1
|
Mulla JA, Palod PS, Bhagwat SA, Sonawane AP, Acharya SK, Kulkarni AP, Tamhane VA. Genomic and functional insights into the diversity of Capsicum annuum defensin gene family. 3 Biotech 2025; 15:99. [PMID: 40144309 PMCID: PMC11933556 DOI: 10.1007/s13205-025-04256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Plant defensins are known for their diverse functional roles in development and stress tolerance. We explored the structural and functional diversity of the defensin gene family in Capsicum annuum (CanDef) genomes (CM334 and UCD10Xv1.1). A total of 63 unique full-length CanDef genes were identified through BLASTn and BLASTp analysis. The CanDefs possessed ~ 46 to 88 amino acids and categorized into four groups based on their length, presence of C-terminal tail and gamma-core region. Their phylogenetic analysis with other plant and invertebrate defensin proteins resulted in seven clades of which 37 CanDefs aligned in the recently diversified clade. Most CanDefs localized to chromosome-7. CanDefs contained functional motifs like gamma thionin, knot domain or scorpion toxin domain. Cis-elements and miRNA target sites related to phytohormone signaling, stress responses and development were enriched in the upstream of CanDefs and indicated diverse biological functions. In silico RNA-seq analysis revealed unique expression of CanDefs in tissues under different stresses. CanDefs varied their gene expression in stress conditions significantly with CanDef20, CanDef45 and CanDef61 being the most prominently expressed. In choice assay, Helicoverpa armigera larvae were attracted towards Nicotiana tabacum leaves expressing CanDefs, whereas their growth reduced in the no-choice assay. In conclusion, the genomic, molecular and functional insights on CanDef diversity highlight their significance in plant development and response to biotic/abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04256-y.
Collapse
Affiliation(s)
- Javed A. Mulla
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Parag S. Palod
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Srushti A. Bhagwat
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Abhilasha P. Sonawane
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Supriya K. Acharya
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Abhijeet P. Kulkarni
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Vaijayanti A. Tamhane
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| |
Collapse
|
2
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
3
|
Thorat YE, Dutta TK, Jain PK, Subramaniam K, Sirohi A. A nematode-inducible promoter can effectively drives RNAi construct to confer Meloidogyne incognita resistance in tomato. PLANT CELL REPORTS 2023; 43:3. [PMID: 38117317 DOI: 10.1007/s00299-023-03114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023]
Abstract
KEY MESSAGE Heterologous expression of a nematode-responsive promoter in tomato successfully driven the RNAi constructs to impart root-knot nematode resistance. The root-knot nematode Meloidogyne incognita seriously afflicts the global productivity of tomatoes. Nematode management options are extremely reliant on chemical methods, however, only a handful of nematicides are commercially available. Additionally, nematodes have developed resistance-breaking phenotypes against the commercially available Mi gene-expressing tomatoes. Nematode resistance in crop plants can be enhanced using the bio-safe RNAi technology, in which plants are genetically modified to express nematode gene-specific dsRNA/siRNA molecules. However, the majority of the RNAi crops conferring nematode tolerance have used constitutive promoters, which have many limitations. In the present study, using promoter-GUS fusion, we functionally validated two nematode-inducible root-specific promoters (pAt1g74770 and pAt2g18140, identified from Arabidopsis thaliana) in the Solanum lycopersicum-M. incognita pathosystem. pAt2g18140 was found to be nematode-responsive during 10-21 days post-inoculation (dpi) and became non-responsive during the late infection stage (28 dpi). In contrast, pAt1g74770 remained nematode-responsive for a longer duration (10-28 dpi). Next, a number of transgenic lines were developed that expressed RNAi constructs (independently targeting the M. incognita integrase and splicing factor genes) driven by the pAt1g74770 promoter. M. incognita parasitic success (measured by multiplication factor ratio) in pAt1g74770:integrase and pAt1g74770:splicing factor RNAi lines were significantly reduced by 60.83-74.93% and 69.34-75.31%, respectively, compared to the control. These data were comparable with the RNAi lines having CaMV35S as the promoter. Further, a long-term RNAi effect was evident, because females extracted from transgenic lines were of deformed shape with depleted transcripts of integrase and splicing factor genes. We conclude that pAt1g74770 can be an attractive alternative to drive localized expression of RNAi constructs rather than using a constitutive promoter. The pAt1g74770-driven gene silencing system can be expanded into different plant-nematode interaction models.
Collapse
Affiliation(s)
- Yogesh E Thorat
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Biological Control Centre, ICAR-Indian Institute of Sugarcane Research, Ahmednagar, Maharashtra, 413712, India
| | - Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
4
|
Sultana MS, Mazarei M, Millwood RJ, Liu W, Hewezi T, Stewart CN. Functional analysis of soybean cyst nematode-inducible synthetic promoters and their regulation by biotic and abiotic stimuli in transgenic soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2022; 13:988048. [PMID: 36160998 PMCID: PMC9501883 DOI: 10.3389/fpls.2022.988048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
We previously identified cis-regulatory motifs in the soybean (Glycine max) genome during interaction between soybean and soybean cyst nematode (SCN), Heterodera glycines. The regulatory motifs were used to develop synthetic promoters, and their inducibility in response to SCN infection was shown in transgenic soybean hairy roots. Here, we studied the functionality of two SCN-inducible synthetic promoters; 4 × M1.1 (TAAAATAAAGTTCTTTAATT) and 4 × M2.3 (ATATAATTAAGT) each fused to the -46 CaMV35S core sequence in transgenic soybean. Histochemical GUS analyses of transgenic soybean plants containing the individual synthetic promoter::GUS construct revealed that under unstressed condition, no GUS activity is present in leaves and roots. While upon nematode infection, the synthetic promoters direct GUS expression to roots predominantly in the nematode feeding structures induced by the SCN and by the root-knot nematode (RKN), Meloidogyne incognita. There were no differences in GUS activity in leaves between nematode-infected and non-infected plants. Furthermore, we examined the specificity of the synthetic promoters in response to various biotic (insect: fall armyworm, Spodoptera frugiperda; and bacteria: Pseudomonas syringe pv. glycinea, P. syringe pv. tomato, and P. marginalis) stresses. Additionally, we examined the specificity to various abiotic (dehydration, salt, cold, wounding) as well as to the signal molecules salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in the transgenic plants. Our wide-range analyses provide insights into the potential applications of synthetic promoter engineering for conditional expression of transgenes leading to transgenic crop development for resistance improvement in plant.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Li H, Xu X, Han K, Wang Z, Ma W, Lin Y, Hua H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stål infestation in rice. J Cell Physiol 2022; 237:1833-1844. [PMID: 34908164 DOI: 10.1002/jcp.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Insect pests have a great impact on the yield and quality of crops. Insecticide applications are an effective method of pest control, however, they also have adverse effects on the environment. Using insect-inducible promoters to drive insect-resistant genes in transgenic crops is a potential sustainable pest management strategy, but insect-inducible promoters have been rarely reported. In this study, we found rice allene oxide synthase gene (AOS, LOC_Os03g12500) can be highly upregulated following brown planthopper (Nilaparvata lugens Stål, BPH) infestation. Then, we amplified the promoter of OsAOS1 and the β- glucuronidase reporter gene was used to analyze the expression pattern of the promoter. Through a series of 5' truncated assays, three positive regulatory regions in response to BPH infestation in the promoter were identified. The transgenic plants, P1R123-min 35S and P1TR1-min 35S promoter-driven snowdrop lectin (Galanthus nivalis agglutinin, GNA) gene, demonstrated the highest expression levels of GNA and lowest BPH survival. Our work identified a BPH-inducible promoter and three positive regions within it. Transgenic rice with GNA driven by OsAOS1 promoter and positive regions exhibited an expected lethal effect on BPH. This study proved the application potential of BPH-inducible promoter and provided a novel path for the selection of insect-resistant tools in the future.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueliang Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Nikoloudakis N, Pappi P, Markakis EA, Charova SN, Fanourakis D, Paschalidis K, Delis C, Tzortzakakis EA, Tsaniklidis G. Structural Diversity and Highly Specific Host-Pathogen Transcriptional Regulation of Defensin Genes Is Revealed in Tomato. Int J Mol Sci 2020; 21:ijms21249380. [PMID: 33317090 PMCID: PMC7764197 DOI: 10.3390/ijms21249380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Defensins are small and rather ubiquitous cysteine-rich anti-microbial peptides. These proteins may act against pathogenic microorganisms either directly (by binding and disrupting membranes) or indirectly (as signaling molecules that participate in the organization of the cellular defense). Even though defensins are widespread across eukaryotes, still, extensive nucleotide and amino acid dissimilarities hamper the elucidation of their response to stimuli and mode of function. In the current study, we screened the Solanum lycopersicum genome for the identification of defensin genes, predicted the relating protein structures, and further studied their transcriptional responses to biotic (Verticillium dahliae, Meloidogyne javanica, Cucumber Mosaic Virus, and Potato Virus Y infections) and abiotic (cold stress) stimuli. Tomato defensin sequences were classified into two groups (C8 and C12). Our data indicate that the transcription of defensin coding genes primarily depends on the specific pathogen recognition patterns of V. dahliae and M. javanica. The immunodetection of plant defensin 1 protein was achieved only in the roots of plants inoculated with V. dahliae. In contrast, the almost null effects of viral infections and cold stress, and the failure to substantially induce the gene transcription suggest that these factors are probably not primarily targeted by the tomato defensin network.
Collapse
Affiliation(s)
- Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
- Correspondence: (N.N.); (G.T.)
| | - Polyxeni Pappi
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Emmanouil A. Markakis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Crete, Greece;
- Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Dimitrios Fanourakis
- Giannakakis SA, Export Fruits and Vegetables, 70200 Tympaki, Crete, Greece;
- School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Konstantinos Paschalidis
- School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Costas Delis
- Department of Agricultural Technology, School of Agricultural Technology and Food Technology and Nutrition, University of Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| | - Emmanuel A. Tzortzakakis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Georgios Tsaniklidis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
- Correspondence: (N.N.); (G.T.)
| |
Collapse
|
7
|
Li H, Wang Z, Han K, Guo M, Zou Y, Zhang W, Ma W, Hua H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. PEST MANAGEMENT SCIENCE 2020; 76:3177-3187. [PMID: 32336018 DOI: 10.1002/ps.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the β-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjian Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulan Zou
- College of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Mir Drikvand R, Sohrabi SM, Samiei K. Molecular cloning and characterization of six defensin genes from lentil plant ( Lens culinaris L.). 3 Biotech 2019; 9:104. [PMID: 30800615 PMCID: PMC6387662 DOI: 10.1007/s13205-019-1617-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Six full-length gene and cDNA sequences of defensin were identified from Lens culinaris L. plant. The identified genes and cDNAs were different in length and their coding sequences contained Knot1 functional domain. Phylogenetic analysis classified the identified defensins into two subfamilies. All defensin genes contained only one intron and had extracellular signal peptides. Secondary structures of identified defensins were completely composed of alpha helix and beta strand. Presence of conserved Cys amino acids and disulfide bridges, interaction with defense and signaling proteins and antimicrobial activity were other common features of these peptides. The identified defensins displayed differential expression pattern in the various tissues. The highest expression level of defensins was observed in seed, pod, and root tissues. Defensin 4 was significantly expressed in all examined tissues, whereas the other defensins were only expressed in some tissues. Also, in the fungal and wounding treatments, lentil defensins showed different expression pattern. Defensin 1 was up-regulated in both fungal and wounding treatments. Defensin 4 showed decreased expression level in both fungal and wounding treatments. Defensins 2 and 6 were up-regulated in wounding and fungal treatments, respectively. In this study, for the first time, six defensin genes were isolated and characterized from lentil. Our results highlighted the role of defensins in lentil plant that can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Agronomy and Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Seyyed Mohsen Sohrabi
- Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Agriculture, Kangavar Branch, Islamic Azad University, Kangavar, Iran
| |
Collapse
|
10
|
Finkina EI, Ovchinnikova TV. Plant Defensins: Structure, Functions, Biosynthesis, and the Role in the Immune Response. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Piya S, Kihm C, Rice JH, Baum TJ, Hewezi T. Cooperative Regulatory Functions of miR858 and MYB83 during Cyst Nematode Parasitism. PLANT PHYSIOLOGY 2017; 174:1897-1912. [PMID: 28512179 PMCID: PMC5490899 DOI: 10.1104/pp.17.00273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/13/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) recently have been established as key regulators of transcriptome reprogramming that define cell function and identity. Nevertheless, the molecular functions of the greatest number of miRNA genes remain to be determined. Here, we report cooperative regulatory functions of miR858 and its MYB83 transcription factor target gene in transcriptome reprogramming during Heterodera cyst nematode parasitism of Arabidopsis (Arabidopsis thaliana). Gene expression analyses and promoter-GUS fusion assays documented a role of miR858 in posttranscriptional regulation of MYB83 in the Heterodera schachtii-induced feeding sites, the syncytia. Constitutive overexpression of miR858 interfered with H. schachtii parasitism of Arabidopsis, leading to reduced susceptibility, while reduced miR858 abundance enhanced plant susceptibility. Similarly, MYB83 expression increases were conducive to nematode infection because overexpression of a noncleavable coding sequence of MYB83 significantly increased plant susceptibility, whereas a myb83 mutation rendered the plants less susceptible. In addition, RNA-seq analysis revealed that genes involved in hormone signaling pathways, defense response, glucosinolate biosynthesis, cell wall modification, sugar transport, and transcriptional control are the key etiological factors by which MYB83 facilitates nematode parasitism of Arabidopsis. Furthermore, we discovered that miR858-mediated silencing of MYB83 is tightly regulated through a feedback loop that might contribute to fine-tuning the expression of more than a thousand of MYB83-regulated genes in the H. schachtii-induced syncytium. Together, our results suggest a role of the miR858-MYB83 regulatory system in finely balancing gene expression patterns during H. schachtii parasitism of Arabidopsis to ensure optimal cellular function.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Christina Kihm
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
12
|
Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA. Transgenic Strategies for Enhancement of Nematode Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:750. [PMID: 28536595 PMCID: PMC5422515 DOI: 10.3389/fpls.2017.00750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Amjad Abbas
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
| | - Faiz A. Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | | |
Collapse
|
13
|
Anwar S, Inselsbacher E, Grundler FM, Hofmann J. Arginine metabolism of Arabidopsis thaliana is modulated by Heterodera schachtii infection. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plant-parasitic cyst nematode Heterodera schachtii induces syncytial feeding structures in the roots of host plants. These syncytia provide all required nutrients, water and solutes to the parasites. Previous studies on the composition of primary metabolites in syncytia revealed significantly increased amino acid levels. However, mainly due to technical limitations, little is known about the role of arginine in plant-nematode interactions. This free amino acid plays a central role in the plant primary metabolism and serves as substrate for metabolites involved in plant stress responses. Thus, in the present work, expression of genes coding for the enzymes of arginine metabolism were studied in nematode-induced syncytia compared to non-infected control roots of Arabidopsis thaliana. Further, amiRNA lines were constructed and T-DNA lines were isolated to test their effects on nematode development. While the silencing of genes involved in arginine synthesis increased nematode development, most T-DNA lines did not show any significant difference from the wild type. Amino acid analyses of syncytia showed that they accumulate high arginine levels. In addition, manipulating arginine cycling had a global effect on the local amino acid composition in syncytia as well as on the systemic amino acid levels in roots and shoots.
Collapse
Affiliation(s)
- Shahbaz Anwar
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln, Austria
| | - Erich Inselsbacher
- Department of Geography and Regional Research, University of Vienna, 1010 Vienna, Austria
| | - Florian M.W. Grundler
- INRES Molecular Phytomedicine, University Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany
| | - Julia Hofmann
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln, Austria
| |
Collapse
|
14
|
Goyal RK, Mattoo AK. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:135-49. [PMID: 25438794 DOI: 10.1016/j.plantsci.2014.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 05/20/2023]
Abstract
Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.
Collapse
Affiliation(s)
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, ARS's Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
15
|
Ali MA, Wieczorek K, Kreil DP, Bohlmann H. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One 2014; 9:e102360. [PMID: 25033038 PMCID: PMC4102525 DOI: 10.1371/journal.pone.0102360] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/18/2014] [Indexed: 12/02/2022] Open
Abstract
Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Plant Pathology, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David P. Kreil
- Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Ali MA, Plattner S, Radakovic Z, Wieczorek K, Elashry A, Grundler FMW, Ammelburg M, Siddique S, Bohlmann H. An Arabidopsis ATPase gene involved in nematode-induced syncytium development and abiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:852-66. [PMID: 23480402 PMCID: PMC3712482 DOI: 10.1111/tpj.12170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 03/04/2013] [Indexed: 05/08/2023]
Abstract
The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up-regulated in syncytia as shown by RT-PCR, quantitative RT-PCR, in situ RT-PCR and promoter::GUS lines, encodes an AAA+-type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T-DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T-DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the 'meiotic clade' of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Stephan Plattner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Zoran Radakovic
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Abdelnaser Elashry
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Florian MW Grundler
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Moritz Ammelburg
- Department 1, Protein Evolution, Max Planck Institute for Developmental BiologySpemannstraße 35, Tübingen, 72076, Germany
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- *For correspondence (e-mail )
| |
Collapse
|
17
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Jirschitzka J, Mattern DJ, Gershenzon J, D'Auria JC. Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr Opin Biotechnol 2012; 24:320-8. [PMID: 23141769 DOI: 10.1016/j.copbio.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential.
Collapse
Affiliation(s)
- Jan Jirschitzka
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
19
|
Ali MA, Shah KH, Bohlmann H. pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage. BMC Biotechnol 2012; 12:37. [PMID: 22747516 PMCID: PMC3478159 DOI: 10.1186/1472-6750-12-37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The production of transgenic plants, either for the overproduction of the protein of interest, for promoter: reporter lines, or for the downregulation of genes is an important prerequisite in modern plant research but is also very time-consuming. RESULTS We have produced additions to the pPZP family of vectors. Vector pPZP500 (derived from pPZP200) is devoid of NotI sites and vector pPZP600 (derived from pPZP500) contains a bacterial kanamycin resistance gene. Vector pMAA-Red contains a Pdf2.1: DsRed marker and a CaMV:: GUS cassette within the T-DNA and is useful for the production of promoter: GUS lines and overexpression lines. The Pdf2.1 promoter is expressed in seeds and syncytia induced by the beet cyst nematode Heterodera schachti in Arabidopsis roots. Transgenic seeds show red fluorescence which can be used for selection and the fluorescence level is indicative of the expression level of the transgene. The advantage is that plants can be grown on soil and that expression of the marker can be directly screened at the seed stage which saves time and resources. Due to the expression of the Pdf2.1: DsRed marker in syncytia, the vector is especially useful for the expression of a gene of interest in syncytia. CONCLUSIONS The vector pMAA-Red allows for fast and easy production of transgenic Arabidopsis plants with a strong expression level of the gene of interest.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kausar Hussain Shah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| |
Collapse
|