotton Resistance to Verticillium dahliae. Int J Mol Sci 2021; 22:ijms222313041. [PMID: 34884844 PMCID: PMC8657740 DOI: 10.3390/ijms222313041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton’s defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.
Collapse
Affiliation(s)
- Wanting Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
| | - Yongqiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (H.F.); (H.Z.); Tel.: +86-0372-2562280 (H.Z.)
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.H.); (Y.Z.); (J.Z.); (F.W.); (Z.F.); (L.Z.); (Y.S.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (H.F.); (H.Z.); Tel.: +86-0372-2562280 (H.Z.)
| |
Collapse
|
12
|
Billah M, Li F, Yang Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases ( Verticillium and Fusarium): Progress and Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:759245. [PMID: 34912357 PMCID: PMC8666531 DOI: 10.3389/fpls.2021.759245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
In environmental conditions, crop plants are extremely affected by multiple abiotic stresses including salinity, drought, heat, and cold, as well as several biotic stresses such as pests and pathogens. However, salinity, drought, and wilt diseases (e.g., Fusarium and Verticillium) are considered the most destructive environmental stresses to cotton plants. These cause severe growth interruption and yield loss of cotton. Since cotton crops are central contributors to total worldwide fiber production, and also important for oilseed crops, it is essential to improve stress tolerant cultivars to secure future sustainable crop production under adverse environments. Plants have evolved complex mechanisms to respond and acclimate to adverse stress conditions at both physiological and molecular levels. Recent progresses in molecular genetics have delivered new insights into the regulatory network system of plant genes, which generally includes defense of cell membranes and proteins, signaling cascades and transcriptional control, and ion uptake and transport and their relevant biochemical pathways and signal factors. In this review, we mainly summarize recent progress concerning several resistance-related genes of cotton plants in response to abiotic (salt and drought) and biotic (Fusarium and Verticillium wilt) stresses and classify them according to their molecular functions to better understand the genetic network. Moreover, this review proposes that studies of stress related genes will advance the security of cotton yield and production under a changing climate and that these genes should be incorporated in the development of cotton tolerant to salt, drought, and fungal wilt diseases (Verticillium and Fusarium).
Collapse
Affiliation(s)
- Masum Billah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li,
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Zhaoen Yang,
| |
Collapse
|
13
|
Zhou J, Feng Z, Liu S, Wei F, Shi Y, Zhao L, Huang W, Zhou Y, Feng H, Zhu H. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses. MOLECULAR PLANT PATHOLOGY 2021; 22:130-144. [PMID: 33230892 PMCID: PMC7749748 DOI: 10.1111/mpp.13014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 05/12/2023]
Abstract
Verticillium wilt is a plant vascular disease caused by the soilborne fungus Verticillium dahliae that severely limits cotton production. In a previous study, we screened Bacillus cereus YUPP-10, an efficient antagonistic bacterium, to uncover mechanisms for controlling verticillium wilt. Here, we report a novel antimicrobial cyclodextrin glycosyltransferase (CGTase) from YUPP-10. Compared to other CGTases, six different conserved domains were identified, and six mutants were constructed by gene splicing with overlap extension PCR. Functional analysis showed that domain D was important for hydrolysis activity and domains A1 and C were important for inducing disease resistance. Direct effects of recombinant CGTase on V. dahliae included reduced mycelial growth, spore germination, spore production, and microsclerotia germination. In addition, CGTase also elicited cotton's innate defence reactions. Transgenic Arabidopsis thaliana lines that overexpress CGTase showed higher resistance to verticillium wilt. Transgenic CGTase A. thaliana plants grew faster and resisted disease better. CGTase overexpression enabled a burst of reactive oxygen species production and activated pathogenesis-related gene expression, indicating that the transgenic cotton was better prepared to protect itself from infection. Our work revealed that CGTase could inhibit the growth of V. dahliae, activate innate immunity, and play a major role in the biocontrol of fungal pathogens.
Collapse
Affiliation(s)
- Jinglong Zhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- College of AgricultureYangtze UniversityJingzhouChina
| | - Zili Feng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Shichao Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Feng Wei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yongqiang Shi
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Lihong Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Wanting Huang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yi Zhou
- College of AgricultureYangtze UniversityJingzhouChina
| | - Hongjie Feng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Heqin Zhu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
14
|
Fu Z, Fan G, Zhu Y, Teng C, Li H, Liu Q, Yang R, Li X. Soluble expression of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 in Escherichia coli and optimization of production conditions. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Yuting Zhu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chao Teng
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Hehe Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Qian Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| | - Ran Yang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
15
|
Tang C, Li T, Klosterman SJ, Tian C, Wang Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. THE NEW PHYTOLOGIST 2020; 226:1461-1479. [PMID: 32040203 DOI: 10.1111/nph.16481] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. Homologs of the bZIP transcription factor Atf1 are required for virulence in most pathogenic fungi, but the molecular basis for their involvement is largely unknown. We performed targeted gene deletion, expression analysis, biochemistry and pathogenicity assays to demonstrate that VdAtf1 governs pathogenesis via the regulation of nitrosative resistance and nitrogen metabolism in V. dahliae. VdAtf1 controls pathogenesis via the regulation of nitric oxide (NO) resistance and inorganic nitrogen metabolism rather than oxidative resistance and is important for penetration peg formation in V. dahliae. VdAtf1 affects ammonium and nitrate assimilation in response to various nitrogen sources. VdAtf1 may be involved in regulating the expression of VdNut1. VdAtf1 responds to NO stress by strengthening the fungal cell wall, and by causing over-accumulation of methylglyoxal and glycerol, which in turn impacts NO detoxification. We also verified that the VdAtf1 ortholog in Fusarium graminearum mediates nitrogen metabolism, suggesting conservation of this function in related plant pathogenic fungi. Our findings revealed new functions of VdAtf1 in pathogenesis, response to nitrosative stress and nitrogen metabolism in V. dahliae. The results provide novel insights into the regulatory mechanisms of the transcription factor VdAtf1 in virulence.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Tianyu Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Zhu L, Qi S, Xue X, Niu X, Wu L. Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113671. [PMID: 31855676 DOI: 10.1016/j.envpol.2019.113671] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 05/21/2023]
Abstract
Recently, environmental risk and toxicity of neonicotinoid insecticides to honey bees have attracted extensive attention. However, toxicological understanding of neonicotinoid insecticides on gut microbiota is limited. In the present study, honey bees (Apis mellifera L.) were exposed to a series of nitenpyram for 14 days. Results indicated that nitenpyram exposure decreased the survival and food consumption of honey bees. Furthermore, 16S rRNA gene sequencing revealed that nitenpyram caused significant alterations in the relative abundance of several key gut microbiotas, which contribute to metabolic homeostasis and immunity. Using high-throughput RNA-Seq transcriptomic analysis, we identified a total of 526 differentially expressed genes (DEGs) that were significantly altered between nitenpyram-treated and control honey bee gut, including several genes related to metabolic, detoxification and immunity. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed nitenpyram affected several biological processes, of which most were related to metabolism. Collectively, our study demonstrates that the dysbiosis of gut microbiota in honey bee caused by nitenpyram may influence metabolic homeostasis and immunity of bees, and further decrease food consumption and survival of bees.
Collapse
Affiliation(s)
- Lizhen Zhu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xinyue Niu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China.
| |
Collapse
|
17
|
Song R, Li J, Xie C, Jian W, Yang X. An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae. Int J Mol Sci 2020; 21:ijms21031120. [PMID: 32046212 PMCID: PMC7037454 DOI: 10.3390/ijms21031120] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungus that can lead to plant vascular disease and significant economic loss worldwide. Its hosts include over 400 dicotyledon plant species, such as annual herbs, perennials, and woody plants. The average yield loss of cotton crop caused by Verticillium wilt is approximately 10–35%. As the control of this disease is an urgent task for many countries, further understanding of the interaction between plants and V. dahliae is essential. Fungi can promote or inhibit plant growth, which is important; however, the most important relationship between plants and fungi is the host–pathogen relationship. Plants can become resistant to V. dahliae through diverse mechanisms such as cell wall modifications, extracellular enzymes, pattern recognition receptors, transcription factors, and salicylic acid (SA)/jasmonic acid (JA)/ethylene (ET)-related signal transduction pathways. Over the last decade, several studies on the physiological and molecular mechanisms of plant resistance to V. dahliae have been undertaken. In this review, many resistance-related genes are summarised to provide a theoretical basis for better understanding of the molecular genetic mechanisms of plant resistance to V. dahliae. Moreover, it is intended to serve as a resource for research focused on the development of genetic resistance mechanisms to combat Verticillium wilt.
Collapse
Affiliation(s)
| | | | - Chenjian Xie
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| | | | - Xingyong Yang
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| |
Collapse
|
18
|
Zhang Z, Diao H, Wang H, Wang K, Zhao M. Use of Ganoderma Lucidum polysaccharide to control cotton fusarium wilt, and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:149-155. [PMID: 31378351 DOI: 10.1016/j.pestbp.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Induced resistance is an effective measure for controlling plant diseases by utilizing the natural defense of the host and meets the strategic needs of pesticide application and safety for agricultural products worldwide. Ganoderma lucidum polysaccharide (GLP), which is the main active molecule of G. lucidum, has been widely used in functional food and clinical medicine. However, there are few reports of the use of GLP for the prevention and control of plant diseases. The purpose of this study is to explore the effect of GLP and its mechanism of inducing plant resistance. In this study, we found that GLP spray and irrigation root treatments can promote growth in cotton. After soaking in GLP, theseedling height and cotton fusarium wilt resistance both increased to some extent, effects that were dose dependent. After treatment of cotton with GLP, the activities of peroxidase (POD), superoxide dismutase (SOD) and polyphenol oxidase (PPO) in leaves increased significantly, whereas the content of malondialdehyde (MDA) decreased. In addition, QRT-PCR results showed significantly increased relative expression of genes related to the jasmonic acid pathway in cotton. Therefore, we speculate that GLP can induce plant resistance by stimulating the jasmonate pathway.
Collapse
Affiliation(s)
- Zhongxiao Zhang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hailing Diao
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ming Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong 250100, China.
| |
Collapse
|
19
|
Fang Y, Klosterman SJ, Tian C, Wang Y. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol 2019; 21:2977-2996. [PMID: 31136051 DOI: 10.1111/1462-2920.14695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Catharina L, Carels N. Specific enzyme functionalities of Fusarium oxysporum compared to host plants. Gene 2018; 676:219-226. [PMID: 29981422 DOI: 10.1016/j.gene.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/14/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
Abstract
The genus Fusarium contains some of the most studied and important species of plant pathogens that economically affect world agriculture and horticulture. Fusarium spp. are ubiquitous fungi widely distributed in soil, plants as well as in different organic substrates and are also considered as opportunistic human pathogens. The identification of specific enzymes essential to the metabolism of these fungi is expected to provide molecular targets to control the diseases they induce to their hosts. Through applications of traditional techniques of sequence homology comparison by similarity search and Markov modeling, this report describes the characterization of enzymatic functionalities associated to protein targets that could be considered for the control of root rots induced by Fusarium oxysporum. From the analysis of 318 F. graminearum enzymes, we retrieved 30 enzymes that are specific of F. oxysporum compared to 15 species of host plants. By comparing these 30 specific enzymes of F. oxysporum with the genome of Arabidopsis thaliana, Brassica rapa, Glycine max, Jatropha curcas and Ricinus communis, we found 7 key specific enzymes whose inhibition is expected to affect significantly the development of the fungus and 5 specific enzymes that were considered here to be secondary because they are inserted in pathways with alternative routes.
Collapse
Affiliation(s)
- Larissa Catharina
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Wang Y, Hu X, Fang Y, Anchieta A, Goldman PH, Hernandez G, Klosterman SJ. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. MICROBIOLOGY (READING, ENGLAND) 2018; 164:685-696. [PMID: 29485393 PMCID: PMC5982140 DOI: 10.1099/mic.0.000633] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and genomic analysis identified a cluster of genes in V. dahliae that encodes some dihydroxynaphthalene (DHN) melanin biosynthetic pathway homologues found in related fungi. In this study, we explored the roles of cluster-specific transcription factor VdCmr1, as well as two other genes within the cluster encoding a polyketide synthase (VdPKS1) and a laccase (VdLac1), enzymes at initial and endpoint steps in DHN melanin production. The results revealed that VdCmr1 and VdPKS1 are required for melanin production, but neither is required for microsclerotia production. None of the three genes were required for pathogenesis on tobacco and lettuce. Exposure of ΔVdCmr1 and wild-type strains to UV irradiation, or to high temperature (40 °C), revealed an approx. 50 % reduction of survival in the ΔVdCmr1 strain, relative to the wild-type strain, in response to either condition. Expression profiles revealed that expression of some melanin biosynthetic genes are in part dependent on VdCmr1. Combined data indicate VdCmr1 is a key regulator of melanin biosynthesis, and that via regulation of melanogenesis, VdCmr1 affects survival of V. dahliae in response to abiotic threats. We conclude with a model showing regulation of VdCmr1 by a high osmolarity glycerol response (Hog)-type MAP kinase pathway.
Collapse
Affiliation(s)
- Yonglin Wang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Xiaoping Hu
- Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Yulin Fang
- College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Amy Anchieta
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Polly H. Goldman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Gustavo Hernandez
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, 1636 E. Alisal St., Salinas, CA 93905, USA
| |
Collapse
|
22
|
Scholz SS, Schmidt-Heck W, Guthke R, Furch ACU, Reichelt M, Gershenzon J, Oelmüller R. Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales. Front Microbiol 2018; 9:217. [PMID: 29497409 PMCID: PMC5819561 DOI: 10.3389/fmicb.2018.00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/30/2018] [Indexed: 01/27/2023] Open
Abstract
Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.
Collapse
Affiliation(s)
- Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wolfgang Schmidt-Heck
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|