1
|
Xu Q, Wu M, Zhang L, Chen X, Zhou M, Jiang B, Jia Y, Yong X, Tang S, Mou L, Jia Z, Shabala S, Pan Y. Unraveling Key Factors for Hypoxia Tolerance in Contrasting Varieties of Cotton Rose by Comparative Morpho-physiological and Transcriptome Analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14317. [PMID: 38686568 DOI: 10.1111/ppl.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Chen
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mei Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | | | - Lisha Mou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhishi Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Nomura Y, Arima S, Kyogoku D, Yamauchi T, Tominaga T. Strong plastic responses in aerenchyma formation in F1 hybrids of Imperata cylindrica under different soil moisture conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:446-456. [PMID: 38192087 DOI: 10.1111/plb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Hybrids can express traits plastically, enabling them to occupy environments that differ from parental environments. However, there is insufficient evidence demonstrating how phenotypic plasticity in specific traits mediates hybrid performance. Two parental ecotypes of Imperata cylindrica produce F1 hybrids. The E-type in wet habitats has larger internal aerenchyma than the C-type in dry habitats. This study evaluated relationships between habitat utilisation, aerenchyma plasticity, and growth of I. cylindrica accessions. We hypothesize that plasticity in expressing parental traits explains hybrid establishment in habitats with various soil moisture conditions. Aerenchyma formation was examined in the leaf midribs, rhizomes and roots of two parental ecotypes and their F1 hybrids in their natural habitats. In common garden experiments, we examined plastic aerenchyma formation in leaf midribs, rhizomes and roots of natural and artificial F1 hybrids and parental ecotypes and quantified vegetative growth performance. In the natural habitats where soil moisture content varied widely, the F1 hybrids showed larger variation in aerenchyma formation in rhizomes than their parental ecotypes. In the common garden experiments, F1 hybrids showed high plasticity of aerenchyma formation in rhizomes, and their growth was similar to that of C-type and E-type under drained and flooded conditions, respectively. The results demonstrate that F1 hybrids of I. cylindrica exhibit plasticity in aerenchyma development in response to varying local soil moisture content. This characteristic allows the hybrids to thrive in diverse soil moisture conditions.
Collapse
Affiliation(s)
- Y Nomura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - S Arima
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - D Kyogoku
- The Museum of Nature and Human Activities, Sanda, Hyogo, Japan
| | - T Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - T Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Ma C, Bai D, Wu C, Li Y, Wang H. The uptake, transportation, and chemical speciation of Sb(III) and Sb(V) by wetland plants Arundinoideae (Phragmites australis) and Potamogetonaceae (Potamogeton crispus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170606. [PMID: 38316307 DOI: 10.1016/j.scitotenv.2024.170606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) is increasingly released and poses a risk to the environment and human health. Antimonite (Sb(III)) oxidation can decrease Sb toxicity, but the current knowledge regarding the effects of Sb(III) and antimonate (Sb(V)) exposure is limited to wetland plants, especially the Sb speciation in plants. In this study, Phragmites australis and Potamogeton crispus were exposed to 10 and 30 mg/L Sb(III) or Sb(V) for 20 days. The total concentration, subcellular distribution, and concentration in the iron plaque of Sb were determined. The Sb speciation in plants was analyzed by HPLC-ICP-MS. It illustrated that Sb(III) exposure led to more Sb accumulation in plants than Sb(V) treatments, with the highest Sb concentration of 405.35 and 3218 mg/kg in Phragmites australis and Potamogeton crispus, respectively. In the subcellular distribution of Sb, accumulation of Sb mainly occurred in cell walls and cell cytosol. In Phragmites australis, the transport factor in the Sb(V) treatments was about 3 times higher than the Sb(III) treatments, however, it was lower in the Sb(V) treatments than Sb(III) treatments for Potamogeton crispus. Sb(V) was detected in the plants of Sb(III) treatments with different Sb(V)-total Sb vitro (Phragmites australis: 34 % and, Potamogeton crispus: 15 %), moreover, Sb(V) was also detected in the nutrient solution of Sb(III) treatments. Antimony exposure caused a reduction of the iron plaque formation, at the same time, the root aerenchyma formation was disrupted, and this phenomenon is more pronounced in the Sb(III) treatments. Moreover, the iron plaque has a higher sorption potential to Sb under Sb(III) exposure than that under Sb(V) exposure. The results can fill the gap for antinomy speciation in wetland plants and expand the current knowledge regarding the Sb translocation in wetland systems.
Collapse
Affiliation(s)
- Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Dongju Bai
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Chenle Wu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiongan New Area, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Yamauchi T, Sumi K, Morishita H, Nomura Y. Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23231. [PMID: 38479793 DOI: 10.1071/fp23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The runner reed (Phragmites japonica ) is the dominant species on riverbanks, whereas the common reed (Phragmites australis ) thrives in continuously flooded areas. Here, we aimed to identify the key root anatomical traits that determine the different adaptative responses of the two Phragmites species to water-deficit and low-oxygen conditions. Growth measurements revealed that P . japonica tolerated high osmotic conditions, whereas P . australis preferred low-oxygen conditions. Root anatomical analysis revealed that the ratios of the cortex to stele area and aerenchyma (gas space) to cortex area in both species increased under low-oxygen conditions. However, a higher ratio of cortex to stele area in P . australis resulted in a higher ratio of aerenchyma to stele, which includes xylem vessels that are essential for water and nutrient uptakes. In contrast, a lower ratio of cortex to stele area in P . japonica could be advantageous for efficient water uptake under high-osmotic conditions. In addition to the ratio of root tissue areas, rigid outer apoplastic barriers composed of a suberised exodermis may contribute to the adaptation of P . japonica and P . australis to water-deficit and low-oxygen conditions, respectively. Our results suggested that root anatomical plasticity is essential for plants to adapt and respond to different soil moisture levels.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Kurumi Sumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromitsu Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | |
Collapse
|
5
|
Yamauchi T, Tanaka A, Nakazono M, Inukai Y. Age-dependent analysis dissects the stepwise control of auxin-mediated lateral root development in rice. PLANT PHYSIOLOGY 2024; 194:819-831. [PMID: 37831077 PMCID: PMC10828202 DOI: 10.1093/plphys/kiad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
As root elongation rates are different among each individual root, the distance from the root apices does not always reflect the age of root cells. Thus, methods for correcting variations in elongation rates are needed to accurately evaluate the root developmental process. Here, we show that modeling-based age-dependent analysis is effective for dissecting stepwise lateral root (LR) development in rice (Oryza sativa). First, we measured the increases in LR and LR primordium (LRP) numbers, diameters, and lengths in wild type and an auxin-signaling-defective mutant, which has a faster main (crown) root elongation rate caused by the mutation in the gene encoding AUXIN/INDOLE-3-ACETIC ACID protein 13 (IAA13). The longitudinal patterns of these parameters were fitted by the appropriate models and the age-dependent patterns were identified using the root elongation rates. As a result, we found that LR and LRP numbers and lengths were reduced in iaa13. We also found that the duration of the increases in LR and LRP diameters were prolonged in iaa13. Subsequent age-dependent comparisons with gene expression patterns suggest that AUXIN RESPONSE FACTOR11 (ARF11), the homolog of MONOPTEROS (MP)/ARF5 in Arabidopsis (Arabidopsis thaliana), is involved in the initiation and growth of LR(P). Indeed, the arf11 mutant showed a reduction of LR and LRP numbers and lengths. Our results also suggest that PINOID-dependent rootward-to-shootward shift of auxin flux contributes to the increase in LR and LRP diameters. Together, we propose that modeling-based age-dependent analysis is useful for root developmental studies by enabling accurate evaluation of root traits' expression.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Ning J, Yamauchi T, Takahashi H, Omori F, Mano Y, Nakazono M. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1133009. [PMID: 37152158 PMCID: PMC10154625 DOI: 10.3389/fpls.2023.1133009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Auxin distribution is essential for determining root developmental patterns. The formation of lateral roots and constitutive aerenchyma, which is a gas space developed through cell death, is regulated by auxin in rice (Oryza sativa). However, it is unclear whether the involvement of auxin in constitutive aerenchyma formation is conserved in other species. In this study, we found that constitutive aerenchyma formation was regulated by auxin in the nodal roots of Zea nicaraguensis, a wild relative of maize (Zea mays ssp. mays) grown naturally on frequently flooded coastal plains. Subsequent gravistimulation (root rotation) experiments showed opposite patterns of aerenchyma and lateral root formation. Lateral root formation on the convex side of rotated roots is known to be stimulated by a transient increase in auxin level in the pericycle. We found that aerenchyma formation was accelerated in the cortex on the concave side of the rotated nodal roots of Z. nicaraguensis. A cortex-specific expression analysis of auxin-responsive genes suggested that the auxin level was higher on the concave side than on the convex side. These results suggest that asymmetric auxin distribution underlies the regulation of aerenchyma and lateral root formation in the nodal roots of Z. nicaraguensis. As aerenchyma reduces the respiratory cost of the roots, constitutive aerenchyma on the concave side of the nodal root may balance resource allocation, thereby contributing to the uptake of water and nutrients by newly formed lateral roots. Our study provides insights into auxin-dependent asymmetric root patterning such as that of gravistimulation and hydropatterning response.
Collapse
Affiliation(s)
- Jiayang Ning
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Fumie Omori
- Division of Feed and Livestock Research, National Agriculture and Food Research Organization (NARO) Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Yoshiro Mano
- Division of Feed and Livestock Research, National Agriculture and Food Research Organization (NARO) Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- The University of Western Australia (UWA) School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|