1
|
Akyüz A, Ersus S. Optimization of Hoagland solution macro-elements as a culture media, for increasing protein content of duckweeds (Lemna minor). Food Chem 2024; 453:139647. [PMID: 38788644 DOI: 10.1016/j.foodchem.2024.139647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study aimed to increase the protein content of duckweed, a promising alternative to animal proteins and a sustainable source of plant protein cultivated via soilless agriculture, by manipulating the culture medium conditions (Hoagland solution). The contribution percentages of KH2PO4 and Ca(NO3)2, pivotal macro-elements in Hoagland solution affecting duckweed protein content, were determined using Plackett-Burman factorial design as 33.06 % and 36.61 %, respectively. Additionally, optimization was conducted employing response surface methodology, incorporating pH alongside KH2PO4 and Ca(NO3)2. Under optimal conditions of 3.92 mM KH2PO4, 7.95 mM Ca(NO3)2, and 7.22 pH, the protein content of duckweed increased significantly, reaching 51.09 % from 39.81 %. The duckweed cultivated in modified Hoagland solution exhibited protein content of 41.74 %, while duckweed grown in commercial Hoagland solution displayed protein content of 33.01 %. This study showed protein content of duckweed could significantly increase according to the growth medium and showcasing its potential as a sustainable source of plant protein.
Collapse
Affiliation(s)
- Ayça Akyüz
- Department of Food Engineering, Ege University, 35040 Bornova, İzmir, Turkey
| | - Seda Ersus
- Department of Food Engineering, Ege University, 35040 Bornova, İzmir, Turkey.
| |
Collapse
|
2
|
Chua MX, Saravanan G, Cheah YT, Chan DJC. Enhancing biomass production and biochemical compositions of Spirodela polyrhiza through superhydrophobic cultivation platforms at low light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108485. [PMID: 38461755 DOI: 10.1016/j.plaphy.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Duckweed, a floating macrophyte, has attracted interest in various fields such as animal feedstocks and bioenergy productions. Its enriched nutritional content and rapid growth rate make it particularly promising. However, common laboratory cultures of duckweed often experience fronds layering, diminishing the efficiency of sunlight capturing due to limited surface area on conventional cultivation platforms. In this work, we aimed to address the issue of fronds layering by introducing a novel cultivation platform - a superhydrophobic coated acrylic sheet. The sheet was prepared by spray-coating a suspension of beeswax and ethanol, and its effectiveness was evaluated by comparing the growth performance of giant duckweed, Spirodela polyrhiza, on this platform with that on a modified version. The superhydrophobic coated acrylic sheet (SHPA) and its variant with a metal mesh added (SHPAM) were employed as growing platforms, with a glass jar serving as the control. The plantlets were grown for 7 days with similar growth conditions under low light stress (25 μmol/m2/s). SHPAM demonstrated superior growth performance, achieving a mass gain of 102.12 ± 17.18 %, surpassing both SHPA (89.67 ± 14.97 %) and the control (39.26 ± 8.94 %). For biochemical compositions, SHPAM outperformed in chlorophyll content, protein content and lipid content. The values obtained were 1.021 ± 0.076 mg/g FW, 14.59 ± 0.58 % DW and 6.21 ± 0.75 % DW respectively. Therefore, this work proved that incorporation of superhydrophobic coatings on a novel cultivation platform significantly enhanced the biomass production of S. polyrhiza. Simultaneously, the biochemical compositions of the duckweeds were well-maintained, showcasing the potential of this approach for optimized duckweed cultivation.
Collapse
Affiliation(s)
- Mei Xia Chua
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Gayathri Saravanan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Yi Tong Cheah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
3
|
Afzal M, Alghamdi SS, Khan MA, Al-Faifi SA, Rahman MHU. Transcriptomic analysis reveals candidate genes associated with salinity stress tolerance during the early vegetative stage in fababean genotype, Hassawi-2. Sci Rep 2023; 13:21223. [PMID: 38040745 PMCID: PMC10692206 DOI: 10.1038/s41598-023-48118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Abiotic stresses are a significant constraint to plant production globally. Identifying stress-related genes can aid in the development of stress-tolerant elite genotypes and facilitate trait and crop manipulation. The primary aim of this study was to conduct whole transcriptome analyses of the salt-tolerant faba bean genotype, Hassawi-2, under different durations of salt stress (6 h, 12 h, 24 h, 48 h, and 72 h) at the early vegetative stage, to better understand the molecular basis of salt tolerance. After de novo assembly, a total of 140,308 unigenes were obtained. The up-regulated differentially expressed genes (DEGs) were 2380, 2863, 3057, 3484, and 4820 at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. Meanwhile, 1974, 3436, 2371, 3502, and 5958 genes were downregulated at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. These DEGs encoded various regulatory and functional proteins, including kinases, plant hormone proteins, transcriptional factors (TFs) basic helix-loop-helix (bHLH), Myeloblastosis (MYB), and (WRKY), heat shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, dehydrin, antioxidant enzymes, and aquaporin proteins. This suggests that the faba bean genome possesses an abundance of salinity resistance genes, which trigger different adaptive mechanisms under salt stress. Some selected DEGs validated the RNA sequencing results, thus confirming similar gene expression levels. This study represents the first transcriptome analysis of faba bean leaves subjected to salinity stress offering valuable insights into the mechanisms governing salt tolerance in faba bean during the vegetative stage. This comprehensive investigation enhances our understanding of precise gene regulatory mechanisms and holds promise for the development of novel salt-tolerant faba bean salt-tolerant cultivars.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sulieman A Al-Faifi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Habib Ur Rahman
- INRES Institute of Crop Science and Resources Conservation INRES University of Bonn, Bonn, Germany.
- Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.
| |
Collapse
|
4
|
Al-Dakhil M, Ben Romdhane W, Alghamdi S, Ali AAM. Differential Morpho-Physiological and Biochemical Responses of Duckweed Clones from Saudi Arabia to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:3206. [PMID: 37765370 PMCID: PMC10537559 DOI: 10.3390/plants12183206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Salinity affects the morphological, physiological, and biochemical characteristics of several plant species. The current study was conducted to investigate differential salt tolerance potentials among ten duckweed clones under different salt-stress conditions. Morphological and physiological parameters, including fronds length, fronds number, root length, root number, Na+/K+, chlorophyll, proline contents, and fresh harvest weight, were recorded for each of the ten duckweed clones collected from different Saudi Arabia regions. Additionally, the expression patterns of seven salt-related genes were monitored in a salt-tolerant duckweed genotype. The results show that the Madinah-2 (Spirodela polyryiza) and Al-Qassim (Landoltia punctata) clones presented higher performances for all the tested morphological and physiological parameters compared to other genotypes under salt-stress conditions. At concentrations greater than 150 mM NaCl, these aforementioned traits were affected for all the genotypes tested, except Madinah-2 (S. polyryiza) and Al-Qassim (L. punctata) clones, both of which exhibited high tolerance behavior under high salt conditions (200 mM and 250 mM NaCl). The principal component analysis (PCA) showed that the first five principal components accounted for 94.8% of the total variance among the studied traits. Morphological and physiological traits are the major portions of PC1. Moreover, the expression pattern analysis of NHX, BZIP, ST, and KTrans transcript revealed their upregulation in the Al-Qassim clone under salt-stress conditions, suggesting that these genes play a role in this clone's tolerance to salt-induced stress. Overall, this study indicates that the Al-Qassim clone could be used in a brackish-water duckweed-based treatment program with a simultaneous provision of valuable plant biomass.
Collapse
Affiliation(s)
- Mohammed Al-Dakhil
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (W.B.R.); (S.A.)
| | - Salem Alghamdi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (W.B.R.); (S.A.)
| | | |
Collapse
|
5
|
Ziegler P, Appenroth KJ, Sree KS. Survival Strategies of Duckweeds, the World's Smallest Angiosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112215. [PMID: 37299193 DOI: 10.3390/plants12112215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Klaus J Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, 07743 Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
6
|
Chua MX, Cheah YT, Tan WH, Chan DJC. A novel cultivation platform of duckweed (Lemna minor) via application of beeswax superhydrophobic coatings. ENVIRONMENTAL RESEARCH 2023; 224:115544. [PMID: 36822535 DOI: 10.1016/j.envres.2023.115544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
Collapse
Affiliation(s)
- Mei Xia Chua
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Yi Tong Cheah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Win Hung Tan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
7
|
Yang GL. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches. Int J Mol Sci 2022; 23:ijms232315231. [PMID: 36499555 PMCID: PMC9740428 DOI: 10.3390/ijms232315231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
With the growing scarcity of traditional sources of energy and the accompanying acute environmental challenges, biofuels based on biomass are favored as the most promising alternative. As one of the core raw materials for biomass energy, research on its production methods and synthesis mechanisms is emerging. In recent years, duckweed has been used as a high-quality new biomass feedstock for its advantages, including fast biomass accumulation, high starch content, high biomass conversion efficiency, and sewage remediation. This study provides a systematic review of the growth characteristics, starch metabolism pathways, and methods to improve starch accumulation in the new energy plant, duckweed. The study also presents a prospect that might be used as a reference for the development of duckweed as a new energy-providing plant.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Over-Expression of Phosphoserine Aminotransferase-Encoding Gene ( AtPSAT1) Prompts Starch Accumulation in L. turionifera under Nitrogen Starvation. Int J Mol Sci 2022; 23:ijms231911563. [PMID: 36232863 PMCID: PMC9570139 DOI: 10.3390/ijms231911563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
It has been demonstrated that the phosphorylation pathway of L-serine (Ser) biosynthesis (PPSB) is very important in plant growth and development, but whether and how PPSB affects nitrogen metabolism and starch accumulation has not been fully elucidated. In this study, we took the energy plant duckweed (strain Lemna turionifera 5511) as the research object and used a stable genetic transformation system to heterologously over-expressing Arabidopsis AtPSAT1 (the gene encoding phosphoserine aminotransferase, the second enzyme of PPSB). Our results showed that, under nitrogen starvation, the transgenic plants grew faster, with higher values of Fv/Fm, rETR, and Y(II), as well as fresh and dry weight, than the wild-type. More promisingly, the accumulation of starch was also found to be significantly improved when over-expressing AtPSAT1 in the transgenic plants. qRT-PCR analysis results showed that the expression of genes related to nitrogen assimilation, carbon metabolism, and starch biosynthesis was up-regulated, while the expression of starch degradation-related genes was down-regulated by AtPSAT1 over-expression. We propose that the increased starch accumulation caused by AtPSAT1 over-expression may result from both elevated photosynthetic capacity and nitrogen utilization efficiency. This research sheds new light on the mechanism underlying the ability of PPSB to coordinate nitrogen and carbon metabolism, and provides a feasible way to improve starch production, that is, through engineering PPSB in crops.
Collapse
|
9
|
Characterization of Various Subunit Combinations of ADP-Glucose Pyrophosphorylase in Duckweed (Landoltia punctata). BIOMED RESEARCH INTERNATIONAL 2022; 2022:5455593. [PMID: 35309169 PMCID: PMC8927976 DOI: 10.1155/2022/5455593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Background Landoltia punctata can be used as renewable and sustainable biofuel feedstock because it can quickly accumulate high starch levels. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step during starch biosynthesis in higher plants. The heterotetrameric structure of plant AGPases comprises pairs of large subunits (LSs) and small subunits (SSs). Although several studies have reported on the high starch accumulation capacity of duckweed, no study has explored the underlying molecular accumulation mechanisms and their linkage with AGPase. Therefore, this study focused on characterizing the roles of different L. punctate AGPases. Methodology. Expression patterns of LpAGPs were determined through comparative transcriptome analyses, followed by coexpressing their coding sequences in Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana tabacum. Results Comparative transcriptome analyses showed that there are five AGPase subunits encoding cDNAs in L. punctata (LpAGPS1, LpAGPS2, LpAGPL1, LpAGPL2, and LpAGPL3). Nutrient starvation (distilled water treatment) significantly upregulated the expression of LpAGPS1, LpAGPL2, and LpAGPL3. Coexpression of LpAGPSs and LpAGPLs in Escherichia coli generated six heterotetramers, but only four (LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3) exhibited AGPase activities and displayed a brownish coloration upon exposure to iodine staining. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays validated the interactions between LpAGPS1/LpAGPL2, LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3. All the five LpAGPs were fusion-expressed with hGFP in Arabidopsis protoplasts, and their green fluorescence signals were uniformly localized in the chloroplast, indicating that they are plastid proteins. Conclusions This study uncovered the cDNA sequences, structures, subunit interactions, expression patterns, and subcellular localization of AGPase. Collectively, these findings provide new insights into the molecular mechanism of fast starch accumulation in L. punctata.
Collapse
|
10
|
Zhong Y, Wang L, Ma Z, Du X. Physiological responses and transcriptome analysis of Spirodela polyrhiza under red, blue, and white light. PLANTA 2021; 255:11. [PMID: 34855030 DOI: 10.1007/s00425-021-03764-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Red light (RL) accelerated starch accumulation in S. polyrhiza, but higher protein content under blue light (BL) was associated with the upregulation of most DEGs enriched for specific GO terms and KEGG pathways. Red light (RL) and blue light (BL) greatly influence the growth and physiological processes of duckweed. Physiological and molecular mechanisms underlying the response of duckweed to different light qualities remain unclear. This study employed physiological and transcriptomic analyses on duckweed, Spirodela polyrhiza "5510", to elucidate its differential response mechanisms under RL, BL, and white light conditions. Changes in growth indicators, ultrastructure alterations, metabolite accumulations, and differentially expressed genes (DEGs) were measured. The results showed that BL promoted both biomass and protein accumulations, while RL promoted starch accumulation. A total of 633, 518, and 985 DEGs were found in white-vs-red, white-vs-blue, and red-vs-blue comparison groups, respectively. In Gene Ontology (GO) enrichment analysis, the DEGs in all three comparison groups were significantly enriched in two GO terms, carboxylic acid metabolic process and lyase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were greatly enriched in two pathways, histidine metabolism and isoquinoline alkaloid biosynthesis. Higher protein content under BL was associated with the upregulation of most DEGs enriched with the GO terms and KEGG pathways. Furthermore, the light qualities influenced the gene expression patterns of other metabolic pathways, like carotenoid biosynthesis, and the regulation of these genes may explain the level of photosynthetic pigment content. The results revealed the physiological changes and transcriptome-level responses of duckweed to three light qualities, thereby providing bases for further research studies on the ability of duckweed as a biomass energy source.
Collapse
Affiliation(s)
- Yu Zhong
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Le Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - ZiMing Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Appenroth KJ, Ziegler P, Sree KS. Accumulation of starch in duckweeds (Lemnaceae), potential energy plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2621-2633. [PMID: 34924714 PMCID: PMC8639912 DOI: 10.1007/s12298-021-01100-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 06/12/2023]
Abstract
Starch can accumulate in both actively growing vegetative fronds and over-wintering propagules, or turions of duckweeds, small floating aquatic plants belonging to the family of the Lemnaceae. The starch synthesizing potential of 36 duckweed species varies enormously, and the starch contents actually occurring in the duckweed tissues are determined by growth conditions, various types of stress and the action of growth regulators. The present review examines the effects of phytohormones and growth retardants, heavy metals, nutrient deficiency and salinity on the accumulation of starch in duckweeds with a view to obtaining high yields of starch as a feedstock for biofuel production. Biotechnological approaches to degrading duckweed starch to its component sugars and the fermentation of these sugars to bio-alcohols are also discussed.
Collapse
Affiliation(s)
- Klaus-J. Appenroth
- Matthias Schleiden Institute – Plant Physiology, University of Jena, Jena, Germany
| | - Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye, 671320 India
| |
Collapse
|
12
|
Leonel M, Fernandes DDS, Dos Santos TPR. Unmodified cassava starches with high phosphorus content. Int J Biol Macromol 2021; 187:113-118. [PMID: 34298045 DOI: 10.1016/j.ijbiomac.2021.07.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/29/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Our study was based on the fact that physiological changes in the plant resulting from the growth conditions alter the properties of the starch. An experimental trial was installed with cassava plants in poor phosphorus soil. A part of plants received phosphate fertilization at a level three times higher than the recommended dose, in order to provide high availability of phosphorus in the soil. The plants grew for two years and the starches were isolated at three times in the second vegetative cycle. The starches had A-type X-ray pattern. Starches isolated from cassava plants grown in soils with high phosphorus had increases of more than 100% in the content of bound phosphorus, which caused changes in the size of the granules, amylose, swelling power, solubility, pasting and thermal properties. These results indicate possibilities of increasing the commercial value of native cassava starch due to the expansion of use, considering the range of uses of phosphate starches for food and non-food purposes.
Collapse
Affiliation(s)
- Magali Leonel
- Center for Tropical Roots and Starch (CERAT), São Paulo State University (UNESP), Universitaria Avenue 3780, PC 18.610-034, Botucatu, São Paulo, Brazil.
| | - Daiana de Souza Fernandes
- Center for Tropical Roots and Starch (CERAT), São Paulo State University (UNESP), Universitaria Avenue 3780, PC 18.610-034, Botucatu, São Paulo, Brazil
| | - Thaís Paes Rodrigues Dos Santos
- Center for Tropical Roots and Starch (CERAT), São Paulo State University (UNESP), Universitaria Avenue 3780, PC 18.610-034, Botucatu, São Paulo, Brazil
| |
Collapse
|
13
|
Shao J, Liu Z, Ding Y, Wang J, Li X, Yang Y. Biosynthesis of the starch is improved by the supplement of nickel (Ni 2+) in duckweed (Landoltia punctata). JOURNAL OF PLANT RESEARCH 2020; 133:587-596. [PMID: 32458160 DOI: 10.1007/s10265-020-01204-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Duckweed is a kind of floating aquatic plant and increasing its starch production is favorable for bioenergy. In this study, we found that starch biosynthesis was greatly promoted by the supplement of nickel ion (Ni2+) through the comparison of other different ions. The starch content in duckweed was increased by nearly eightfold when duckweed was treated with 20 µM Ni2+. The analysis of paraffin sections visually found that starch granules were more complete and dark blue in Ni2+ treated duckweed than the control. Quantitative real-time PCR demonstrated that the expressions of starch synthesis-related enzymes were up-regulated in Ni2+ treated duckweed. Further analysis revealed that the accumulation of Ni2+ in duckweed effectively increased the activity of urease, which compensated for the deficiency of certain decrease in biomass and accelerated biosynthesis of the starch. Thus, our results represent another strategy to improve starch production of duckweed.
Collapse
Affiliation(s)
- Jin Shao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongqiang Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- College of Life Sciences, Sichuan University , Chengdu, 610064, China.
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Leonel M, Bolfarini ACB, Rodrigues da Silva MJ, Souza JMA, Leonel S. Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. Int J Biol Macromol 2020; 150:1020-1026. [DOI: 10.1016/j.ijbiomac.2019.10.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/24/2019] [Indexed: 01/27/2023]
|
15
|
Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata. Sci Rep 2019; 9:15310. [PMID: 31653895 PMCID: PMC6814796 DOI: 10.1038/s41598-019-51677-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/04/2019] [Indexed: 01/20/2023] Open
Abstract
Murashige & Skoog (MS) and Hoagland's media were previously used for in vitro culture of Landoltia punctata. During subsequent ex vitro culture, the use of MS medium resulted in a higher growth rate, compared to Hoagland's medium. Thus, a higher starch content of L. punctata in MS medium was previously hypothesized. Here, L. punctata strain 5632 was isolated and characterized using morphological characteristics and the atpF-atpH intergenic region. During early cultivation stage, fresh weight and relative growth rate in MS medium were lower than Hoagland's medium. Conversely, starch content in MS medium was considerably higher than in Hoagland's medium. Medium effects on expression of genes coding for starch-biosynthesis ADP-glucosepyrophosphorylase (AGPase) were determined. Genomic fragments of small (LeAPS) and large (LeAPL1) AGPase subunits were characterized. Differential expression between each AGPase subunit genes was observed in both media. Additionally, in MS medium, the highest correlation coefficients between starch content and gene expression was found with LeAPS (0.81) and followed by LeAPL3 (0.67), LeAPL2 (0.65) and LeAPL1 (0.28). In Hoagland's medium, the coefficients of LeAPL3 (0.83) and LeAPL2 (0.62) were higher than LeAPS (0.18) and LeAPL1 (-0.62). This suggested different levels of contributions of these genes in starch biosynthesis in both media.
Collapse
|
16
|
de Souza Moretti MM, Yu W, Zou W, Franco CML, Albertin LL, Schenk PM, Gilbert RG. Relationship between the molecular structure of duckweed starch and its in vitro enzymatic degradation kinetics. Int J Biol Macromol 2019; 139:244-251. [DOI: 10.1016/j.ijbiomac.2019.07.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
17
|
Fu L, Ding Z, Sun X, Zhang J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes (Basel) 2019; 10:genes10100743. [PMID: 31554307 PMCID: PMC6826491 DOI: 10.3390/genes10100743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/14/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023] Open
Abstract
Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Zehong Ding
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| |
Collapse
|
18
|
Barbosa Neto A, Morais M, Dutra E, Calsa Junior T. Biological diversity of Lemna aequinoctialis Welw. isolates influences biomass production and wastewater phytoremediation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Oustric J, Quilichini Y, Morillon R, Herbette S, Luro F, Giannettini J, Berti L, Santini J. Tetraploid citrus seedlings subjected to long-term nutrient deficiency are less affected at the ultrastructural, physiological and biochemical levels than diploid ones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:372-384. [PMID: 30616112 DOI: 10.1016/j.plaphy.2018.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
Nutrient deficiency has economic and ecological repercussions for citrus fruit crops worldwide. Citrus crops rely on fertilization to maintain good fruit output and quality, whereas new crop management policy aims to reduce fertilizers input. New rootstocks are needed to meet to this constraint, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. Here we compared physiological, biochemical and anatomic traits of leaves in diploid (2x) and doubled-diploid (4x) Citrumelo 4475 (Citrus paradisi L. Macf. × Poncirus trifoliata L. Raf.) and Volkamer lemon (Citrus limonia Osb.) seedlings over 7 months of nutrient deficiency. Photosynthetic parameters (Pnet, Gs and Fv/Fm) decreased, but to a lesser extent in 4x genotypes than 2x. Degradation of the ultrastructural organelles (chloroplasts and mitochondria) and compound cells (thylakoids and starches) was also lower in 4x genotypes, suggesting that tetraploidy may enhance tolerance to nutrient deficiency. However, leaf surface (stomata, stomatal density and epithelial cells) showed no nutrient deficiency-induced change. In 4x Citrumelo 4475, the higher tolerance to nutrient deficiency was associated with a lower MDA and H2O2 accumulation than in the 2x, suggesting a more efficient antioxidant system in the 4x genotype. However, few differences in antioxidant system and oxidative status were observed between 2x and 4x Volkamer lemons.
Collapse
Affiliation(s)
- Julie Oustric
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Yann Quilichini
- Laboratoire Parasites et Ecosystèmes Méditerranéens", CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Raphaël Morillon
- Equipe "Amélioration des Plantes à Multiplication Végétative", UMR AGAP, Département BIOS, CIRAD, Station de Roujol, Petit-Bourg, Guadeloupe.
| | | | - François Luro
- UMR AGAP Corse, station INRA/CIRAD, San Giuliano, France.
| | - Jean Giannettini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Liliane Berti
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Jérémie Santini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| |
Collapse
|
20
|
Carbohydrate Dynamics in Maize Leaves and Developing Ears in Response to Nitrogen Application. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8120302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maize grain yield is considered to be highly associated with ear and leaf carbohydrate dynamics during the critical period bracketing silking and during the fast grain filling phase. However, a full understanding of how differences in N availability/plant N status influence carbohydrate dynamics and processes underlying yield formation remains elusive. Two field experiments were conducted to examine maize ear development, grain yield and the dynamics of carbohydrates in maize ear leaves and developing ears in response to differences in N availability. Increasing N availability stimulated ear growth during the critical two weeks bracketing silking and during the fast grain-filling phase, consequently resulting in greater maize grain yield. In ear leaves, sucrose and starch concentrations exhibited an obvious diurnal pattern at both silking and 20 days after silking, and N fertilization led to more carbon flux to sucrose biosynthesis than to starch accumulation. The elevated transcript abundance of key genes involved in starch biosynthesis and maltose export, as well as the sugar transporters (SWEETs) important for phloem loading, indicated greater starch turnover and sucrose export from leaves under N-fertilized conditions. In developing ears, N fertilization likely enhanced the cleavage of sucrose to glucose and fructose in the cob prior to and at silking and the synthesis from glucose and fructose to sucrose in the kernels after silking, and thus increasing kernel setting and filling. At the end, we propose a source-sink carbon partitioning framework to illustrates how N application influences carbon assimilation in leaves, transport, and conversions in developing reproductive tissues, ultimately leading to greater yield.
Collapse
|
21
|
Liu C, Feng Q, Yang J, Qi X. Catalytic production of levulinic acid and ethyl levulinate from uniconazole-induced duckweed (Lemna minor). BIORESOURCE TECHNOLOGY 2018; 255:50-57. [PMID: 29414172 DOI: 10.1016/j.biortech.2018.01.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Duckweed (Lemna minor) with a high starch content of 50.4% was cultivated by uniconazole-induction method. The cultivated duckweed was used to produce value-added chemicals such as glucose, levulinic acid and formic acid in diluted HCl aqueous solution. A high glucose yield of 93.4% (471 g/kg based on loading duckweed mass) could be achieved at 180 °C in short reaction time, and the generated glucose was converted into levulinic acid and formic acid with yields of 52.0% and 34.1%, respectively, for 150 min, corresponding to 262 g/kg levulinic acid yield and 171 g/kg formic acid yield based on the mass of loading duckweed, respectively. Moreover, the duckweed was efficiently converted to ethyl levulinate with 55.2% yield (400.6 g/kg) at 200 °C in ethanol. This work provides a promising strategy for the production of value-added chemicals from phytoplankton that is able to purify the wastewater containing high content of P and N.
Collapse
Affiliation(s)
- Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Qingna Feng
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin 300191, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jirui Yang
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin 300191, China
| | - Xinhua Qi
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin 300191, China.
| |
Collapse
|
22
|
Ning P, Yang L, Li C, Fritschi FB. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1707-1719. [PMID: 29361032 PMCID: PMC5888971 DOI: 10.1093/jxb/erx496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/26/2017] [Indexed: 05/24/2023]
Abstract
Maize (Zea mays) plants exhibit altered carbon partitioning under nitrogen (N) deficiency, but the mechanisms by which N availability affects sugar export out of leaves and transport into developing ears remain unclear. Maize was grown under field conditions with different N supply. Plant growth, sugar movement, and starch turnover in source or sink tissues were investigated at silking and 20 or 21 days after silking. Nitrogen deficiency stunted plant growth and grain yield compared with N-sufficient plants, and resulted in greater starch concentrations in leaves due to more as well as larger starch granules in bundle sheath cells. Transmission electron microscopy revealed an open symplastic pathway for sucrose movement in N-deficient leaves, while the expression levels of transporters responsible for sucrose efflux and phloem loading were lower than in N-sufficient leaves. Nonetheless, greater starch concentrations in the apical cob portion of N-deficient plants implied sufficient carbon supply relative to the diminished sink strength (decreased kernel number and weight). Together with the high sugar concentrations in the developing kernels, the results indicated that reduced sink capacity and sugar utilization during grain filling may limit the yield in N-deficient plants, which in turn imposes a feedback inhibition on sugar export from leaves.
Collapse
Affiliation(s)
- Peng Ning
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Division of Plant Sciences, University of Missouri, Columbia, USA
| | - Lu Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, USA
| |
Collapse
|
23
|
Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, Leiterer M, Jahreis G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 2016; 217:266-273. [PMID: 27664634 DOI: 10.1016/j.foodchem.2016.08.116] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Duckweeds have been consumed as human food since long. Species of the duckweed genera, Spirodela, Landoltia, Lemna, Wolffiella and Wolffia were analysed for protein, fat, and starch contents as well as their amino acid and fatty acid distribution. Protein content spanned from 20% to 35%, fat from 4% to 7%, and starch from 4% to 10% per dry weight. Interestingly, the amino acid distributions are close to the WHO recommendations, having e.g. 4.8% Lys, 2.7% Met+Cys, and 7.7% Phe+Tyr. The content of polyunsaturated fatty acids was between 48 and 71% and the high content of n3 fatty acids resulted in a favourable n6/n3 ratio of 0.5 or less. The phytosterol content in the fastest growing angiosperm, W. microscopica, was 50mgg(-1) lipid. However, the content of trace elements can be adjusted by cultivation conditions. Accordingly, W. hyalina and W. microscopica are recommended for human nutrition.
Collapse
Affiliation(s)
- Klaus-J Appenroth
- University of Jena, Institute of General Botany and Plant Physiology, 07743 Jena, Germany.
| | - K Sowjanya Sree
- Central University of Kerala, Department of Environmental Science, RSTC, Padannakad, Kerala 671314, India.
| | - Volker Böhm
- University of Jena, Institute of Nutrition, Jena, Germany.
| | - Simon Hammann
- University of Hohenheim, Institute of Food Chemistry, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Stuttgart, Germany.
| | | | | |
Collapse
|