1
|
Alemu MD, Barak V, Shenhar I, Batat D, Saranga Y. Dynamic physiological response of tef to contrasting water availabilities. FRONTIERS IN PLANT SCIENCE 2024; 15:1406173. [PMID: 39045591 PMCID: PMC11264344 DOI: 10.3389/fpls.2024.1406173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Global climate change is leading to increased frequency of extreme climatic events, higher temperatures and water scarcity. Tef (Eragrostis tef (Zucc.) Trotter) is an underutilized C4 cereal crop that harbors a rich gene pool for stress resilience and nutritional quality. Despite gaining increasing attention as an "opportunity" crop, physiological responses and adaptive mechanisms of tef to drought stress have not been sufficiently investigated. This study was aimed to characterize the dynamic physiological responses of tef to drought. Six selected tef genotypes were subjected to high-throughput whole-plant functional phenotyping to assess multiple physiological responses to contrasting water regimes. Drought stress led to a substantial reduction in total, shoot and root dry weights, by 59%, 62% and 44%, respectively (averaged across genotypes), and an increase of 50% in the root-to-shoot ratio, relative to control treatment. Drought treatment induced also significant reductions in stomatal conductance, transpiration, osmotic potential and water-use efficiency, increased chlorophyll content and delayed heading. Tef genotypes exhibited diverse water-use strategies under drought: water-conserving (isohydric) or non-conserving (anisohydric), or an intermediate strategy, as well as variation in drought-recovery rate. Genotype RTC-290b exhibited outstanding multifaceted drought-adaptive performance, including high water-use efficiency coupled with high productivity under drought and control treatments, high chlorophyll and transpiration under drought, and faster drought recovery rate. This study provides a first insight into the dynamic functional physiological responses of tef to water deficiency and the variation between genotypes in drought-adaptive strategies. These results may serve as a baseline for further studies and for the development of drought-resistant tef varieties.
Collapse
Affiliation(s)
- Muluken Demelie Alemu
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Crop Research, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Vered Barak
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itamar Shenhar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dor Batat
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Lupo Y, Moshelion M. The balance of survival: Comparative drought response in wild and domesticated tomatoes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111928. [PMID: 37992898 DOI: 10.1016/j.plantsci.2023.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Plants have the ability to undergo reversible behavioral, morphological, or physiological changes in response to environmental conditions. This plasticity enables plants to cope with uncertain environmental conditions, such as drought. A primary plastic trait is the rate of stomatal response to changes in ambient conditions, which determines the amount of water lost via transpiration, as well as levels of CO2 absorption, growth, and productivity. Here, we examined the differences between domesticated (S. lycopersicum cv. M82) and wild tomato (S. pennellii) species and their responses to drought stress. The plants were grown in pots in a functional phenotyping platform (FPP) in a semi-controlled environment greenhouse. We found that the domesticated tomato had a higher transpiration rate (E) and higher stomatal conductance (gs). The domesticated tomato also had greater biomass and greater leaf area under drought conditions, as compared to the wild tomato. Despite the domesticated tomato's higher E and higher gs, there was no difference between the photosynthetic rates (An) of the two lines. Moreover, the wild tomato had a higher maximum rate of rubisco activity (Vcmax), which might explain its greater leaf level and whole canopy water-use efficiency. The domesticated tomato's higher E and greater leaf area led to its earlier exposure to drought stress, as compared to the wild tomato, which maintained higher levels of soil water, enabling it to maintain steady rates of whole-canopy stomatal conductance (gsc) for extended periods. The wild tomato was also more sensitive to soil water availability and lowered its maximum transpiration rate (Emax) at a higher soil-water-content (SWC) level compared to the domesticated species. Our results suggest that the domestication of tomatoes favored morphological/anatomical performance traits over physiological efficiency.
Collapse
Affiliation(s)
- Yaniv Lupo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Puli MR, Muchoki P, Yaaran A, Gershon N, Dalal A, Nalufunjo F, Dagan Y, Rosental L, Abadi S, Haber Z, Silva L, Brotman Y, Sade N, Yalovsky S. Null mutants of a tomato Rho of plants exhibit enhanced water use efficiency without a penalty to yield. Proc Natl Acad Sci U S A 2024; 121:e2309006120. [PMID: 38190516 PMCID: PMC10823239 DOI: 10.1073/pnas.2309006120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/23/2023] [Indexed: 01/10/2024] Open
Abstract
Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.
Collapse
Affiliation(s)
- Mallikarjuna R. Puli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Purity Muchoki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adi Yaaran
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Noga Gershon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Ahan Dalal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Felista Nalufunjo
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Yoav Dagan
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Shiran Abadi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Zachary Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Lucas Silva
- Environmental Studies and Biology, University of Oregon, Eugene, OR97403
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
4
|
Waqas M, Van Der Straeten D, Geilfus CM. Plants 'cry' for help through acoustic signals. TRENDS IN PLANT SCIENCE 2023; 28:984-986. [PMID: 37344301 DOI: 10.1016/j.tplants.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Plants perceive sounds, while responses to these sounds were already known. A breakthrough is the discovery by Khait et al. that stressed plants emit various informative ultrasonic sound signals, which can be categorized according to plant species, stress type, and stress severity. This discovery may change how plants are cultivated.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Van-Lade-Strasse 1, 65366 Geisenheim, Germany
| | | | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Van-Lade-Strasse 1, 65366 Geisenheim, Germany.
| |
Collapse
|
5
|
Khait I, Lewin-Epstein O, Sharon R, Saban K, Goldstein R, Anikster Y, Zeron Y, Agassy C, Nizan S, Sharabi G, Perelman R, Boonman A, Sade N, Yovel Y, Hadany L. Sounds emitted by plants under stress are airborne and informative. Cell 2023; 186:1328-1336.e10. [PMID: 37001499 DOI: 10.1016/j.cell.2023.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023]
Abstract
Stressed plants show altered phenotypes, including changes in color, smell, and shape. Yet, airborne sounds emitted by stressed plants have not been investigated before. Here we show that stressed plants emit airborne sounds that can be recorded from a distance and classified. We recorded ultrasonic sounds emitted by tomato and tobacco plants inside an acoustic chamber, and in a greenhouse, while monitoring the plant's physiological parameters. We developed machine learning models that succeeded in identifying the condition of the plants, including dehydration level and injury, based solely on the emitted sounds. These informative sounds may also be detectable by other organisms. This work opens avenues for understanding plants and their interactions with the environment and may have significant impact on agriculture.
Collapse
Affiliation(s)
- Itzhak Khait
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Sharon
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel; School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kfir Saban
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Revital Goldstein
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Anikster
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yarden Zeron
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Chen Agassy
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Shaked Nizan
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Gayl Sharabi
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Ran Perelman
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel; The Institute of Cereal Crop Improvement, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
6
|
Jiang L, Sun T, Wang X, Zong X, Wu C. Functional physiological phenotyping and transcriptome analysis provide new insight into strawberry growth and water consumption. FRONTIERS IN PLANT SCIENCE 2022; 13:1074132. [PMID: 36507431 PMCID: PMC9730707 DOI: 10.3389/fpls.2022.1074132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Global warming is expected to increase agricultural water scarcity; thus, optimized irrigation schedules are important and timely for sustainable crop production. Deficit irrigation, which balances crop growth and water consumption, has been proposed, but the critical threshold is not easily quantified. Here, we conducted experiments on strawberry plants subjecting progressive drought following various water recovery treatments on the high-throughput physiological phenotyping system "Plantarray". The critical soil water contents (θcri), below which the plant transpiration significantly decreased, were calculated from the inflection point of the transpiration rate (Tr) - volumetric soil water content (VWC) curve fitted by a piecewise function. The physiological traits of water relations were compared between the well-watered plants (CK), plants subjecting the treatment of rewatering at the point of θcri following progressive drought (WR_θcri), and the plants subjecting the treatment of rewatering at severe drought following progressive drought (WR_SD). The results showed that midday Tr, daily transpiration (E), and biomass gain of the plants under WR_θcri treatment were equivalent to CK during the whole course of the experiment, but those under WR_SD treatment were significantly lower than CK during the water stress phase that could not recover even after rehydration. To explore the gene regulatory mechanisms, transcriptome analysis of the samples collected 12 h before, 12 h post and 36 h post water recovery in the three treatments was conducted. GO and KEGG enrichment analyses for the differentially expressed genes indicated that genes involved in mineral absorption and flavonoid biosynthesis were among the most striking transcriptionally reversible genes under the WR_θcri treatment. Functional physiological phenotyping and transcriptome data provide new insight into a potential, quantitative, and balanceable water-saving strategy for strawberry irrigation and other agricultural crops.
Collapse
Affiliation(s)
- Lili Jiang
- Shandong Institute of Pomology, Taian, Shandong, China
| | - Ting Sun
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaofang Wang
- Shandong Institute of Pomology, Taian, Shandong, China
| | - Xiaojuan Zong
- Shandong Institute of Pomology, Taian, Shandong, China
| | - Chong Wu
- Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|