1
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
2
|
Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, Niu M, Wang Q. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. THE PLANT GENOME 2024; 17:e20303. [PMID: 36740755 DOI: 10.1002/tpg2.20303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.
Collapse
Affiliation(s)
- Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiabin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Miaomiao Song
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Peter J Lockhart
- School of Natural Sciences, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Zhang P, Zhang F, Wu Z, Cahaeraduqin S, Liu W, Yan Y. Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. PLANT CELL REPORTS 2023; 42:1665-1686. [PMID: 37479883 DOI: 10.1007/s00299-023-03052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
KEY MESSAGE Nitraria sibirica Pall. regulates its tolerance to salt stress mainly by adjusting ion balance, modifying cell wall structure, and activating signal transduction pathways. N. sibirica, as a typical halophyte, can not only effectively restore saline-alkali land, but also has high economic value. However, studies on its salt tolerance at combining molecular and physiological levels were limited. In this study, the salt tolerance of N. sibirica was analyzed based on Pacbio full-length transcriptome sequencing, and the salt tolerance in the physiological level was verified by key genes. The results showed that 89,017 full-length transcripts were obtained, of which 84,632 sequences were annotated. A total of 86,482 coding sequences (CDS) were predicted and 6561 differentially expressed genes (DEGs) were identified. DEGs were significantly enriched in "sodium ion homeostasis", "response to osmotic stress", "reactive oxygen species metabolic process", "defense response by cell wall thickening", "signal transduction", etc. The expression levels for most of these DEGs increased under salt stress. A total of 69 key genes were screened based on weighted gene co-expression network analysis (WGCNA), of which 33 were first reported on salt tolerance. Moreover, NsRabE1c gene with the highest expression level was selected to verify its salt tolerance. Over-expression of NsRabE1c gene enhanced the germination potential and root length of transgenic Arabidopsis thaliana plants without salt treatment as compared to those of Col-0 and AtRabE1c mutant. The expression levels of NsRabE1c decreased in the growth stagnation phase, while significantly increased in the growth recovery phase under salt stress. We predicted that NsRabE1c gene help N. sibirica resist salt stress through the regulation of plant growth. The results of this study deepen the understanding of salinity resistance in N. sibirica.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fengxiang Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiheng Wu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Sunaer Cahaeraduqin
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Dabravolski SA, Isayenkov SV. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2558. [PMID: 37447119 DOI: 10.3390/plants12132558] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Drought and salinity affect various biochemical and physiological processes in plants, inhibit plant growth, and significantly reduce productivity. The anthocyanin biosynthesis system represents one of the plant stress-tolerance mechanisms, activated by surplus reactive oxygen species. Anthocyanins act as ROS scavengers, protecting plants from oxidative damage and enhancing their sustainability. In this review, we focus on molecular and biochemical mechanisms underlying the role of anthocyanins in acquired tolerance to drought and salt stresses. Also, we discuss the role of abscisic acid and the abscisic-acid-miRNA156 regulatory node in the regulation of drought-induced anthocyanin production. Additionally, we summarise the available knowledge on transcription factors involved in anthocyanin biosynthesis and development of salt and drought tolerance. Finally, we discuss recent progress in the application of modern gene manipulation technologies in the development of anthocyanin-enriched plants with enhanced tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str., 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
5
|
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, Garg M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotechnol 2023; 361:12-29. [PMID: 36414125 DOI: 10.1016/j.jbiotec.2022.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.
Collapse
Affiliation(s)
- Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Era Chaudhary
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
Yang ZY, Cao XY, Zheng XW, Wang TQ, Wang JN, Feng F, Ye CH. Biochemical, transcriptome and metabolome analysis of the pulp of Citrus sinensis (L.) Osbeck ‘Hong Jiang’ and its two variants reveal pathways regulating pulp taste, mastication, and color. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Wang H, Liu S, Fan F, Yu Q, Zhang P. A Moss 2-Oxoglutarate/Fe(II)-Dependent Dioxygenases (2-ODD) Gene of Flavonoids Biosynthesis Positively Regulates Plants Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:850062. [PMID: 35968129 PMCID: PMC9372559 DOI: 10.3389/fpls.2022.850062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/21/2022] [Indexed: 05/14/2023]
Abstract
Flavonoids, the largest group of polyphenolic secondary metabolites present in all land plants, play essential roles in many biological processes and defense against abiotic stresses. In the flavonoid biosynthesis pathway, flavones synthase I (FNSI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and anthocyanidin synthase (ANS) all belong to 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs) family, which catalyzes the critical oxidative reactions to form different flavonoid subgroups. Here, a novel 2-ODD gene was cloned from Antarctic moss Pohlia nutans (Pn2-ODD1) and its functions were investigated both in two model plants, Physcomitrella patens and Arabidopsis thaliana. Heterologous expression of Pn2-ODD1 increased the accumulation of anthocyanins and flavonol in Arabidopsis. Meanwhile, the transgenic P. patens and Arabidopsis with expressing Pn2-ODD1 exhibited enhanced tolerance to salinity and drought stresses, with larger gametophyte sizes, better seed germination, and longer root growth. Heterologous expression of Pn2-ODD1 in Arabidopsis also conferred the tolerance to UV-B radiation and oxidative stress by increasing antioxidant capacity. Therefore, we showed that Pn2-ODD1 participated in the accumulation of anthocyanins and flavonol in transgenic plants, and regulated the tolerance to abiotic stresses in plants, contributing to the adaptation of P. nutans to the polar environment.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- *Correspondence: Pengying Zhang
| |
Collapse
|
8
|
Li N, Wang X, Ma B, Wu Z, Zheng L, Qi Z, Wang Y. A leucoanthocyanidin dioxygenase gene (RtLDOX2) from the feral forage plant Reaumuria trigyna promotes the accumulation of flavonoids and improves tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2021; 134:1121-1138. [PMID: 34037878 DOI: 10.1007/s10265-021-01315-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Reaumuria trigyna, a Tamaricaceae archaic recretohalophyte, is an important feral forage plant in the desert steppe of northwestern China. We identified two significantly differentially expressed leucoanthocyanidin dioxygenase genes (RtLDOX/RtLDOX2) and investigated the function and characteristics of RtLDOX2. RtLDOX2 from R. trigyna was rapidly upregulated by salt, drought, and abscisic acid, consistent with the stress-related cis-regulatory elements in the promoter region. Recombinant RtLDOX2 converted dihydrokaempferol to kaempferol in vitro, and was thus interchangeable with flavonol synthase, a dioxygenase in the flavonoid pathway. Transgenic plants overexpressing RtLDOX2 accumulated more anthocyanin and flavonols under abiotic stresses, speculating that RtLDOX2 may act as a multifunctional dioxygenase in the synthesis of anthocyanins and flavonols. Overexpression of RtLDOX2 enhanced the primary root length, biomass accumulation, and chlorophyll content of salt-, drought-, and ultraviolet-B-stressed transgenic Arabidopsis. Antioxidant enzyme activity; proline content; and expression of antioxidant enzyme, proline biosynthesis, and ion-transporter genes were increased in transgenic plants. Therefore, RtLDOX2 confers tolerance to abiotic stress on transgenic Arabidopsis by promoting the accumulation of anthocyanins and flavonols. This in turn increases reactive oxygen species scavenging and activates other stress responses, such as osmotic adjustment and ion transport, and so improves tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Ningning Li
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, 010019, China
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Xue Wang
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Binjie Ma
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Zhigang Wu
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Linlin Zheng
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Zhi Qi
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Yingchun Wang
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China.
| |
Collapse
|
9
|
Ma B, Liu X, Guo S, Xie X, Zhang J, Wang J, Zheng L, Wang Y. RtNAC100 involved in the regulation of ROS, Na + accumulation and induced salt-related PCD through MeJA signal pathways in recretohalophyte Reaumuria trigyna. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110976. [PMID: 34315592 DOI: 10.1016/j.plantsci.2021.110976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
NAM, ATAF1/2, and CUC2 (NAC) proteins regulate plant responses to salt stress. However, the molecular mechanisms by which NAC proteins regulate salt-induced programmed cell death (PCD) are unclear. We identified 56 NAC genes, 35 of which had complete open reading frames with complete NAM domain, in the R. trigyna transcriptome. Salt stress and methyl jasmonate (MeJA) mediated PCD-induced leaf senescence in R. trigyna seedlings. Salt stress accelerated endogenous JA biosynthesis, upregulating RtNAC100 expression. This promoted salt-induced leaf senescence in R. trigyna by regulating RtRbohE and RtSAG12/20 and enhancing ROS accumulation. Transgenic assays showed that RtNAC100 overexpression aggravated salt-induced PCD in transgenic lines by promoting ROS and Na+ accumulation, ROS-Ca2+ hub activation, and PCD-related gene expression. Therefore, RtNAC100 induces PCD via the MeJA signaling pathway in R. trigyna under salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Shuyu Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Xinlei Xie
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Jie Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Jianye Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Linlin Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
10
|
Li P, Lei K, Liu L, Zhang G, Ge H, Zheng C, Shu H, Zhang S, Ji L. Identification and functional characterization of a new flavonoid synthase gene MdFLS1 from apple. PLANTA 2021; 253:105. [PMID: 33860366 DOI: 10.1007/s00425-021-03615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The flavonoid synthase gene MdFLS1 from apple, which possibly plays an important role in anthocyanin synthesis, accumulates in the purple-red branches of Malus 'Pink spire'. Flavonoid metabolism serves an important function in plant growth and development. In this study, we selected 20 varieties of apple lines, 10 green and ten red branches, from the plant nursery of Qingdao Agriculture Academy. Metabolite analysis revealed that large amounts of anthocyanins accumulated in the purple-red branches of M. 'Pink spire'. Real-time polymerase chain reaction showed that the expression of the flavonol synthase gene MdFLS1 was over 1500-fold higher in M. 'Pink spire' than in the other varieties. A single base A was inserted at the first three bases of the active binding site of MdFLS1 to prove that the purple-red colour of apple leaves and stems in M. 'Pink spire' may be caused by the inactivation of MdFLS1 protein. The results of in vitro enzymatic reaction revealed that the MdFLS1 protein lost its activity. MdFLS1 was expressed in Arabidopsis thaliana to explore further its functions. High-expression wild-type strains (OE1 and OE2) and high-expression strains of A-base insertion (A-OE1 and A-OE2) were obtained. Compared with the wild-type strains, the overexpression lines showed lighter tissue colour and less accumulation of anthocyanins. However, A-OE1 and A-OE2 showed no difference in colouration. In conclusion, we speculated that the MdFLS1 gene in M. 'Pink spire' cannot bind flavonoids, triggering the synthesis of anthocyanins in another branch of the flavonoid metabolic pathway and resulting in the purple-red colouration of apple leaves and stems. These results suggest that MdLS1 is a potential genetic target for breeding high-flavonoid apples in future cultivar development.
Collapse
Affiliation(s)
- Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, 250000, People's Republic of China
| | - Kang Lei
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, 250000, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Guizhi Zhang
- School of Pharmacy, Linyi University, Linyi, Shandong, 276000, People's Republic of China
| | - Hongjuan Ge
- Qingdao Agriculture Academy, Qingdao, Shandong, 266100, People's Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Huairui Shu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Lusha Ji
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, 250000, People's Republic of China.
| |
Collapse
|
11
|
Chen ZJ, Lv Y, Zhai XY, Yang H. Comprehensive analyses of degradative enzymes associated with mesotrione-degraded process in rice for declining environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143618. [PMID: 33248774 DOI: 10.1016/j.scitotenv.2020.143618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Mesotrione (MTR) is a highly effective pesticide widely used for weeding in farmland. Overload of MTR in agricultural soils may result in environmental problems. To evaluate the potential contamination of MTR in environments, a better understanding of the MTR degradation process and mechanisms in crops is required. This study investigated the impact of MTR on growth and toxicological responses in rice (Oryza sativa). The growth of rice tissues was significantly compromised with increasing MTR concentrations. RNA-sequencing combined with HRLC-Q-TOF-MS/MS analysis identified many transcriptional components responsible for MTR degradation. Four libraries composed of root and shoot tissues exposed to MTR were RNA-sequenced in biological triplicate. Compared to -MTR, treatment with environmentally realistic MTR concentration upregulated 1995 genes in roots and 326 genes in shoots. Gene enrichment revealed many MTR-degradative enzymes functioning in resistance to environmental stress and molecular metabolism of xenobiotics. Specifically, many differentially expressed genes are critical enzymes like cytochrome P450, glycosyltransferases, methyltransferase, glutathione S-transferases and acetyltransferase involved in the process. To evidence MTR degradative metabolisms, HRLC-Q-TOF-MS/MS was used to characterize eight metabolites and five conjugates in the pathways involving hydrolysis, reduction, glycosylation, methylation or acetylation. The precise association between the specific MTR-degraded products and enhanced activities of its corresponding enzymes was established. This study advanced our understanding of the detailed MTR degradative mechanisms and pathways, which may help engineer genotypes to facilitate MTR degradation in the paddy crop.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lv
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Wang D, Ma Z, Yan F, Liu Y. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Sophora alopecuroides. Int J Mol Sci 2021; 22:ijms22052399. [PMID: 33673678 PMCID: PMC7957753 DOI: 10.3390/ijms22052399] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fan Yan
- Correspondence: (F.Y.); (Y.L.)
| | | |
Collapse
|
13
|
Ma B, Suo Y, Zhang J, Xing N, Gao Z, Lin X, Zheng L, Wang Y. Glutaredoxin like protein (RtGRL1) regulates H 2O 2 and Na + accumulation by maintaining the glutathione pool during abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:135-147. [PMID: 33360237 DOI: 10.1016/j.plaphy.2020.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yafei Suo
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Xing
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
14
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Abobatta WF. Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity. SALT AND DROUGHT STRESS TOLERANCE IN PLANTS 2020. [DOI: 10.1007/978-3-030-40277-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
16
|
RNA-seq Analysis of Salt-Stressed Versus Non Salt-Stressed Transcriptomes of Chenopodium quinoa Landrace R49. Genes (Basel) 2019; 10:genes10121042. [PMID: 31888133 PMCID: PMC6947843 DOI: 10.3390/genes10121042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.), a model halophytic crop species, was used to shed light on salt tolerance mechanisms at the transcriptomic level. An RNA-sequencing analysis of genotype R49 at an early vegetative stage was performed by Illumina paired-ends method comparing high salinity and control conditions in a time-course pot experiment. Genome-wide transcriptional salt-induced changes and expression profiling of relevant salt-responsive genes in plants treated or not with 300 mM NaCl were analyzed after 1 h and 5 days. We obtained up to 49 million pairs of short reads with an average length of 101 bp, identifying a total of 2416 differentially expressed genes (DEGs) based on the treatment and time of sampling. In salt-treated vs. control plants, the total number of up-regulated and down-regulated genes was 945 and 1471, respectively. The number of DEGs was higher at 5 days than at 1 h after salt treatment, as reflected in the number of transcription factors, which increased with time. We report a strong transcriptional reprogramming of genes involved in biological processes like oxidation-reduction, response to stress and response to abscisic acid (ABA), and cell wall organization. Transcript analyses by real-time RT- qPCR supported the RNA-seq results and shed light on the contribution of roots and shoots to the overall transcriptional response. In addition, it revealed a time-dependent response in the expression of the analyzed DEGs, including a quick (within 1 h) response for some genes, suggesting a "stress-anticipatory preparedness" in this highly salt-tolerant genotype.
Collapse
|
17
|
Sicilia A, Testa G, Santoro DF, Cosentino SL, Lo Piero AR. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC PLANT BIOLOGY 2019; 19:355. [PMID: 31416418 PMCID: PMC6694640 DOI: 10.1186/s12870-019-1964-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND To compensate for the lack of information about the molecular mechanism involved in Arundo donax L. response to salt stress, we de novo sequenced, assembled and analyzed the A. donax leaf transcriptome subjected to two levels of long-term salt stress (namely, S3 severe and S4 extreme). RESULTS The picture that emerges from the identification of differentially expressed genes is consistent with a salt dose-dependent response. Hence, a deeper re-programming of the gene expression occurs in those plants grew at extreme salt level than in those subjected to severe salt stress, probably representing for them an "emergency" state. In particular, we analyzed clusters related to salt sensory and signaling, transcription factors, hormone regulation, Reactive Oxygen Species (ROS) scavenging, osmolyte biosynthesis and biomass production, all of them showing different regulation either versus untreated plants or between the two treatments. Importantly, the photosynthesis is strongly impaired in samples treated with both levels of salinity stress. However, in extreme salt conditions, a dramatic switch from C3 Calvin cycle to C4 photosynthesis is likely to occur, this probably being the more impressive finding of our work. CONCLUSIONS Considered the distinct response to salt doses, genes either involved in severe or in extreme salt response could constitute useful markers of the physiological status of A. donax to deepen our understanding of its biology and productivity in salinized soil. Finally, many of the unigenes identified in the present study have the potential to be used for the development of A. donax varieties with improved productivity and stress tolerance, in particular the knock out of the GTL1 gene acting as negative regulator of water use efficiency has been proposed as good target for genome editing.
Collapse
Affiliation(s)
- Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
18
|
Du C, Ma B, Wu Z, Li N, Zheng L, Wang Y. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:38-51. [PMID: 31181407 DOI: 10.1016/j.jplph.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Reaumuria trigyna (Reaumuria Linn genus, family Tamaricaceae), an endangered dicotyledonous shrub with the features of a recretohalophyte, is endemic to the Eastern Alxa-Western Ordos area of China. Based on R. trigyna transcriptome data and expression pattern analysis of RtWRKYs, RtWRKY23, a Group II WRKY transcription factor, was isolated from R. trigyna cDNA. RtWRKY23 was mainly expressed in the stem and was induced by salt, drought, cold, ultraviolet radiation, and ABA treatments, but suppressed by heat treatment. Overexpression of RtWRKY23 in Arabidopsis increased chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. Real-time quantitative PCR (qPCR) analysis and yeast one-hybrid analysis demonstrated that RtWRKY23 protein directly or indirectly modulated the expression levels of downstream genes, including stress-related genes AtPOD, AtPOD22, AtPOD23, AtP5CS1, AtP5CS2, and AtPRODH2, and reproductive development-related genes AtMAF5, AtHAT1, and AtANT. RtWRKY23 transgenic Arabidopsis had higher proline content, peroxidase activity, and superoxide anion clearance rate, and lower H2O2 and malondialdehyde content than WT plants under salt stress conditions. Moreover, RtWRKY23 transgenic Arabidopsis exhibited later flowering and shorter pods, but little change in seed yield, compared with WT plants under salt stress. Our study demonstrated that RtWRKY23 not only enhanced salt stress tolerance through maintaining the ROS and osmotic balances in plants, but also participated in the regulation of flowering under salt stress.
Collapse
Affiliation(s)
- Chao Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; School of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, 010022, PR China.
| | - Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Zhigang Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
19
|
Liu Q, Tang J, Wang W, Zhang Y, Yuan H, Huang S. Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:250-260. [PMID: 30199796 DOI: 10.1016/j.ecoenv.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 05/25/2023]
Abstract
The remediation and subsequent use of saline-alkaline land are of great significance to ecological environment construction and sustainable agricultural development. Iris halophila Pall. is a salt-tolerant medicinal and ornamental plant, which has good application prospects in the ecological construction of saline-alkaline land; therefore, study of the molecular mechanisms of salt tolerance in I. halophila has important theoretical and practical value. To evaluate the molecular mechanism of the response of I. halophila to salt toxicity, I. halophila seedlings were treated with salt (300 mM NaCl) and subjected to deep RNA sequencing. The clean reads were obtained and assembled into 297,188 unigenes. Among them, 1120 and 100 salt-responsive genes were identified in I. halophila shoots and roots, respectively. Among them, the key flavonoid and lignin biosynthetic genes, hormone signaling genes, sodium/potassium ion transporter genes, and transcription factors were analyzed and summarized. Quantitative reverse-transcription PCR analysis strengthened the reliability of the RNA sequencing results. This work provides an overview of the transcriptomic responses to salt toxicity in I. halophila and identifies the responsive genes that may contribute to its reduced salt toxicity. These results lay an important foundation for further study of the molecular mechanisms of salt tolerance in I. halophila and related species.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jun Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
20
|
Du C, Zhao P, Zhang H, Li N, Zheng L, Wang Y. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:48-58. [PMID: 28527975 DOI: 10.1016/j.jplph.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 05/28/2023]
Abstract
Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na+ content, and Na+/K+ ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na+/K+ homeostasis, and the antioxidant system.
Collapse
Affiliation(s)
- Chao Du
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| | - Pingping Zhao
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| | - Huirong Zhang
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| | - Ningning Li
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| | - Linlin Zheng
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| | - Yingchun Wang
- Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010020, People's Republic of China.
| |
Collapse
|