1
|
Huang Y, Cai S, Ying W, Niu T, Yan J, Hu H, Ruan S. Exogenous titanium dioxide nanoparticles alleviate cadmium toxicity by enhancing the antioxidative capacity of Tetrastigma hemsleyanum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116166. [PMID: 38430577 DOI: 10.1016/j.ecoenv.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Nanotechnology is one of the most recent approaches employed to defend plants against both biotic and abiotic stress including heavy metals such as Cadmium (Cd). In this study, we evaluated the effects of titanium dioxide (TiO2) nanoparticles (TiO2 NPs) in alleviating Cd stress in Tetrastigma hemsleyanum Diels et Gilg. Compared with Cd treatment, TiO2 NPs decreased leaf Cd concentration, restored Cd exposure-related reduction in the biomass to about 69% of control and decreased activities of antioxidative enzymes. Integrative analysis of transcriptome and metabolome revealed 325 differentially expressed genes associated with TiO2 NP treatment, most of which were enriched in biosynthesis of secondary metabolites. Among them, the flavonoid and phenylpropanoid biosynthetic pathways were significantly regulated to improve the growth of T. hemsleyanum when treated with Cd. In the KEGG Markup Language (KGML) network analysis, we found some commonly regulated pathways between Cd and Cd+TiO2 NP treatment, including phenylpropanoid biosynthesis, ABC transporters, and isoflavonoid biosynthesis, indicating their potential core network positions in controlling T. hemsleyanum response to Cd stress. Overall, our findings revealed a complex response system for tolerating Cd, encompassing the transportation, reactive oxygen species scavenging, regulation of gene expression, and metabolite accumulation in T. hemsleyanum. Our results indicate that TiO2 NP can be used to reduce Cd toxicity in T. hemsleyanum.
Collapse
Affiliation(s)
- Yuqing Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Tianxin Niu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| |
Collapse
|
2
|
Shao Y, Mu D, Zhou Y, Liu X, Huang X, Wilson IW, Qi Y, Lu Y, Zhu L, Zhang Y, Qiu D, Tang Q. Genome-Wide Mining of CULLIN E3 Ubiquitin Ligase Genes from Uncaria rhynchophylla. PLANTS (BASEL, SWITZERLAND) 2024; 13:532. [PMID: 38498523 PMCID: PMC10891735 DOI: 10.3390/plants13040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
CULLIN (CUL) protein is a subtype of E3 ubiquitin ligase that is involved in a variety of biological processes and responses to stress in plants. In Uncaria rhynchophylla, the CUL gene family has not been identified and its role in plant development, stress response and secondary metabolite synthesis has not been studied. In this study, 12 UrCUL gene members all contained the typical N-terminal domain and C-terminal domain identified from the U. rhynchophylla genome and were classified into four subfamilies based on the phylogenetic relationship with CULs in Arabidopsis thaliana. They were unevenly distributed on eight chromosomes but had a similar structural composition in the same subfamily, indicating that they were relatively conserved and potentially had similar gene functions. An interspecific and intraspecific collinearity analysis showed that fragment duplication played an important role in the evolution of the CUL gene family. The analysis of the cis-acting elements suggests that the UrCULs may play an important role in various biological processes, including the abscisic acid (ABA) response. To investigate this hypothesis, we treated the roots of U. rhynchophylla tissue-cultured seedlings with ABA. The expression pattern analysis showed that all the UrCUL genes were widely expressed in roots with various expression patterns. The co-expression association analysis of the UrCULs and key enzyme genes in the terpenoid indole alkaloid (TIA) synthesis pathway revealed the complex expression patterns of 12 UrCUL genes and some key TIA enzyme genes, especially UrCUL1, UrCUL1-likeA, UrCUL2-likeA and UrCUL2-likeB, which might be involved in the biosynthesis of TIAs. The results showed that the UrCULs were involved in the response to ABA hormones, providing important information for elucidating the function of UrCULs in U. rhynchophylla. The mining of UrCULs in the whole genome of U. rhynchophylla provided new information for understanding the CUL gene and its function in plant secondary metabolites, growth and development.
Collapse
Affiliation(s)
- Yingying Shao
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Yu Zhou
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Xinghui Liu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 410208, China;
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 410208, China;
| | - Ying Lu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Lina Zhu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| |
Collapse
|
3
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
4
|
Zhang L, Zuluaga MYA, Pii Y, Barone A, Amaducci S, Miras-Moreno B, Martinelli E, Bellotti G, Trevisan M, Puglisi E, Lucini L. A Pseudomonas Plant Growth Promoting Rhizobacterium and Arbuscular Mycorrhiza differentially modulate the growth, photosynthetic performance, nutrients allocation, and stress response mechanisms triggered by a mild Zinc and Cadmium stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111873. [PMID: 37739018 DOI: 10.1016/j.plantsci.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
This study aimed to assess the effectiveness of plant growth-promoting rhizobacteria (PGPR; Pseudomonas strain So_08) and arbuscular mycorrhizal fungi (AMF; Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234) in mitigating the detrimental effects of cadmium (Cd) and zinc (Zn) stress in tomato plants. Plant biomass, root morphology, leaf relative water content, membrane stability, photosynthetic performance, chlorophyll content, and heavy metals (HMs) accumulation were determined. Furthermore, an ionomic profile was conducted to investigate whether microbial inoculants affected the uptake and allocation of macro- and micronutrients. Metabolomics with pathway analysis of both roots and leaves was performed to unravel the mechanisms underlying the differential responses to HMs stress. The findings revealed that the levels of HMs did not significantly affect plant growth parameters; however, they affected membrane stability, photosynthetic performance, nutrient allocation, and chlorophyll content. Cadmium was mainly accumulated in roots, whilst Zn exhibited accumulation in various plant organs. Our findings demonstrate the beneficial effects of PGPR and AMF in mitigating Cd and Zn stress in tomato plants. The microbial inoculations improved physiological parameters and induced differential accumulation of macro- and micronutrients, modulating nutrient uptake balance. These results provide insights into the mechanisms underlying the plant-microbe interactions and highlight the differential modulation of the biosynthetic pathways of secondary metabolites related to oxidative stress response, membrane lipids stability, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Angelica Barone
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erika Martinelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
De Palma N, Yendo ACA, Vilasboa J, Chacon DS, Fett-Neto AG. Biochemical responses in leaf tissues of alkaloid producing Psychotria brachyceras under multiple stresses. JOURNAL OF PLANT RESEARCH 2023; 136:397-412. [PMID: 36809401 DOI: 10.1007/s10265-023-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Under natural conditions plants are generally subjected to complex scenarios of combined or sequential environmental stresses. Among the various components of plant biochemistry modulated by abiotic variables, a pivotal role is played by antioxidant systems, including specialized metabolites and their interaction with central pathways. To help address this knowledge gap, a comparative analysis of metabolic changes in leaf tissues of the alkaloid accumulating plant Psychotria brachyceras Müll Arg. under individual, sequential, and combined stress conditions was carried out. Osmotic and heat stresses were evaluated. Protective systems (accumulation of the major antioxidant alkaloid brachycerine, proline, carotenoids, total soluble protein, and activity of the enzymes ascorbate peroxidase and superoxide dismutase) were measured in conjunction with stress indicators (total chlorophyll, ChA/ChB ratio, lipid peroxidation, H2O2 content and electrolyte leakage). Metabolic responses had a complex profile in sequential and combined stresses compared to single ones, being also modified over time. Different stress application schemes affected alkaloid accumulation in distinct ways, exhibiting similar profile to proline and carotenoids, constituting a complementary triad of antioxidants. These complementary non-enzymatic antioxidant systems appeared to be essential for mitigating stress damage and re-establishing cellular homeostasis. The data herein provides clues that may aid the development of a key component framework of stress responses and their appropriate balance to modulate tolerance and yield of target specialized metabolites.
Collapse
Affiliation(s)
- Nicolás De Palma
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Anna Carolina Alves Yendo
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Daisy Sotero Chacon
- Pharmacognosy Laboratory, Department of Pharmacy, Federal University of Rio Grande do Norte, CP 59000, Natal, RN, 59012-570, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
6
|
Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves. J Adv Res 2022; 34:123-136. [PMID: 35024185 PMCID: PMC8655131 DOI: 10.1016/j.jare.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.
Collapse
|
7
|
Han H, Zhang H, Qin S, Zhang J, Yao L, Chen Z, Yang J. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. CHEMOSPHERE 2021; 276:130157. [PMID: 33714158 DOI: 10.1016/j.chemosphere.2021.130157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microbial passivation remediation of heavy metal-contaminated farmland has attracted increasing attention. However, the molecular mechanism by which heavy metal-immobilizing bacteria inhibit the uptake of Cd and Pb by wheat is not clear. Herein, a heavy metal-immobilizing bacterium, Enterobacter bugandensis TJ6, was used to reveal its immobilization mechanisms of Cd and Pb and inhibition of Cd and Pb uptake by wheat using metabolomics and proteomics. Compared with the control, strain TJ6 significantly reduced (44.7%-56.6%) the Cd and Pb contents of wheat roots and leaves. Strain TJ6 reduced the Cd and Pb concentrations by adsorption, intracellular accumulation, and bioprecipitation in solution. Untargeted metabolomics showed that strain TJ6 produced indole-3-acetic acid (IAA), betaine, and arginine under Cd and Pb stress, significantly improving the resistance of strain TJ6 and wheat to Cd and Pb. Label-free proteomics showed that 143 proteins were upregulated and 61 proteins were downregulated in wheat roots in the presence of strain TJ6. The GO items of the differentially expressed proteins (DEPs) involved in protein-DNA complexes, DNA packaging complexes, and peroxidase activity were enriched. In addition, the ability of wheat roots to synthesize abscisic acid and jasmonic acid was improved. In conclusion, strain TJ6 reduced Cd and Pb uptake in wheat through its own adsorption of Cd and Pb and regulation of wheat root DNA repair ability, plant hormone levels, and antioxidant activities. These results provide new insights and a theoretical basis for the application of heavy metal-immobilizing bacteria in safe wheat production.
Collapse
Affiliation(s)
- Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hao Zhang
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Shanmei Qin
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jun Zhang
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lunguang Yao
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Zhaojin Chen
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Rodrigues-Corrêa KCDS, Honda MDH, Borthakur D, Fett-Neto AG. Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:432-440. [PMID: 30482504 DOI: 10.1016/j.plaphy.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 05/14/2023]
Abstract
Mimosine is a non-protein amino acid of Fabaceae, such as Leucaena spp. and Mimosa spp. Several relevant biological activities have been described for this molecule, including cell cycle blocker, anticancer, antifungal, antimicrobial, herbivore deterrent and allelopathic activities, raising increased economic interest in its production. In addition, information on mimosine dynamics in planta remains limited. In order to address this topic and propose strategies to increase mimosine production aiming at economic uses, the effects of several stress-related elicitors of secondary metabolism and UV acute exposure were examined on mimosine accumulation in growth room-cultivated seedlings of Leucaena leucocephala spp. glabrata. Mimosine concentration was not significantly affected by 10 ppm salicylic acid (SA) treatment, but increased in roots and shoots of seedlings treated with 84 ppm jasmonic acid (JA) and 10 ppm Ethephon (an ethylene-releasing compound), and in shoots treated with UV-C radiation. Quantification of mimosine amidohydrolase (mimosinase) gene expression showed that ethephon yielded variable effect over time, whereas JA and UV-C did not show significant impact. Considering the strong induction of mimosine accumulation by acute UV-C exposure, additional in situ ROS localization, as well as in vitro antioxidant assays were performed, suggesting that, akin to several secondary metabolites, mimosine may be involved in general oxidative stress modulation, acting as a hydrogen peroxide and superoxide anion quencher.
Collapse
Affiliation(s)
- Kelly Cristine da Silva Rodrigues-Corrêa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Michael D H Honda
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Matsuura HN, Malik S, de Costa F, Yousefzadi M, Mirjalili MH, Arroo R, Bhambra AS, Strnad M, Bonfill M, Fett-Neto AG. Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Mol Biotechnol 2018; 60:169-183. [PMID: 29290031 DOI: 10.1007/s12033-017-0056-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.
Collapse
Affiliation(s)
- Hélio Nitta Matsuura
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil
| | - Sonia Malik
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, São Luís, MA, 65.080-805, Brazil
| | - Fernanda de Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Sciences and Technology, Hormozgan University, Bandar Abbas, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Randolph Arroo
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Avninder S Bhambra
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Mercedes Bonfill
- Plant Physiology Laboratory, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, Shi M. Metabolic networks in ferroptosis. Oncol Lett 2018; 15:5405-5411. [PMID: 29556292 DOI: 10.3892/ol.2018.8066] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Ferroptosis is an iron-dependent and peroxidation-driven form of cell death associated with multiple metabolic disorders and disrupted homeostasis. A number of metabolic processes and homeostasis are affected by ferroptosis. The molecules that regulate ferroptosis are involved in metabolic pathways that regulate cysteine exploitation, glutathione state, nicotinamide adenine dinucleotide phosphate function, lipid peroxidation and iron homeostasis. The present review summarizes the metabolic networks involved in ferroptosis based on previous studies, and discusses the function of ferroptosis in pathological processes, including cancer. Finally, the clinical significance of ferroptosis is highlighted, to provide evidence for further studies.
Collapse
Affiliation(s)
- Shihui Hao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shumin Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wanming He
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
11
|
Qiao J, Luo Z, Li Y, Ren G, Liu C, Ma X. Effect of Abscisic Acid on Accumulation of Five Active Components in Root of Glycyrrhiza uralensis. Molecules 2017; 22:E1982. [PMID: 29140310 PMCID: PMC6150281 DOI: 10.3390/molecules22111982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 11/17/2022] Open
Abstract
Licorice is one of the most generally used herbal medicines in the world; however, wild licorice resources have decreased drastically. Cultivated Glycyrrhiza uralensis Fischer are the main source of licorice at present, but the content of main active components in cultivated G. uralensis are lower than in wild G. uralensis. Therefore, the production of high-quality cultivated G. uralensis is an urgent issue for the research and production fields. In this study, the content of five active components and seven endogenous phytohormones in cultivated G. uralensis (two-year-old) were determined by high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, different concentrations (25-200 mg/L) of exogenous abscisic acid (ABA) were sprayed on the leaves of G. uralensis in the fast growing period. Results showed that ABA, zeatin riboside (ZR), and dihydrozeatin riboside (DHZR) had strong correlation with active components. In addition, the content of five active components increased remarkably after ABA treatment. Our results indicate that ABA is significantly related to the accumulation of active components in G. uralensis, and the application of exogenous ABA at the proper concentration is able to promote the accumulation of main components in G. uralensis.
Collapse
Affiliation(s)
- Jing Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yanpeng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan Road, Beijing 100102, China.
| | - Guangxi Ren
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan Road, Beijing 100102, China.
| | - Chunsheng Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan Road, Beijing 100102, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
de Carvalho A, de Carvalho M, Braz-Filho R, Vieira I. Psychotria Genus. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63602-7.00007-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules 2015; 20:13422-95. [PMID: 26205062 PMCID: PMC6331836 DOI: 10.3390/molecules200713422] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 11/16/2022] Open
Abstract
This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion.
Collapse
Affiliation(s)
- Daiane Martins
- Bioprospection and Biotechnology Laboratory, Technology and Innovation Coordenation, National Research Institute of Amazonia, Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Cecilia Veronica Nunez
- Bioprospection and Biotechnology Laboratory, Technology and Innovation Coordenation, National Research Institute of Amazonia, Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil.
| |
Collapse
|
14
|
Wang XM, Yang B, Ren CG, Wang HW, Wang JY, Dai CC. Involvement of abscisic acid and salicylic acid in signal cascade regulating bacterial endophyte-induced volatile oil biosynthesis in plantlets of Atractylodes lancea. PHYSIOLOGIA PLANTARUM 2015; 153:30-42. [PMID: 24862990 DOI: 10.1111/ppl.12236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/04/2014] [Accepted: 05/11/2014] [Indexed: 05/02/2023]
Abstract
The enormous biological diversity of endophytes, coupled with their potential to enhance the production of bioactive metabolites in plants, has driven research efforts focusing on endophytes. However, limited information is available on the impacts of bacterial endophytes on plant secondary metabolism and signaling pathways involved. This work showed that an endophytic Acinetobacter sp. ALEB16, capable of activating accumulation of plant volatile oils, also induced abscisic acid (ABA) and salicylic acid (SA) production in Atractylodes lancea. Pre-treatment of plantlets with biosynthetic inhibitors of ABA or SA blocked the bacterium-induced volatile production. ABA inhibitors suppressed not only the bacterium-induced volatile accumulation but also the induced ABA and SA generation; nevertheless, SA inhibitors did not significantly inhibit the induced ABA biosynthesis, implying that SA acted downstream of ABA production. These results were confirmed by observations that exogenous ABA and SA reversed the inhibition of bacterium-induced volatile accumulation by inhibitors. Transcriptional activities of genes in sesquiterpenoid biosynthesis also increased significantly with bacterium, ABA and SA treatments. Mevalonate pathway proved to be the main source of isopentenyldiphosphate for bacterium-induced sesquiterpenoids, as assessed in experiments using specific terpene biosynthesis inhibitors. These results suggest that Acinetobacter sp. acts as an endophytic elicitor to stimulate volatile biosynthesis of A. lancea via an ABA/SA-dependent pathway, thereby yielding additional insight into the interconnection between ABA and SA in biosynthesis-related signaling pathways.
Collapse
Affiliation(s)
- Xiao-Mi Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | | | | | | | | | | |
Collapse
|
15
|
López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:57-66. [PMID: 25240264 DOI: 10.1016/j.plaphy.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Ascensión Martínez-Pérez
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| |
Collapse
|