1
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
2
|
Effects of the Chloroplast Fructose-1,6-Bisphosphate Aldolase Gene on Growth and Low-Temperature Tolerance of Tomato. Int J Mol Sci 2022; 23:ijms23020728. [PMID: 35054921 PMCID: PMC8775715 DOI: 10.3390/ijms23020728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.
Collapse
|
3
|
Wang X, Rao H, Ma J, Chen X, Li G, Zhao G. Genomic Variation Landscape of the Model Salt Cress Eutrema salsugineum. FRONTIERS IN PLANT SCIENCE 2021; 12:700161. [PMID: 34484264 PMCID: PMC8416042 DOI: 10.3389/fpls.2021.700161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eutrema salsugineum has long been used as the model for examining salt and other abiotic stress in plants. In addition to the forward genetics approaches widely used in the lab, natural variations undoubtedly will provide a rich genetic resource for studying molecular mechanisms underlying the stress tolerance and local adaptation of this species. We used 90 resequencing whole genomes of natural populations of this species across its Asian and North American distributions to detect the selection signals for genes involved in salt and other stresses at the species-range level and local distribution. We detected selection signals for genes involved in salt and other abiotic tolerance at the species level. In addition, several cold-induced and defense genes showed selection signals due to local adaptation in North America-NE Russia or northern China, respectively. These variations and findings provide valuable resources for further deciphering genetic mechanisms underlying the stress tolerance and local adaptations of this model species.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Rao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Special Economic Zone for Science and Technology Synergy, China State-Level Xixian New Area, Xi'an, China
| | - Jianxiang Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Guanglin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
4
|
Roussou S, Albergati A, Liang F, Lindblad P. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metab Eng Commun 2021; 12:e00161. [PMID: 33520653 PMCID: PMC7820548 DOI: 10.1016/j.mec.2021.e00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria are one of the most promising microorganisms to produce biofuels and renewable chemicals due to their oxygenic autotrophic growth properties. However, to rely on photosynthesis, which is one of the main reasons for slow growth, low carbon assimlation rate and low production, is a bottleneck. To address this challenge, optimizing the Calvin-Benson-Bassham (CBB) cycle is one of the strategies since it is the main carbon fixation pathway. In a previous study, we showed that overexpression of either aldolase (FBA), transketolase (TK), or fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), enzymes responsible for RuBP regeneration and vital for controlling the CBB carbon flux, led to higher production rates and titers in ethanol producing strains of Synechocystis PCC 6803. In the present study, we investigated the combined effects of the above enzymes on ethanol production in Synechocystis PCC 6803. The ethanol production of the strains overexpressing two CBB enzymes (FBA + TK, FBP/SBPase + FBA or FBP/SBPase + TK) was higher than the respective control strains, overexpressing either FBA or TK. The co-overexpression of FBA and TK led to more than 9 times higher ethanol production compared to the overexpression of FBA. Compared to TK the respective increase is 4 times more ethanol production. Overexpression of FBP/SBPase in combination with FBA showed 2.5 times higher ethanol production compared to FBA. Finally, co-overexpression of FBP/SBPase and TK reached about twice the production of ethanol compared to overexpression of only TK. This study clearly demonstrates that overexpression of two selected CBB enzymes leads to significantly increased ethanol production compared to overexpression of a single CBB enzyme.
Collapse
Affiliation(s)
- Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Alessia Albergati
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Feiyan Liang
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| |
Collapse
|
5
|
Zhang Z, Xia B, Li Y, Lin Y, Xie J, Wu P, Lin L, Liao D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J Proteomics 2020; 232:104028. [PMID: 33129985 DOI: 10.1016/j.jprot.2020.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Prunella vulgaris L., better known as 'self-heal', has been extensively used in the traditional system of medicines. To reveal the regulatory mechanism of its development, TMT-based quantitative proteome analysis was performed in the Prunella vulgaris L. spica before and during ripening (Group A and Group B, respectively). This analysis resulted in the identification of 7655 proteins, of which 1910 showed differential abundance between the two groups. Pronounced changes in the proteomic profile included the following: 1) Stress-responsive proteins involved in protecting cells and promoting fruit ripening and seed development were highly abundant during ripening. 2) The degradation of chlorophyll, inhibition of chlorophyll biosynthesis and increased abundance of transketolase occurred simultaneously in the spica of Prunella vulgaris L., resulting in the spica changing color from green to brownish red. 3) The abundance of protein species related to phenylpropanoid biosynthesis mainly increased during ripening, while flavonoid and terpenoid backbone biosynthesis mostly occurred before ripening. SIGNIFICANCE: This study establishes a link between protein profiles and mature phenotypes, which will help to improve our understanding of the molecular mechanisms involved in the maturation of Prunella vulgaris L. at the proteome level and reveal the scientific connotation for the best time to harvest Prunella vulgaris L. This work provides a scientific basis for the production of high-quality medicinal Prunella vulgaris L., as well as a typical demonstration of molecular research used for the harvest period of traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: This work provided a comprehensive overview on the functional protein profile changes of Prunella vulgaris L. spica at different growing stages, as well as the scientific rationale of Prunella vulgaris L. harvested in summer after brownish red, thus laid an intriguing stepping stone for elucidating the molecular mechanisms of quality development.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
6
|
Bi H, Li F, Wang H, Ai X. Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L. PHYSIOLOGIA PLANTARUM 2019; 167:502-515. [PMID: 30548278 DOI: 10.1111/ppl.12903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Despite being a key enzyme of Cavin cycle, transketolase (TK) is believed to be related to abiotic resistance in higher plants. However, how TK affects chilling tolerance still remains largely unknown. Here, we describe the effect of overexpression of the Cucumis sativa TK gene (CsTK) on growth, photosynthesis, ROS metabolism and cell ultrastructure under chilling stress. Low temperature led to a decrease of the photosynthetic rate (Pn), the stomatal conductance (Gs), the actual photochemical efficiency (ΦPSII) and the sucrose content, whereas there was an increase of the intercellular CO2 concentration (Ci) and MDA content. These changes were alleviated in the CsTK plants after 5 days of chilling stress, however, inhibition of CsTK showed the opposite results. Furthermore, transgenic plants with overexpression of CsTK showed higher increase in leaf area and dry matter, higher activity of the enzymes and higher increase in the contents of metabolism substance involved in Calvin cycle and reactive oxygen scavenging system as well as lower • OH and H2 O2 content, superoxide anion production rate compared with the control cucumber plants under chilling stress. At the end of the chilling stress, compared to wild-type (WT) which exhibited dramatically destroyed cell ultrastructure, expanded chloroplast, broken cell and chloroplast membranes as well as the disappeared grana lamella, the CsTK sense plants showed a more complete cell ultrastructure, whereas, the damage of the cell ultrastructure was aggravated in CsTK antisense plants. Taken together, these results imply that CsTK promoted chilling tolerance in cucumber plants mainly through increasing the capacity to assimilate carbon, alleviating oxidative damage and stabilizing cell structure.
Collapse
Affiliation(s)
- Huangai Bi
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fude Li
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haiguang Wang
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xizhen Ai
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
7
|
Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biol Evol 2019; 11:2927-2940. [PMID: 31518388 PMCID: PMC6808082 DOI: 10.1093/gbe/evz198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
- Department of Genetics and Biochemistry, Clemson University
| | | | | | | | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| |
Collapse
|
8
|
Girma G, Natsume S, Carluccio AV, Takagi H, Matsumura H, Uemura A, Muranaka S, Takagi H, Stavolone L, Gedil M, Spillane C, Terauchi R, Tamiru M. Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS One 2019; 14:e0216912. [PMID: 31545796 PMCID: PMC6756524 DOI: 10.1371/journal.pone.0216912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/05/2019] [Indexed: 01/03/2023] Open
Abstract
Dioecy (distinct male and female individuals) and scarce to non-flowering are common features of cultivated yam (Dioscorea spp.). However, the molecular mechanisms underlying flowering and sex determination in Dioscorea are largely unknown. We conducted SuperSAGE transcriptome profiling of male, female and monoecious individuals to identify flowering and sex-related genes in white Guinea yam (D. rotundata), generating 20,236 unique tags. Of these, 13,901 were represented by a minimum of 10 tags. A total 88 tags were significantly differentially expressed in male, female and monoecious plants, of which 18 corresponded to genes previously implicated in flower development and sex determination in multiple plant species. We validated the SuperSAGE data with quantitative real-time PCR (qRT-PCR)-based analysis of the expression of three candidate genes. We further investigated the flowering patterns of 1938 D. rotundata accessions representing diverse geographical origins over two consecutive years. Over 85% of accessions were either male or non-flowering, less than 15% were female, while monoecious plants were rare. Intensity of flowering varied between male and female plants, with the former flowering more abundantly than the latter. Candidate genes identified in this study can be targeted for further validation and to induce regular flowering in poor to non-flowering cultivars. Findings of the study provide important inputs for further studies aiming to overcome the challenge of flowering in yams and to improve efficiency of yam breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Satoshi Natsume
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Anna Vittoria Carluccio
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Hiroki Takagi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Hideo Matsumura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Aiko Uemura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Satoru Muranaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
- * E-mail:
| | - Hiroko Takagi
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
| | - Livia Stavolone
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Melaku Gedil
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Charles Spillane
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Ryohei Terauchi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Muluneh Tamiru
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| |
Collapse
|
9
|
Bi H, Liu P, Jiang Z, Ai X. Overexpression of the rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus. PHYSIOLOGIA PLANTARUM 2017; 161:224-234. [PMID: 28543370 DOI: 10.1111/ppl.12587] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/21/2017] [Indexed: 05/20/2023]
Abstract
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild-type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses.
Collapse
Affiliation(s)
- Huangai Bi
- State Key Laboratory of Crop Biology/key laboratory of crop biology and genetic improvement of horticultural crops in huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Peipei Liu
- Research and Development Department, Golden Ma Ma Agricultural Science and Technology Company, Qingdao, 266600, China
| | - Zhensheng Jiang
- Academy of Agricultural Sciences, Kingenta Ecological Engineering Group Co., Linyi, 276700, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology/key laboratory of crop biology and genetic improvement of horticultural crops in huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. Metab Eng 2016; 38:56-64. [DOI: 10.1016/j.ymben.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
11
|
Yamaoka C, Suzuki Y, Makino A. Differential Expression of Genes of the Calvin-Benson Cycle and its Related Genes During Leaf Development in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:115-124. [PMID: 26615032 DOI: 10.1093/pcp/pcv183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
To understand how the machinery for photosynthetic carbon assimilation is formed and maintained during leaf development, changes in the mRNA levels of the Calvin-Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase and two key enzymes for sucrose synthesis were determined in rice (Oryza sativa L.). According to the patterns of changes in the mRNA levels, these genes were categorized into three groups. Group 1 included most of the genes involved in the carboxylation and reduction phases of the Calvin-Benson cycle, as well as three genes in the regeneration phase. The mRNA levels increased and reached maxima during leaf expansion and then rapidly declined, although there were some variations in the residual mRNA levels in senescent leaves. Group 2 included a number of genes involved in the regeneration phase, one gene in the reduction phase of the Calvin-Benson cycle and one gene in sucrose synthesis. The mRNA levels increased and almost reached maxima before full expansion and then gradually declined. Group 3 included Rubisco activase, one gene involved in the regeneration phase and one gene in sucrose synthesis. The overall pattern was similar to that in group 2 genes except that the mRNA levels reached maxima after the stage of full expansion. Thus, genes of the Calvin-Benson cycle and its related genes were differentially expressed during leaf development in rice, suggesting that such differential gene expression is necessary for formation and maintenance of the machinery of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Chihiro Yamaoka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
12
|
Bi H, Dong X, Wu G, Wang M, Ai X. Decreased TK activity alters growth, yield and tolerance to low temperature and low light intensity in transgenic cucumber plants. PLANT CELL REPORTS 2015; 34:345-54. [PMID: 25471346 DOI: 10.1007/s00299-014-1713-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 05/20/2023]
Abstract
Four CsTK antisense transgenic cucumber plants were obtained. Decreased TK activity decreased the photosynthetic rate, seed germination rate, growth yield, and the tolerance to low temperature and weak light stress. Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A cDNA fragment (526 bp) encoding transketolase was cloned from cucumber plants (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR. The antisense expression [(PBI-CsTK(-)] vector containing the CsTK gene fragment was constructed. The resulting plasmid was introduced into the cucumber inbred lines '08-1' using the agrobacterium-mediated method, and four antisense transgenic cucumber plants were obtained. Decreased CsTK expression either unaltered or slightly increased the mRNA abundance and activities of the other main enzymes in the Calvin cycle, however, it decreased the TK activity and net photosynthetic rate (Pn) in antisense transgenic cucumber leaves. Antisense plants showed decreases in the growth, ratio of female flowers and yield compared with the wild-type (WT) plants. The decrease in Pn, stomatal conductance (Gs), transpiration rate (Tr), photochemical efficiency (Fv/Fm) and actual photochemical efficiency of PSII (ΦPSII) and the increase in electrolyte leakage (EL) were greater in antisense transgenic plants than in WT plants under low temperature (5 °C) and low light intensity (100 μmol m(-2) s(-1)).
Collapse
Affiliation(s)
- Huangai Bi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong St., Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|