1
|
Jia X, Luo S, Ye X, Liu L, Wen W. Evolution of the biochemistry underpinning purine alkaloid metabolism in plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230366. [PMID: 39343019 PMCID: PMC11449220 DOI: 10.1098/rstb.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Purine alkaloids are naturally occurring nitrogenous methylated derivatives of purine nucleotide degradation products, having essential roles in medicine, food and various other aspects of our daily lives. They are generated through convergent evolution in different plant species. The pivotal reaction steps within the purine alkaloid metabolic pathways have been largely elucidated, and the convergent evolution of purine alkaloids has been substantiated through bioinformatic, biochemical and other research perspectives within S-adenosyl-ʟ-methionine-dependent N-methyltransferases. Currently, the biological and ecological roles of purine alkaloids, further refinement of the purine alkaloid metabolic pathways and the investigation of purine alkaloid adaptive evolutionary mechanisms continue to attract widespread research interest. The exploration of the purine alkaloid metabolic pathways also enhances our comprehension of the biochemical mechanism, providing insights into inter-species interactions and adaptive evolution and offering potential value in drug development and agricultural applications. Here, we review the progress of research in the distribution, metabolic pathway elucidation and regulation, evolutionary mechanism and ecological roles of purine alkaloids in plants. The opportunities and challenges involved in elucidating the biochemical basis and evolutionary mechanisms of the purine alkaloid metabolic pathways, as well as other research aspects, are also discussed. This article is part of the theme issue 'The evolution of plant meta-bolism'.
Collapse
Affiliation(s)
- Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Shijie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Xiali Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Lin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
2
|
Kaur H, Rode S, Kp S, Mahto JK, Alam MS, Gupta DN, Kar B, Singla J, Kumar P, Sharma AK. Characterization of haloacid dehalogenase superfamily acid phosphatase from Staphylococcus lugdunensis. Arch Biochem Biophys 2024; 753:109888. [PMID: 38232797 DOI: 10.1016/j.abb.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The haloacid dehalogenase superfamily implicated in bacterial pathogenesis comprises different enzymes having roles in many metabolic pathways. Staphylococcus lugdunensis, a Gram-positive bacterium, is an opportunistic human pathogen causing infections in the central nervous system, urinary tract, bones, peritoneum, systemic conditions and cutaneous infection. The haloacid dehalogenase superfamily proteins play a significant role in the pathogenicity of certain bacteria, facilitating invasion, survival, and proliferation within host cells. The genome of S. lugdunensis encodes more than ten proteins belonging to this superfamily. However, none of them have been characterized. The present work reports the characterization of one of the haloacid dehalogenase superfamily proteins (SLHAD1) from Staphylococcus lugdunensis. The functional analysis revealed that SLHAD1 is a metal-dependent acid phosphatase, which catalyzes the dephosphorylation of phosphorylated metabolites of cellular pathways, including glycolysis, gluconeogenesis, nucleotides, and thiamine metabolism. Based on the substrate specificity and genomic analysis, the physiological function of SLHAD1 in thiamine metabolism has been tentatively assigned. The crystal structure of SLHAD1, lacking 49 residues at the C-terminal, was determined at 1.7 Å resolution with a homodimer in the asymmetric unit. It was observed that SLHAD1 exhibited time-dependent cleavage at a specific point, occurring through a self-initiated process. A combination of bioinformatics, biochemical, biophysical, and structural studies explored unique features of SLHAD1. Overall, the study revealed a detailed characterization of a critical enzyme of the human pathogen Staphylococcus lugdunensis, associated with several life-threatening infections.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Sandra Kp
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Bibekananda Kar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
3
|
Singh S, Chaudhary C, Bharsakale RD, Gazal S, Verma L, Tarannum Z, Behere GT, Giri J, Germain H, Ghosh DK, Sharma AK, Chauhan H. PRpnp, a novel dual activity PNP family protein improves plant vigour and confers multiple stress tolerance in Citrus aurantifolia. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:726-741. [PMID: 36593511 PMCID: PMC10037160 DOI: 10.1111/pbi.13989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Under field conditions, plants are often simultaneously exposed to several abiotic and biotic stresses resulting in significant reductions in growth and yield; thus, developing a multi-stress tolerant variety is imperative. Previously, we reported the neofunctionalization of a novel PNP family protein, Putranjiva roxburghii purine nucleoside phosphorylase (PRpnp) to trypsin inhibitor to cater to the needs of plant defence. However, to date, no study has revealed the potential role and mechanism of either member of this protein group in plant defence. Here, we overexpressed PRpnp in Citrus aurantifolia which showed nuclear-cytoplasmic localization, where it functions in maintaining the intracellular purine reservoir. Overexpression of PRpnp significantly enhanced tolerance to salt, oxidative stress, alkaline pH, drought and two pests, Papilio demoleus and Scirtothrips citri in transgenic plants. Global gene expression studies revealed that PRpnp overexpression up-regulated differentially expressed genes (DEGs) related to ABA- and JA-biosynthesis and signalling, plant defence, growth and development. LC-MS/MS analysis validated higher endogenous ABA and JA accumulation in transgenic plants. Taken together, our results suggest that PRpnp functions by enhancing the endogenous ABA and JA, which interact synergistically and it also inhibits trypsin proteases in the insect gut. Also, like other purine salvage genes, PRpnp also regulates CK metabolism and increases the levels of CK-free bases in transgenic Mexican lime. We also suggest that PRpnp can be used as a potential candidate to develop new varieties with improved plant vigour and enhanced multiple stress resistance.
Collapse
Affiliation(s)
- Sweta Singh
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeIndia
| | - Chanderkant Chaudhary
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeIndia
| | | | - Snehi Gazal
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuebecCanada
| | - Lokesh Verma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Zeba Tarannum
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeIndia
| | | | - Jitender Giri
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Hugo Germain
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuebecCanada
| | | | - Ashwani K. Sharma
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeIndia
| | - Harsh Chauhan
- Department of Biosciences and BioengineeringIndian Institute of Technology RoorkeeRoorkeeIndia
| |
Collapse
|
4
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
5
|
SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii. Protein J 2022; 41:381-393. [PMID: 35674860 DOI: 10.1007/s10930-022-10060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.
Collapse
|
6
|
Kar B, Verma P, den Haan R, Sharma AK. Effect of N-linked glycosylation on the activity and stability of a β-glucosidase from Putranjiva roxburghii. Int J Biol Macromol 2018; 112:490-498. [DOI: 10.1016/j.ijbiomac.2018.01.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/06/2018] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
|
7
|
Kar B, Verma P, Patel GK, Sharma AK. Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. PHYTOCHEMISTRY 2017; 140:151-165. [PMID: 28500928 DOI: 10.1016/j.phytochem.2017.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The native Putranjiva roxburghii family 1 glycoside hydrolase enzyme showed β-D-fucosidase activity in addition to β-D-glucosidase and β-D-galactosidase activities reported in our previous study. A single step concanvalin A affinity chromatography for native PRGH1 improved the yield and reduced the purification time. The PRGH1 gene was cloned and overexpressed in E. coli. The full length gene contained an ORF of 1617 bp encoding a polypeptide of 538 amino acids. The amino acid sequence of PRGH1 showed maximum similarities to β-glucosidases and myrosinases. Both native and recombinant protein showed maximum hydrolytic activity for pNP-Fuc followed by pNP-Glc and pNP-Gal. Significant enzyme activity was also observed for cellobiose, however it decreased with increase in chain-length for glycan substrates. The enzyme showed significant resistant to D-glucose concentration up to 500 mM. Mutational studies confirmed the predicted catalytic acid/base Glu173 and nucleophile Glu389 as key residues for its activity. Moreover, Glu446 and Asn172 played essential role in substrate binding by interacting with the -1 subsite of substrates. Bioinformatic analysis suggested the possible reasons for the broad substrate specificity and other properties of the enzyme. PRGH1 had high sequence similarity towards S-glucosidase and may be involved in defence. The broad specificity, catalytic efficiency and thermostability make PRGH1 potentially an important industrial enzyme.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Preeti Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Girijesh Kumar Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|