1
|
Dong L, Shi J, Persson S, Huang G, Zhang D. RMD and Its Suppressor MAPK6 Control Root Circumnutation and Obstacle Avoidance via BR Signaling. Int J Mol Sci 2024; 25:10543. [PMID: 39408870 PMCID: PMC11477179 DOI: 10.3390/ijms251910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Helical growth of the root tip (circumnutation) that permits surface exploration facilitates root penetration into soil. Here, we reveal that rice actin-binding protein RMD aids in root circumnutation, manifested by wavy roots as well as compromised ability to efficiently explore and avoid obstacles in rmd mutants. We demonstrate that root circumnutation defects in rmd depend on brassinosteroid (BR) signaling, which is elevated in mutant roots. Suppressing BR signaling via pharmacological (BR inhibitor) or genetic (knockout of BR biosynthetic or signaling components) manipulation rescues root defects in rmd. We further reveal that mutations in MAPK6 suppress BR signaling and restore normal root circumnutation in rmd, which may be mediated by the interaction between MAPK6, MAPKK4 and BR signaling factor BIM2. Our study thus demonstrates that RMD and MAPK6 control root circumnutation by modulating BR signaling to facilitate early root growth.
Collapse
Affiliation(s)
- Le Dong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.S.); (S.P.); (G.H.); (D.Z.)
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.S.); (S.P.); (G.H.); (D.Z.)
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.S.); (S.P.); (G.H.); (D.Z.)
- Department of Plant & Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.S.); (S.P.); (G.H.); (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.S.); (S.P.); (G.H.); (D.Z.)
| |
Collapse
|
2
|
Zhang Y, Dong G, Zhang Y, Jiang Y, Chen F, Ruan B, Wu L, Yu Y. BLA1 Affects Leaf Angles by Altering Brassinosteroid Biosynthesis in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19629-19643. [PMID: 39207175 DOI: 10.1021/acs.jafc.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brassinosteroids (BRs) are crucial plant hormones influencing diverse developmental processes in rice. While several enzymes in BR biosynthesis have been identified, their regulatory mechanisms remain largely unknown. This study highlights a novel regulatory pathway wherein the CHD3 chromatin remodeler, BLA1, epigenetically modulates the expression of key BR biosynthesis genes, BRD1 and D2. Phenotypic analysis of bla1 mutants revealed significant alterations, such as increased leaf angles and longer mesocotyls, which were alleviated by BR synthesis inhibitors. Moreover, the bla1 mutants showed elevated BR levels that correlated with the significant upregulation of the expression levels of BRD1 and D2, particularly at the lamina joint sites. Mechanistically, the yeast one-hybrid and chromatin immunoprecipitation assays revealed specific binding of BLA1 to the promoter regions of BRD1 and D2, accompanied by a marked enrichment of the transcriptionally active histone modification, H3K4me3, on these loci in the bla1 mutant. Functional assessments of the brd1 and d2 mutants confirmed their reduced sensitivity to BR, further underscoring their critical regulatory roles in BR-mediated developmental processes. Our findings uncovered an epigenetic mechanism that governs BR biosynthesis and orchestrates the expression of BRD1 and D2 to modulate BR levels and influence rice growth and development.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
4
|
Hua C, Xu Z, Tang N, Xu Y, Zhang Y, Li C. Identification of P450 Candidates Associated with the Biosynthesis of Physalin-Class Compounds in Physalis angulata. Int J Mol Sci 2023; 24:14077. [PMID: 37762378 PMCID: PMC10531436 DOI: 10.3390/ijms241814077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The Physalis genus has long been used as traditional medicine in the treatment of various diseases. Physalins, the characteristic class of compounds in this genus, are major bioactive constituents. To date, the biogenesis of physalins remains largely unknown, except for the recently established knowledge that 24-methyldesmosterol is a precursor of physalin. To identify the genes encoding P450s that are putatively involved in converting 24-methyldesmosterol to physalins, a total of 306 P450-encoding unigenes were retrieved from our recently constructed P. angulata transcriptome. Extensive phylogenetic analysis proposed 21 P450s that might participate in physalin biosynthesis. To validate the candidates, we developed a virus-induced gene silencing (VIGS) system for P. angulata, and four P450 candidates were selected for the VIGS experiments. The reduction in the transcripts of the four P450 candidates by VIGS all led to decreased levels of physalin-class compounds in the P. angulata leaves. Thus, this study provides a number of P450 candidates that are likely associated with the biosynthesis of physalin-class compounds, forming a strong basis to reveal the unknown physalin biosynthetic pathway in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.H.); (Z.X.); (N.T.); (Y.X.); (Y.Z.)
| |
Collapse
|
5
|
Li R, Xiao M, Li J, Zhao Q, Wang M, Zhu Z. Transcriptome Analysis of CYP450 Family Members in Fritillaria cirrhosa D. Don and Profiling of Key CYP450s Related to Isosteroidal Alkaloid Biosynthesis. Genes (Basel) 2023; 14:219. [PMID: 36672960 PMCID: PMC9859280 DOI: 10.3390/genes14010219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fritillaria cirrhosa D. Don (known as Chuan-Bei-Mu in Chinese) can synthesize isosteroidal alkaloids (ISA) with excellent medicinal value, and its bulb has become an indispensable ingredient in many patented drugs. Members of the cytochrome P450 (CYP450) gene superfamily have been shown to play essential roles in regulating steroidal alkaloids biosynthesis. However, little information is available on the P450s in F. cirrhosa. Here, we performed full-length transcriptome analysis and discovered 48 CYP450 genes belonging to 10 clans, 25 families, and 46 subfamilies. By combining phylogenetic trees, gene expression, and key F. cirrhosa ISA content analysis, we presumably identify seven FcCYP candidate genes, which may be hydroxylases active at the C-22, C-23, or C-26 positions in the late stages of ISA biosynthesis. The transcript expression levels of seven FcCYP candidate genes were positively correlated with the accumulation of three major alkaloids in bulbs of different ages. These data suggest that the candidate genes are most likely to be associated with ISA biosynthesis. Finally, the subcellular localization prediction of FcCYPs and transient expression analysis within Nicotiana benthamiana showed that the FcCYPs were mainly localized in the chloroplast. This study presents a systematic analysis of the CYP450 gene family in F. cirrhosa and provides a foundation for further functional characterization of the CYPs involved in ISA biosynthesis.
Collapse
Affiliation(s)
- Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Maotao Xiao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Mingcheng Wang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Zhan H, Lu M, Luo Q, Tan F, Zhao Z, Liu M, He Y. OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111482. [PMID: 36191635 DOI: 10.1016/j.plantsci.2022.111482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), member of the CYP90A family of cytochrome P450 (CYP450) monooxygenase, is an essential component of brassinosteroids (BRs) biosynthesis pathway. Compared with a single CPD/CYP90A1 in Arabidopsis thaliana, two highly homologous CPD genes, OsCPD1/CYP90A3 and OsCPD2/CYP90A4, are present in rice genome. There is still no genetic evidence so far about the requirement of OsCPD1 and OsCPD2 in rice BR biosynthesis. In this study, we reported the functional characterization of OsCPD genes using CRISPR/Cas9 gene editing technology. The overall growth and development of oscpd1 and oscpd2 single knock-out mutants was indistinguishable from the wild-type, whereas, the oscpd1 oscpd2 double mutant displayed multiple and obvious BR-related defects. Cytological analyses further indicated the defective cell elongation in oscpd1 oscpd2 double mutant. The oscpd double mutants had a lower endogenous BR level and could be restored by the application of the brassinolide (BL). Moreover, overexpression of OsCPD1 and OsCPD2 led to a typical BR enhanced phenotype, with enlarged leaf angle and increased grain size. Taken together, our results provide direct genetic evidence that OsCPD1 and OsCPD2 play essential and redundant roles in maintenance of plant architecture by modulating BR biosynthesis in rice.
Collapse
Affiliation(s)
- Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingmin Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tan
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingqian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Malhotra K, Franke J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J Org Chem 2022; 18:1289-1310. [PMID: 36225725 PMCID: PMC9520826 DOI: 10.3762/bjoc.18.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.
Collapse
Affiliation(s)
- Karan Malhotra
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
8
|
Kim SH, Shim KC, Lee HS, Jeon YA, Adeva C, Luong NH, Ahn SN. Brassinosteroid biosynthesis gene OsD2 is associated with low-temperature germinability in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985559. [PMID: 36204076 PMCID: PMC9530605 DOI: 10.3389/fpls.2022.985559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
In rice, low-temperature germinability (LTG) is essential for stable stand establishment using the direct seeding method in temperate and high-altitude areas. Previously, we reported that the quantitative trait locus qLTG1 is associated with LTG. qLTG1 is also associated with tolerance to several abiotic stresses, such as salt and osmotic conditions. In this study, map-based cloning and sequence analysis indicated that qLTG1 is allelic to DWARF2 (OsD2), which encodes cytochrome P450 D2 (LOC_Os01g10040) involved in brassinosteroid (BR) biosynthesis. Sequence comparison of the two parental lines, Hwaseong and Oryza rufipogon (IRGC 105491), revealed five single nucleotide polymorphisms (SNPs) in the coding region. Three of these SNPs led to missense mutations in OsD2, whereas the other two SNPs were synonymous. We evaluated two T-DNA insertion mutants, viz., overexpression (OsD2-OE) and knockdown (OsD2-KD) mutants of OsD2, with the Dongjin genetic background. OsD2-KD plants showed a decrease in LTG and grain size. In contrast, OsD2-OE plants showed an increase in grain size and LTG. We also examined the expression levels of several BR signaling and biosynthetic genes using the T-DNA insertion mutants. Gene expression analysis and BR application experiments demonstrated that BR enhanced the seed germination rate under low-temperature conditions. These results suggest that OsD2 is associated with the regulation of LTG and improving grain size. Thus, OsD2 may be a suitable target for rice breeding programs to improve rice yield and LTG.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
9
|
Gaur VS, Channappa G, Chakraborti M, Sharma TR, Mondal TK. ‘Green revolution’ dwarf genesd1of rice has gigantic impact. Brief Funct Genomics 2020. [DOI: 10.1093/bfgp/elaa019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractRice (Oryza sativa L.) is one of the most important cereal that has fed the world over a longer period. Before green revolution, cultivated rice is believed to have consisted of thousands of landraces each adapted to its specific climatic conditions by surviving against different abiotic and biotic selection pressure. However, owing to the low yield, photo-period sensitivity, late maturity and sensitivity to lodging of these landraces grown world-wide, serious concerns of impending global food crisis was felt during the 1960s because of (i) unprecedented increase of the population and (ii) concomitant decline in the cultivable land. Fortunately, high-yielding varieties developed through the introgression of the semi-dwarf1 gene (popularly known as sd1) during the 1960s led to significant increments in the food grain production that averted the apprehensions of nearing famine. This historical achievement having deep impact in the global agriculture is popularly referred as ‘Green Revolution.’ In this paper, we reviewed, its genetics as well as molecular regulations, evolutionary relationship with orthologous genes from other cereals as well as pseudo-cereals and attempted to provide an up-to-date information about its introgression to different rice cultivars of the world.
Collapse
Affiliation(s)
- Vikram Singh Gaur
- College of Agriculture, Balaghat, JNKVV, Jabalpur, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
10
|
Wei Z, Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:583622. [PMID: 33133120 PMCID: PMC7550685 DOI: 10.3389/fpls.2020.583622] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are known as one of the major classes of phytohormones essential for various processes during normal plant growth, development, and adaptations to biotic and abiotic stresses. Significant progress has been achieved on revealing mechanisms regulating BR biosynthesis, catabolism, and signaling in many crops and in model plant Arabidopsis. It is known that BRs control plant growth and development in a dosage-dependent manner. Maintenance of BR homeostasis is therefore critical for optimal functions of BRs. In this review, updated discoveries on mechanisms controlling BR homeostasis in higher plants in response to internal and external cues are discussed.
Collapse
|
11
|
Ferrero-Serrano Á, Cantos C, Assmann SM. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb Perspect Biol 2019; 11:a034645. [PMID: 31358515 PMCID: PMC6824242 DOI: 10.1101/cshperspect.a034645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.
Collapse
Affiliation(s)
| | - Christian Cantos
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Overexpression of a Novel Cytochrome P450 Promotes Flavonoid Biosynthesis and Osmotic Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2019; 10:genes10100756. [PMID: 31561549 PMCID: PMC6826380 DOI: 10.3390/genes10100756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Flavonoids are mainly associated with growth, development, and responses to diverse abiotic stresses in plants. A growing amount of data have demonstrated the biosynthesis of flavonoids through multienzyme complexes of which the membrane-bounded cytochrome P450 supergene family shares a crucial part. However, the explicit regulation mechanism of Cytochrome P450s related to flavonoid biosynthesis largely remains elusive. In the present study, we reported the identification of a stress-tolerant flavonoid biosynthetic CtCYP82G24 gene from Carthamus tinctorius. The transient transformation of CtCYP82G24 determined the subcellular localization to the cytosol. Heterologously expressed CtCYP82G24 was effective to catalyze the substrate-specific conversion, promoting the de novo biosynthesis of flavonoids in vitro. Furthermore, a qRT-PCR assay and the accumulation of metabolites demonstrated that the expression of CtCYP82G24 was effectively induced by Polyethylene glycol stress in transgenic Arabidopsis. In addition, the overexpression of CtCYP82G24 could also trigger expression levels of several other flavonoid biosynthetic genes in transgenic plants. Taken together, our findings suggest that CtCYP82G24 overexpression plays a decisive regulatory role in PEG-induced osmotic stress tolerance and alleviates flavonoid accumulation in transgenic Arabidopsis.
Collapse
|
13
|
Zhang W, Zhu K, Wang Z, Zhang H, Gu J, Liu L, Yang J, Zhang J. Brassinosteroids function in spikelet differentiation and degeneration in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:943-963. [PMID: 30246370 DOI: 10.1111/jipb.12722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) play crucial roles in many aspects of plant development. However, their function in spikelet differentiation and degeneration in rice (Oryza sativa L.) remains unclear. Here, we investigated the roles of these phytohormones in spikelet development in field-grown rice subjected to five different nitrogen (N) fertilization treatments during panicle differentiation. BR levels and expression of genes involved in BR biosynthesis and signal transduction were measured in spikelets. Pollen fertility and the number of differentiated spikelets were closely associated with 24-epicastasterone (24-epiCS) and 28-homobrassinolide (28-homoBL) levels in spikelets. Enhanced BR biosynthesis and signal transduction, in response to N treatment, enhanced spikelet differentiation, reduced spikelet degeneration, and increased grain yield. Increases in proton-pumping ATPase activity, ATP concentration, energy charge, and antioxidant system (AOS) levels were consistent with 24-epiCS and 28-homoBL concentrations. Exogenous application of 24-epiCS or 28-homoBL on young panicles induced a marked increase in endogenous 24-epiCS or 28-homoBL levels, energy charge, AOS levels, spikelet differentiation, and panicle weight. The opposite effects were observed following treatment with a BR biosynthesis inhibitor. Our findings indicate that, in rice, BRs mediate the effects of N fertilization on spikelet development and play a role in promoting spikelet development through increasing AOS levels and energy charge during panicle development.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
Liu X, Yang CY, Miao R, Zhou CL, Cao PH, Lan J, Zhu XJ, Mou CL, Huang YS, Liu SJ, Tian YL, Nguyen TL, Jiang L, Wan JM. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. RICE (NEW YORK, N.Y.) 2018; 11:46. [PMID: 30084027 PMCID: PMC6082143 DOI: 10.1186/s12284-018-0239-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant height and leaf angle are important determinants of yield in rice (Oryza sativa L.). Genes involved in regulating plant height and leaf angle were identified in previous studies; however, there are many remaining unknown factors that affect rice architecture. RESULTS In this study, we characterized a dwarf mutant named ds1 with small grain size and decreased leaf angle,selected from an irradiated population of ssp. japonica variety Nanjing35. The ds1 mutant also showed abnormal floral organs. ds1 plants were insensitive to BL treatment and expression of genes related to BR signaling was changed. An F2 population from a cross between ds1 and indica cultivar 93-11 was used to fine map DS1 and to map-based clone the DS1 allele, which encoded an EMF1-like protein that acted as a transcriptional regulator. DS1 was constitutively expressed in various tissues, and especially highly expressed in young leaves, panicles and seeds. We showed that the DS1 protein interacted with auxin response factor 11 (OsARF11), a major transcriptional regulator of plant height and leaf angle, to co-regulate D61/OsBRI1 expression. These findings provide novel insights into understanding the molecular mechanisms by which DS1 integrates auxin and brassinosteroid signaling in rice. CONCLUSION The DS1 gene encoded an EMF1-like protein in rice. The ds1 mutation altered the expression of genes related to BR signaling, and ds1 was insensitive to BL treatment. DS1 interacts with OsARF11 to co-regulate OsBRI1 expression.
Collapse
Affiliation(s)
- X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C Y Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - R Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C L Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - P H Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X J Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C L Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y S Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - T L Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Tian M, Zhang X, Zhu Y, Xie G, Qin M. Global Transcriptome Analyses Reveal Differentially Expressed Genes of Six Organs and Putative Genes Involved in (Iso)flavonoid Biosynthesis in Belamcanda chinensis. FRONTIERS IN PLANT SCIENCE 2018; 9:1160. [PMID: 30154811 PMCID: PMC6102373 DOI: 10.3389/fpls.2018.01160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 05/16/2023]
Abstract
Belamcanda chinensis (L.) DC., a perennial herb of the family Iridaceae, is rich in a variety of (iso)flavonoids with significant organ-specific distribution and has a swollen rhizome that is widely used in East Asia as a traditional medicine. In the present study, comprehensive transcriptomes of six organs (root, rhizome, aerial stem, leaf, flower, and young fruit) of B. chinensis were obtained by high-throughput RNA-sequencing and de novo assembly. A total of 423,661 unigenes (mean length = 618 bp, median length = 391 bp) were assembled and annotated in seven databases: Non-redundant protein sequences, Nucleotide sequences, Swiss-Prot, Protein family database, euKaryotic Ortholog Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). A total of 4995 transcription factors were identified, including 408 MYB, 182 bHLH, 277 AP2/ERF, and 228 WRKY genes. A total of 129 cytochrome P450 unigenes belonging to 10 divergent clans were identified and grouped into clades in a phylogenetic tree that showed their inferred evolutionary relationship. Differentially expressed unigenes among the six organs were subjected to GO and KEGG enrichment analysis to profile the functions of each organ. Unigenes associated with (iso)flavonoid biosynthesis were then profiled by expression level analysis. Additionally, the complete coding sequences of six predicted enzymes essential to the (iso)flavonoid pathway were obtained, based on the annotated unigenes. This work reveals clear differences in expression patterns of genes among the six organs and will provide a sound platform to understand the (iso)flavonoid pathways in B. chinensis.
Collapse
Affiliation(s)
- Mei Tian
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Xiang Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education), China Pharmaceutical University, Nanjing, China
- *Correspondence: Minjian Qin,
| |
Collapse
|
16
|
Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING Form a Complex to Integrate Auxin and Brassinosteroid Signaling in Rice. MOLECULAR PLANT 2017; 10:590-604. [PMID: 28069545 DOI: 10.1016/j.molp.2016.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 05/21/2023]
Abstract
Although auxin and brassinosteroid (BR) synergistically control various plant responses, the molecular mechanism underlying the auxin-BR crosstalk is not well understood. We previously identified SMOS1, an auxin-regulated APETALA2-type transcription factor, as the causal gene of the small organ size 1 (smos1) mutant that is characterized by a decreased final size of various organs in rice. In this study, we identified another smos mutant, smos2, which shows the phenotype indistinguishable from smos1. SMOS2 was identical to the previously reported DWARF AND LOW-TILLERING (DLT), which encodes a GRAS protein involved in BR signaling. SMOS1 and SMOS2/DLT physically interact to cooperatively enhance transcriptional transactivation activity in yeast and in rice nuclei. Consistently, the expression of OsPHI-1, a direct target of SMOS1, is upregulated only when SMOS1 and SMOS2/DLT proteins are both present in rice cells. Taken together, our results suggest that SMOS1 and SMOS2/DLT form a keystone complex on auxin-BR signaling crosstalk in rice.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan.
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Hayashi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kanna Sato-Izawa
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Hou Y, Qiu J, Wang Y, Li Z, Zhao J, Tong X, Lin H, Zhang J. A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:514. [PMID: 28439285 PMCID: PMC5383725 DOI: 10.3389/fpls.2017.00514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
The group of polyhydroxysteroid phytohormones referred to as the brassinosteroids (BRs) is known to act on plant development and the stress response. BR signal transduction relies largely on protein phosphorylation. By employing a label-free, MS (Mass Spectrometry)-based phosphoproteomic approach, we report here the largest profiling of 4,034 phosphosites on 1,900 phosphoproteins from rice young seedlings and their dynamic response to BR. 1,821 proteins, including kinases, transcription factors and core components of BR and other hormone signaling pathways, were found to be differentially phosphorylated during the BR treatment. A Western blot analysis verified the differential phosphorylation of five of these proteins, implying that the MS-based phosphoproteomic data were robust. It is proposed that the dephosphorylation of gibberellin (GA) signaling components could represent an important mechanism for the BR-regulated antagonism to GA, and that BR influences the plant architecture of rice by regulating cellulose synthesis via phosphorylation.
Collapse
Affiliation(s)
- Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Jian Zhang,
| |
Collapse
|
18
|
Luo X, Zheng J, Huang R, Huang Y, Wang H, Jiang L, Fang X. Phytohormones signaling and crosstalk regulating leaf angle in rice. PLANT CELL REPORTS 2016; 35:2423-2433. [PMID: 27623811 DOI: 10.1007/s00299-016-2052-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/31/2016] [Indexed: 05/14/2023]
Abstract
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
Collapse
Affiliation(s)
- Xiangyu Luo
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingsheng Zheng
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Liangrong Jiang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Xuanjun Fang
- Institute of Life Sciences, Jiyang College of Zhejiang, A&F University, Zhuji, 311800, China.
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, China.
| |
Collapse
|
19
|
Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun 2016; 7:10527. [PMID: 26841834 PMCID: PMC4742901 DOI: 10.1038/ncomms10527] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Rice panicle architecture is a key target of selection when breeding for yield and grain quality. However, panicle phenotypes are difficult to measure and susceptible to confounding during genetic mapping due to correlation with flowering and subpopulation structure. Here we quantify 49 panicle phenotypes in 242 tropical rice accessions with the imaging platform PANorama. Using flowering as a covariate, we conduct a genome-wide association study (GWAS), detect numerous subpopulation-specific associations, and dissect multi-trait peaks using panicle phenotype covariates. Ten candidate genes in pathways known to regulate plant architecture fall under GWAS peaks, half of which overlap with quantitative trait loci identified in an experimental population. This is the first study to assess inflorescence phenotypes of field-grown material using a high-resolution phenotyping platform. Herein, we establish a panicle morphocline for domesticated rice, propose a genetic model underlying complex panicle traits, and demonstrate subtle links between panicle size and yield performance. Panicle architecture is an important determinant of crop yield and a target of selection by plant breeders. Here, Crowell et al. combine image-based phenotyping with high-density array-based genotyping to perform a genome-wide association study revealing a number of candidate genes linked to panicle variation in rice.
Collapse
|
20
|
Lindemann P. Steroidogenesis in plants--Biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids 2015; 103:145-52. [PMID: 26282543 DOI: 10.1016/j.steroids.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/03/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
In plants androstanes, estranes, pregnanes and corticoids have been described. Sometimes 17β-estradiol, androsterone, testosterone or progesterone were summarized as sex hormones. These steroids influence plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. First reports on the effect of applicated substances and of their endogenous occurrence date from the early twenties of the last century. This caused later on doubts on the identity of the compounds. Best investigated is the effect of progesterone. Main steps of the progesterone biosynthetic pathway have been analyzed in Digitalis. Cholesterol-side-chain-cleavage, pregnenolone and progesterone formation as well as the stereospecific reduction of progesterone are described and the corresponding enzymes are presented. Biosynthesis of androstanes, estranes and corticoids is discussed. Possible progesterone receptors and physiological reactions on progesterone application are reviewed.
Collapse
Affiliation(s)
- Peter Lindemann
- Institut für Pharmazie, Martin-Luther Universität Halle/Wittenberg, Hoher Weg 8, 06120 Halle, Germany.
| |
Collapse
|
21
|
Rizal G, Thakur V, Dionora J, Karki S, Wanchana S, Acebron K, Larazo N, Garcia R, Mabilangan A, Montecillo F, Danila F, Mogul R, Pablico P, Leung H, Langdale JA, Sheehy J, Kelly S, Quick WP. Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:257-66. [PMID: 26333774 DOI: 10.1111/tpj.13007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 05/03/2023]
Abstract
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C(4) traits into C(3) plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C(4) plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C(4) species from C(3) species. To identify genetic factors that specify C(4) leaf anatomy, we generated ethyl methanesulfonate- and γ-ray-mutagenized populations of the C(4) species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F(2) populations as homozygous recessive alleles. Bulk segregant analysis using next-generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C(4) and C(3) leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.
Collapse
Affiliation(s)
- Govinda Rizal
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jacqueline Dionora
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shanta Karki
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Samart Wanchana
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Kelvin Acebron
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Nikki Larazo
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Richard Garcia
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Abigail Mabilangan
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Florencia Montecillo
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Florence Danila
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Reychelle Mogul
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Paquito Pablico
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Hei Leung
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - John Sheehy
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- 12 Barley Way, Marlow, SL7 2UG, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - William Paul Quick
- C4 Rice Center, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Plant and Animal Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Asahina M, Tamaki Y, Sakamoto T, Shibata K, Nomura T, Yokota T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. PHYTOCHEMISTRY 2014; 104:21-9. [PMID: 24856112 DOI: 10.1016/j.phytochem.2014.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/13/2014] [Accepted: 04/23/2014] [Indexed: 05/07/2023]
Abstract
In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light.
Collapse
Affiliation(s)
- Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Yuji Tamaki
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Takahito Nomura
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| |
Collapse
|
23
|
Zhang C, Bai MY, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. PLANT CELL REPORTS 2014; 33:683-96. [PMID: 24667992 PMCID: PMC3988522 DOI: 10.1007/s00299-014-1578-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid phytohormones with wide-ranging biological activity. Genetic, genomic and proteomic studies have greatly advanced our understanding of BR signaling in Arabidopsis and revealed a connected signal transduction pathway from the cell surface receptor kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to the BRASSINAZOLE-RESISTANT1 (BZR1) family of transcription factors and their targets mediating physiological functions. However, compared with the dicot model plant Arabidopsis, much less is known about BR signaling in rice, which is a monocot. In this review, we provide an update on the progress made by BR studies in rice and discuss how BR regulates various important agronomic traits to determine rice grain yield. Specifically, we discuss the function of novel components including LEAF AND TILLER ANGLE INCREASED CONTROLLER (LIC), DWARF and LOW-TILLERING (DLT), DWARF1 (D1) and TAIHU DWARF1 (TUD1) in rice BR signaling, and provide a rice BR-signaling pathway model that involves a BRI1-dependent pathway as well as a G-protein α subunit-mediated signaling pathway. The recent significant advances in our understanding of BR-mediated molecular mechanisms underlying agronomic traits will be of great help for rice molecular breeding.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ming-yi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100 China
| | - Kang Chong
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
24
|
Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). THE NEW PHYTOLOGIST 2013; 200:1076-88. [PMID: 23902579 DOI: 10.1111/nph.12427] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/22/2013] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are essential regulators of plant architecture. Understanding how BRs control plant height and leaf angle would facilitate development of new plant type varieties by biotechnology. A number of mutants involved in BR biosynthesis have been isolated but many of them lack detailed genetic analysis. Here, we report the isolation and characterization of a severe dwarf mutant, chromosome segment deleted dwarf 1 (csdd1), which was deficient in BR biosynthesis in rice. We isolated the mutant by screening a tissue culture-derived population, cloned the gene by mapping, and confirmed its function by complementary and RNAi experiments, combined with physiological and chemical analysis. We showed that the severe dwarf phenotype was caused by a complete deletion of a cytochrome P450 gene, CYP90D2/D2, which was further confirmed in two independent T-DNA insertion lines in different genetic backgrounds and by RNA interference. Our chemical analysis suggested that CYP90D2/D2 might catalyze C-3 dehydrogenation step in BR biosynthesis. We have demonstrated that the CYP90D2/D2 gene plays a more important role than previously reported. Allelic mutations of CYP90D2/D2 confer varying degrees of dwarfism and leaf angle, thus providing useful information for molecular breeding in grain crop plants.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vriet C, Russinova E, Reuzeau C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. MOLECULAR PLANT 2013; 6:1738-57. [PMID: 23761349 DOI: 10.1093/mp/sst096] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant steroid hormones, brassinosteroids (BRs), and their precursors, phytosterols, play major roles in plant growth, development, and stress tolerance. Here, we review the impressive progress made during recent years in elucidating the components of the sterol and BR metabolic and signaling pathways, and in understanding their mechanism of action in both model plants and crops, such as Arabidopsis and rice. We also discuss emerging insights into the regulations of these pathways, their interactions with other hormonal pathways and multiple environmental signals, and the putative nature of sterols as signaling molecules.
Collapse
Affiliation(s)
- Cécile Vriet
- CropDesign NV, a BASF Plant Science Company, 9052 Gent, Belgium
| | | | | |
Collapse
|
26
|
Sakamoto T, Kitano H, Fujioka S. An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice. PLANT SIGNALING & BEHAVIOR 2013; 8:e27117. [PMID: 24299927 PMCID: PMC4091358 DOI: 10.4161/psb.27117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A spontaneous rice mutant, erect leaf1 (elf1-1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1-1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; Ishikawa, Japan
- Correspondence to: Tomoaki Sakamoto,
| | - Hidemi Kitano
- Bioscience and Biotechnology Center; Nagoya University; Aichi, Japan
| | | |
Collapse
|
27
|
Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:676-88. [PMID: 23146214 DOI: 10.1111/tpj.12071] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 05/03/2023]
Abstract
The phytohormones auxins and brassinosteroids are both essential regulators of physiological and developmental processes, and it has been suggested that they act inter-dependently and synergistically. In rice (Oryza sativa), auxin co-application improves the brassinosteroid response in the rice lamina inclination bioassay. Here, we showed that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor. Auxin treatment increased expression of the rice brassinosteroid receptor gene OsBRI1. The promoter of OsBRI1 contains an auxin-response element (AuxRE) that is targeted by auxin-response factor (ARF) transcription factors. An AuxRE mutation abolished the induction of OsBRI1 expression by auxins, and OsBRI1 expression was down-regulated in an arf mutant. The AuxRE motif in the OsBRI1 promoter, and thus the transient up-regulation of OsBRI1 expression caused by treatment with indole-3-acetic acid, is essential for the indole-3-acetic acid-induced increase in sensitivity to brassinosteroids. These findings demonstrate that some ARFs control the degree of brassinosteroid perception required for normal growth and development in rice. Although multi-level interactions between auxins and brassinosteroids have previously been reported, our findings suggest a mechanism by which auxins control cellular sensitivity to brassinosteroids, and further support the notion that interactions between auxins and brassinosteroids are extensive and complex.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | | | | | | | | |
Collapse
|
28
|
Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:746-59. [PMID: 22963251 DOI: 10.1111/j.1744-7909.2012.01168.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) are a group of naturally-occurring steroidal phytohormones playing fundamental roles during normal plant growth and development. Using a combination of experimental approaches, including analytical chemistry, genetics, and biochemistry, the major BR biosynthetic pathway has been largely elucidated. The least-understood knowledge in the BR research field is probably the molecular mechanisms controlling the bioactive levels of BRs in response to various developmental and environmental cues. In this review, we focus our discussion on a recently-proposed, 8-step predominant BR biosynthetic pathway, several newly-identified transcription factors regulating the expression of key enzymes that catalyze BR biosynthesis, and up-to-date information about the mechanisms that plants use to inactivate unnecessary BRs.
Collapse
Affiliation(s)
- Baolin Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|