1
|
Cao H, Ding R, Du T, Kang S, Tong L, Chen J, Gao J. A meta-analysis highlights the cross-resistance of plants to drought and salt stresses from physiological, biochemical, and growth levels. PHYSIOLOGIA PLANTARUM 2024; 176:e14282. [PMID: 38591354 DOI: 10.1111/ppl.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.
Collapse
Affiliation(s)
- Heli Cao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jia Gao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| |
Collapse
|
2
|
Kostić O, Jarić S, Pavlović D, Matić M, Radulović N, Mitrović M, Pavlović P. Ecophysiological response of Populus alba L. to multiple stress factors during the revitalisation of coal fly ash lagoons at different stages of weathering. FRONTIERS IN PLANT SCIENCE 2024; 14:1337700. [PMID: 38269133 PMCID: PMC10805861 DOI: 10.3389/fpls.2023.1337700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The enormous quantities of fly ash (FA) produced by thermal power plants is a global problem and safe, sustainable approaches to reduce the amount and its toxic effects are still being sought. Vegetation cover comprising long-living species can help reduce FA dump-related environmental health issues. However, the synergistic effect of multiple abiotic factors, like drought, low organic matter content, a deficit of essential nutrients, alkaline pH, and phytotoxicity due to high potentially toxic element (PTE) and soluble salt content, limits the number of species that can grow under such stressful conditions. Thus, we hypothesised that Populus alba L., which spontaneously colonised two FA disposal lagoons at the 'Nikola Tesla A' thermal power plant (Obrenovac, Serbia) 3 years (L3) and 11 years (L11) ago, has high restoration potential thanks to its stress tolerance. We analysed the basic physical and chemical properties of FA at different weathering stages, while the ecophysiological response of P. alba to multiple stresses was determined through biological indicators [the bioconcentration factor (BCF) and translocation factor (TF) for PTEs (As, B, Cr, Cu, Mn, Ni, Se, and Zn)] and by measuring the following parameters: photosynthetic efficiency and chlorophyll concentration, non-enzymatic antioxidant defence (carotenoids, anthocyanins, and phenols), oxidative stress (malondialdehyde (MDA) concentrations), and total antioxidant capacity (IC50) to neutralise DPPH free radical activity. Unlike at L3, toxic As, B, and Zn concentrations in leaves induced oxidative stress in P. alba at L11, shown by the higher MDA levels, lower vitality, and reduced synthesis of chlorophyll, carotenoids, and total antioxidant activity, suggesting its stress tolerance decreases with long-term exposure to adverse abiotic factors. Although P. alba is a fast-growing species with good metal accumulation ability and high stress tolerance, it has poor stabilisation potential for substrates with high As and B concentrations, making it highly unsuitable for revitalising such habitats.
Collapse
Affiliation(s)
- Olga Kostić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
3
|
Wei M, Zhang M, Sun J, Zhao Y, Pak S, Ma M, Chen Y, Lu H, Yang J, Wei H, Li Y, Li C. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:791-809. [PMID: 36226597 DOI: 10.1111/jipb.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is of great importance to better understand how trees regulate nitrogen (N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here, we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation. PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52 promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes (PuNRT1.1, PuNRT2.4, PuCLC-b, PuNIA2, PuNIR1, and PuNLP1), phosphate-responsive genes (PuPHL1A and PuPHL1B), and an iron transporter gene (PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and 'PuHox52-PuIRT1' regulatory relationships in poplar roots.
Collapse
Affiliation(s)
- Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Mengqiu Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Han Lu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
4
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
5
|
Liu S, Wang Z, Lan Y, He T, Xiong R, Wu C, Xiang Y, Yan H. GEPSdb: The Gene Expression Database of Poplar under Stress. THE PLANT GENOME 2022; 15:e20163. [PMID: 34877793 DOI: 10.1002/tpg2.20163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
As a model tree species, poplar (Populus L.) has important economic and ecological value. Here, we constructed the GEPSdb (Gene Expression Database of Poplar under Stress; http://gepsdb.ahau-edu.cn/), which is an integrated database of poplar gene expression profiles derived from RNA-seq and microarray library data. This database provides a comprehensive collection of gene expression data from poplar exposed to 14 types of environmental stress from 11 high-quality RNA-seq experiments and 51 microarray libraries. The GEPSdb includes 56 genes from previous literature that have been examined in poplar and functionally verified. By incorporating data from numerous expression analyses, GEPSdb provides a user-friendly web interface for querying, browsing, and visualizing the expression profiles of related genes. Consequently, GEPSdb can be used to link transcription data with phenotypes and can enhance our understanding of important biological processes and mechanisms underlying complex agronomic traits in poplar.
Collapse
Affiliation(s)
- Shifan Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Zihao Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Ting He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Caijuan Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural Univ., Hefei, 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural Univ., Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural Univ., Hefei, 230036, China
| |
Collapse
|
6
|
Liu M, Liu X, Zhao Y, Korpelainen H, Li C. Sex-specific nitrogen allocation tradeoffs in the leaves of Populus cathayana cuttings under salt and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:101-110. [PMID: 35051894 DOI: 10.1016/j.plaphy.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) partitioning within a leaf affects leaf photosynthesis and adaptation to environmental fluctuations. However, how plant sex influences leaf N allocation and its tradeoffs in acclimation to drought, excess salt and their combination remains unknown. Here, leaf N allocation between the photosynthetic and non-photosynthetic apparatus and among the components of the photosynthesis in Populus cathayana Rehder females and males were investigated under drought, salt and their combination to clarify the underlying mechanism. We found that males with a lower leaf N allocation (NL) into non-protein N (Nnp), showed a greater leaf N allocation into photosynthetic apparatus, especially into the carboxylation component under all treatments, and a greater leaf N allocation into cell wall under drought and salt stress alone, consequently causing higher photosynthetic N use efficiency (PNUE) and tolerance to stresses. Conversely, females had a greater leaf N allocation into Nnp under all treatments than males and a lower leaf photosynthetic N (NP) allocation. There was a tradeoff in leaf N allocation among photosynthetic apparatus (NP/NL), cell wall (NCW/NL) and Nnp, which explained plant responses to drought, salt and their combination. Moreover, the leaf N allocation into the carboxylation component could explain the intersexual difference in responses to all treatments, while leaf cell wall N (NCW) and Nnp reflected intrasexual differences among treatments in both sexes. These findings indicate sex-specific strategies in coping with drought, salt and their combination that relate to leaf N allocation, which may contribute to sex-specific photosynthesis and niche segregation.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Bae EK, Choi H, Choi JW, Lee H, Kim SG, Ko JH, Choi YI. Efficient knockout of the phytoene desaturase gene in a hybrid poplar (Populus alba × Populus glandulosa) using the CRISPR/Cas9 system with a single gRNA. Transgenic Res 2021; 30:837-849. [PMID: 34259977 DOI: 10.1007/s11248-021-00272-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
The CRISPR/Cas9 system has been used for genome editing in several plant species; however, there are few reports on its use in trees. Here, CRISPR/Cas9 was used to mutate a target gene in Populus alba × Populus glandulosa hybrid poplars. The hybrid poplar is routinely used in molecular biological studies due to the well-established Agrobacterium-mediated transformation method. A single guide RNA (sgRNA) with reported high mutation efficiency in other popular species was designed with a protospacer adjacent motif sequence for the phytoene desaturase 1 (PagPDS1) gene. The pHSE/Cas9-PagPDS1 sgRNA vector was delivered into hybrid poplar cells using Agrobacterium-mediated transformation. The transgenic plants were propagated and classified them into three groups according to their phenotypes. Among a total of 110 lines of transgenic hybrid poplars, 82 lines showed either an albino or a pale green phenotype, indicating around 74.5% phenotypic mutation efficiency of the PagPDS1 gene. The albino phenotypes were observed when the CRISPR/Cas9-mediated mutations in both PagPDS1 alleles in the transgenic plants. There was no off-target modification of the PagPDS2 gene, which has a potential sgRNA target sequence with two mismatches. The results confirmed that the sgRNA can specifically edit PagPDS1 rather than PagPDS2, indicating that CRISPR/Cas9-mediated genome editing can effectively induce target mutations in the hybrid poplar. This technique will be useful to improve tree quality in hybrid poplars (P. alba × P. glandulosa); for example, by enhancing biomass or stress tolerance.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, 672 Jinju-daero, Jinju, 52817, Korea
| | - Ji Won Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae-Heung Ko
- Plant and Environmental New Resources, Kyung Hee University, 1732 Deongyeong-daero, Giheung-gu, Yongin, 17104, Korea
| | - Young-Im Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea.
| |
Collapse
|
8
|
Rufo R, López A, Lopes MS, Bellvert J, Soriano JM. Identification of Quantitative Trait Loci Hotspots Affecting Agronomic Traits and High-Throughput Vegetation Indices in Rainfed Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:735192. [PMID: 34616417 PMCID: PMC8489662 DOI: 10.3389/fpls.2021.735192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Understanding the genetic basis of agronomic traits is essential for wheat breeding programs to develop new cultivars with enhanced grain yield under climate change conditions. The use of high-throughput phenotyping (HTP) technologies for the assessment of agronomic performance through drought-adaptive traits opens new possibilities in plant breeding. HTP together with a genome-wide association study (GWAS) mapping approach can be a useful method to dissect the genetic control of complex traits in wheat to enhance grain yield under drought stress. This study aimed to identify molecular markers associated with agronomic and remotely sensed vegetation index (VI)-related traits under rainfed conditions in bread wheat and to use an in silico candidate gene (CG) approach to search for upregulated CGs under abiotic stress. The plant material consisted of 170 landraces and 184 modern cultivars from the Mediterranean basin. The collection was phenotyped for agronomic and VI traits derived from multispectral images over 3 and 2 years, respectively. The GWAS identified 2,579 marker-trait associations (MTAs). The quantitative trait loci (QTL) overview index statistic detected 11 QTL hotspots involving more than one trait in at least 2 years. A CG analysis detected 12 CGs upregulated under abiotic stress in six QTL hotspots and 46 downregulated CGs in 10 QTL hotspots. The current study highlights the utility of VI to identify chromosome regions that contribute to yield and drought tolerance under rainfed Mediterranean conditions.
Collapse
Affiliation(s)
- Rubén Rufo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Andrea López
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Marta S. Lopes
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Joaquim Bellvert
- Efficient Use of Water in Agriculture Program, Institute for Food and Agricultural Research and Technology (IRTA), Parc Científici TecnològicAgroalimentari de Gardeny (PCiTAL), Fruitcentre, Lleida, Spain
| | - Jose M. Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
9
|
Bilek MA, Soolanayakanahally RY, Guy RD, Mansfield SD. Physiological Response of Populus balsamifera and Salix eriocephala to Salinity and Hydraulic Fracturing Wastewater: Potential for Phytoremediation Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207641. [PMID: 33092092 PMCID: PMC7589555 DOI: 10.3390/ijerph17207641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/03/2022]
Abstract
Natural and anthropogenic soil degradation is resulting in a substantial rise in the extension of saline and industrially-polluted soils. Phytoremediation offers an environmentally and economically advantageous solution to soil contamination. Three growth trials were conducted to assess the stress tolerance of native Canadian genotypes of Populus balsamifera L., Salix eriocephala Michx., and one hybrid willow (S. discolor × S. dasyclados) to salinity and hydraulic fracturing (fracking) wastewater. Thirty-three genotypes were grown in NaCl or fracking wastewater solutions between 0 and 7 mS−1 over a period of 3–4 months. P. balsamifera was observed to be relatively salt-intolerant compared to S. eriocephala and hybrid willow, which is likely caused by an inability of P. balsamifera to restrict Na+ translocation. Photosynthesis and transpiration decreased with salinity treatments, and severe reductions occurred with exposure to fracking solutions. Raffinose and stachyose content was tripled in leaf and root tissues. In willows, Na+ was primarily confined to root tissues, Cl− accumulated up to 5% dry weight in leaves, and K+ was translocated from roots to leaves. Willow genotypes CAM-2 and STL-2 displayed the greatest maintenance of growth and resistance to necrotic symptoms in all trials, suggesting that these genotypes may be useful for practical application and further field study.
Collapse
Affiliation(s)
- Michael A. Bilek
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
| | | | - Robert D. Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
- Correspondence:
| |
Collapse
|
10
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:ijms21093361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
11
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:E3361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
12
|
Transcriptome analysis provides insights into the stress response crosstalk in apple (Malus × domestica) subjected to drought, cold and high salinity. Sci Rep 2019; 9:9071. [PMID: 31227734 PMCID: PMC6588687 DOI: 10.1038/s41598-019-45266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Drought, cold, and high salinity are three major abiotic stresses effecting apple tree growth and fruit production. Understanding the genetic mechanisms of crosstalk between stress responses signalling networks and identifying the genes involved in apple has potential importance for crop improvement and breeding strategies. Here, the transcriptome profiling analysis of in vitro-grown apple plants subjected to drought, cold and high salinity stress, showed a total of 377 upregulated and 211 downregulated common differentially expressed genes (DEGs) to all 3 stress treatments compared with the control. Gene Ontology (GO) analysis indicated that these common DEGs were enriched in ‘metabolic process’ under the ‘biological process’ category, as well as in ‘binding’ and ‘catalytic activity’ under the ‘molecular function’ category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that common DEGs were mainly belong to the ‘biological functions’ category and 17 DEGs were identified in ‘environmental information processing’ sub-category which may act as signal transduction components in response crosstalk regulation. Overexpression of 5 upregulated genes individually, out of these 17 common DEGs in apple calli promoted the consistent upregulation of DREB6, CBF1 and ZAT10 and increased the mass weight and antioxidase ability, implying these five common DEGs involved in multiple pathways and improved comprehensive resistance to stress.
Collapse
|
13
|
Zhang X, Cheng Z, Zhao K, Yao W, Sun X, Jiang T, Zhou B. Functional characterization of poplar NAC13 gene in salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:1-8. [PMID: 30824042 DOI: 10.1016/j.plantsci.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 05/21/2023]
Abstract
Transcription factor (TF) genes play a critical role in plant abiotic and biotic stress responses. In this study, we cloned a poplar TF NAC13 gene (Potri.001G404100.1), which is significantly up-regulated to salt stress. Then we developed gene overexpression and antisense suppression constructions driven by CaMV35S, and successfully transferred them to a poplar variety 84 K (Populus alba × P. glandulosa), respectively. Evidence from molecular assay indicated that NAC13 overexpression and antisense suppression fragments have been integrated into the poplar genome. The morphological and physiological characterization and salt treatment results indicated the NAC13-overexpressing transgenic plants enhance salt tolerance significantly, compared to wide type. In contrast, the NAC13-suppressing transgenic plants are significantly sensitive to salt stress, compared to wide type. Evidence from transgenic Arabidopsis expressing GUS gene indicated that the gene driven by NAC13 promoter is mainly expressed in the roots and leaves of young plants. These studies indicate that the NAC13 gene plays a vital role in salt stress response.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaomei Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
14
|
Sun L, Pehlivan N, Esmaeili N, Jiang W, Yang X, Jarrett P, Mishra N, Zhu X, Cai Y, Herath M, Shen G, Zhang H. Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:271-283. [PMID: 30080613 DOI: 10.1016/j.plantsci.2018.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 05/20/2023]
Abstract
Abiotic stresses are major threats to agricultural production. Drought and salinity as two of the major abiotic stresses cause billions of losses in agricultural productivity worldwide each year. Thus, it is imperative to make crops more tolerant. Overexpression of AVP1 or PP2A-C5 was previously shown to increase drought and salt stress tolerance, respectively, in transgenic plants. In this study, the hypothesis that co-overexpression of AVP1 and PP2A-C5 would combine their respective benefits and further improve salt tolerance was tested. The two genes were inserted into the same T-DNA region of the binary vector and then introduced into the Arabidopsis genome through Agrobacterium-mediated transformation. Transgenic Arabidopsis plants expressing both AVP1 and PP2A-C5 at relatively high levels were identified and analyzed. These plants displayed enhanced tolerance to NaCl compared to either AVP1 or PP2A-C5 overexpressing plants. They also showed tolerance to other stresses such as KNO3 and LiCl at harmful concentrations, drought, and phosphorus deficiency at comparable levels with either AVP1 or PP2A-C5 overexpressing plants. This study demonstrates that introducing multiple genes in single T-DNA region is an effective approach to create transgenic plants with enhanced tolerance to multiple stresses.
Collapse
Affiliation(s)
- Li Sun
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Weijia Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaojie Yang
- Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Philip Jarrett
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Neelam Mishra
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Xunlu Zhu
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Yifan Cai
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Maheshika Herath
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China.
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Texas 79409, USA.
| |
Collapse
|
15
|
Abraham PE, Garcia BJ, Gunter LE, Jawdy SS, Engle N, Yang X, Jacobson DA, Hettich RL, Tuskan GA, Tschaplinski TJ. Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves. PLoS One 2018; 13:e0190019. [PMID: 29447168 PMCID: PMC5813909 DOI: 10.1371/journal.pone.0190019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.
Collapse
Affiliation(s)
- Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Benjamin J. Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Lee E. Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
16
|
Yıldırım K, Kaya Z. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:183-199. [PMID: 28376411 DOI: 10.1016/j.plaphy.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 05/01/2023]
Abstract
Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Bioengineering, Gaziosmanpasa University, 60100 Tokat, Turkey; Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| | - Zeki Kaya
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey.
| |
Collapse
|
17
|
Zheng S, Pan T, Ma C, Qiu D. Differential Gene Expression of Longan Under Simulated Acid Rain Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:726-731. [PMID: 28299408 DOI: 10.1007/s00128-017-2059-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.
Collapse
Affiliation(s)
- Shan Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cuilan Ma
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei XX. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:457-483. [PMID: 28226237 DOI: 10.1146/annurev-arplant-042916-041049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616;
| | | | - Amanda R De La Torre
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Sara Montanari
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Xiao-Xin Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
19
|
Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM. Oil palm drought inducible DREB1 induced expression of DRE/CRT- and non-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:129-151. [PMID: 28068641 DOI: 10.1016/j.plaphy.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 05/25/2023]
Abstract
Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.
Collapse
Affiliation(s)
- Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Maheran Abd Aziz
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Puteri Edaroyati Megat Wahab
- Department of Crop Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Popović BM, Štajner D, Ždero-Pavlović R, Tumbas-Šaponjac V, Čanadanović-Brunet J, Orlović S. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:242-250. [PMID: 27116372 DOI: 10.1016/j.plaphy.2016.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/06/2023]
Abstract
This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO.
Collapse
Affiliation(s)
- B M Popović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia.
| | - D Štajner
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - R Ždero-Pavlović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - V Tumbas-Šaponjac
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - J Čanadanović-Brunet
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - S Orlović
- Institute of Lowland Forestry and Environment, Antona Čehova 13, 21000 Novi Sad, Serbia
| |
Collapse
|
21
|
Park EJ, Kim HT, Choi YI, Lee C, Nguyen VP, Jeon HW, Cho JS, Funada R, Pharis RP, Kurepin LV, Ko JH. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. TREE PHYSIOLOGY 2015; 35:1264-77. [PMID: 26433020 DOI: 10.1093/treephys/tpv099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/22/2015] [Indexed: 05/21/2023]
Abstract
Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional regulators, which positively regulate cell elongation through GA signaling, were also upregulated. In contrast, genes involved in defense signaling were appreciably downregulated in the 35S::PdGA20ox1 stem tissues, suggesting a growth versus defense trade-off. Taken together, our results suggest that PdGA20ox1 functions to promote stem growth and wood formation in poplar, probably by activating GA signaling while coincidentally depressing defense signaling.
Collapse
Affiliation(s)
- Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Hyun-Tae Kim
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Van Phap Nguyen
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jin-Seong Cho
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Leonid V Kurepin
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 Present address: Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
22
|
Xie Q, Niu J, Xu X, Xu L, Zhang Y, Fan B, Liang X, Zhang L, Yin S, Han L. De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. FRONTIERS IN PLANT SCIENCE 2015; 6:610. [PMID: 26347751 PMCID: PMC4542685 DOI: 10.3389/fpls.2015.00610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/23/2015] [Indexed: 05/08/2023]
Abstract
Japanese lawngrass (Zoysia japonica Steud.) is an important warm-season turfgrass that is able to survive in a range of soils, from infertile sands to clays, and to grow well under saline conditions. However, little is known about the molecular mechanisms involved in its resistance to salt stress. Here, we used high-throughput RNA sequencing (RNA-seq) to investigate the changes in gene expression of Zoysia grass at high NaCl concentrations. We first constructed two sequencing libraries, including control and NaCl-treated samples, and sequenced them using the Illumina HiSeq™ 2000 platform. Approximately 157.20 million paired-end reads with a total length of 68.68 Mb were obtained. Subsequently, 100,800 unigenes with an N50 length of 1104 bp were assembled using Trinity, among which 70,127 unigenes were functionally annotated (E ≤ 10(-5)) in the non-redundant protein (NR) database. Furthermore, three public databases, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-prot, and Clusters of Orthologous Groups (COGs), were used for gene function analysis and enrichment. The annotated genes included 46 Gene Ontology (GO) terms, 120 KEGG pathways, and 25 COGs. Compared with the control, 6035 genes were significantly different (false discovery rate ≤0.01, |log2Ratio|≥1) in the NaCl-treated samples. These genes were enriched in 10 KEGG pathways and 58 GO terms, and subjected to 25 COG categories. Using high-throughput next-generation sequencing, we built a database as a global transcript resource for Z. japonica Steud. roots. The results of this study will advance our understanding of the early salt response in Japanese lawngrass roots.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Jun Niu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Xilin Xu
- Bioinformatics, College of Plant Protection, Hunan Agricultural UniversityChangsha, China
| | - Lixin Xu
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Yinbing Zhang
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Bo Fan
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Xiaohong Liang
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Lijuan Zhang
- Shenzhen Tourism College, Jinan UniversityShenzhen, China
| | - Shuxia Yin
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Liebao Han
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| |
Collapse
|