1
|
Gao L, Wen W, Su L, Fan N, Sun L, You X, Zhou P, An Y. Pectins play a central role in enhancing Al tolerance of alfalfa via looseing fibre-microfiber arrangement of cell wall in root tips. Int J Biol Macromol 2025; 302:140256. [PMID: 39880260 DOI: 10.1016/j.ijbiomac.2025.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cell wall greatly affects Al tolerance of plants, but the precise mechanisms by which the cell wall modulating Al tolerance remains largely unknown. In the present study, Al tolerant alfalfa varieties (WL525 and WL903) accumulated less Al in root tips, cell wall and pectins, averagely decreased by 23.8 %, 41.7 %, and 80.3 %, respectively, than Al-sensitive varieties (WL440 and GN3) under Al treatment. Pectins were more susceptible to Al stress than hemicellulose in cell wall, in which water-soluble pectin (WSP) was most susceptible among the three pectin forms (WSP, CSP and ASP). The decreased pectin and WSP contents exhibited a positive relationship with PG activity and five MsPGs expressions, leading to a smaller WSP polymer, a looser fibre-microfiber arrangement, and a larger porosity of cell wall in the root tips of WL525 than WL440 under Al treatment. Consequently, the Al-induced inhibitor rates of root growth were lower, averagely decreased by 1.9 times, in Al tolerant varieties than Al sensitive varieties. Similarly, the pectin hydrolysis and root length increased in overexpressed MsPG4, but decreased in downregulated MsPG4 transgenic alfalfa plants under Al stress. These results revealed that pectins, especially WSP, play a central role in sustaining cell wall extensibility and increasing Al tolerance of alfalfa.
Collapse
Affiliation(s)
- Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nana Fan
- College of Life Science, Yulin University, Yulin 719000, China.
| | - Linjie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China.
| |
Collapse
|
2
|
Chen Y, Fu W, Xiao H, Zhai Y, Luo Y, Wang Y, Liu Z, Li Q, Huang J. A Review on Rhizosphere Microbiota of Tea Plant ( Camellia sinensis L): Recent Insights and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19165-19188. [PMID: 38019642 DOI: 10.1021/acs.jafc.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Rhizosphere microbial colonization of the tea plant provides many beneficial functions for the host, But the factors that influence the composition of these rhizosphere microbes and their functions are still unknown. In order to explore the interaction between tea plants and rhizosphere microorganisms, we summarized the current studies. First, the review integrated the known rhizosphere microbial communities of tea tree, including bacteria, fungi, and arbuscular mycorrhizal fungi. Then, various factors affecting tea rhizosphere microorganisms were studied, including: endogenous factors, environmental factors, and agronomic practices. Finally, the functions of rhizosphere microorganisms were analyzed, including (a) promoting the growth and quality of tea trees, (b) alleviating biotic and abiotic stresses, and (c) improving soil fertility. Finally, we highlight the gaps in knowledge of tea rhizosphere microorganisms and the future direction of development. In summary, understanding rhizosphere microbial interactions with tea plants is key to promoting the growth, development, and sustainable productivity of tea plants.
Collapse
Affiliation(s)
- Yixin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Fu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Han Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Yingzi Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
3
|
Jiang X, Lai S, Kong D, Hou X, Shi Y, Fu Z, Liu Y, Gao L, Xia T. Al-induced CsUGT84J2 enhances flavonol and auxin accumulation to promote root growth in tea plants. HORTICULTURE RESEARCH 2023; 10:uhad095. [PMID: 37350798 PMCID: PMC10282599 DOI: 10.1093/hr/uhad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Although Al is not necessary or even toxic to most plants, it is beneficial for the growth of tea plants. However, the mechanism through which Al promotes root growth in tea plants remains unclear. In the present study, we found that flavonol glycoside levels in tea roots increased following Al treatment, and the Al-induced UDP glycosyltransferase CsUGT84J2 was involved in this mechanism. Enzyme activity assays revealed that rCsUGT84J2 exhibited catalytic activity on multiple types of substrates, including phenolic acids, flavonols, and auxins in vitro. Furthermore, metabolic analysis with UPLC-QqQ-MS/MS revealed significantly increased flavonol and auxin glycoside accumulation in CsUGT84J2-overexpressing Arabidopsis thaliana. In addition, the expression of genes involved in the flavonol pathway as well as in the auxin metabolism, transport, and signaling pathways was remarkably enhanced. Additionally, lateral root growth and exogenous Al stress tolerance were significantly improved in transgenic A. thaliana. Moreover, gene expression and metabolic accumulation related to phenolic acids, flavonols, and auxin were upregulated in CsUGT84J2-overexpressing tea plants but downregulated in CsUGT84J2-silenced tea plants. In conclusion, Al treatment induced CsUGT84J2 expression, mediated flavonol and auxin glycosylation, and regulated endogenous auxin homeostasis in tea roots, thereby promoting the growth of tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al promotes the growth of tea plants.
Collapse
Affiliation(s)
| | | | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | | | - Tao Xia
- Corresponding author: E-mail:
| |
Collapse
|
4
|
Guo Y, Chen K, Lei S, Gao Y, Yan S, Yuan M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1981. [PMID: 37653898 PMCID: PMC10223583 DOI: 10.3390/plants12101981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
The cell wall (CW) is critical for the accumulation of heavy metals in metal-tolerant plants. Polysaccharides, the main component of the CW, contribute significantly to the immobilization of heavy metals. However, the mechanisms of rare earth elements (REEs) adsorption and detoxification by polysaccharides in the cell walls of Phytolacca americana L. (P. americana) remain unclear. In this work, we explored the binding sites of REEs and the modifications to polysaccharides in the cell walls of roots and leaves in P. americana, in order to elucidate the adsorption and fixation mechanism of REEs by the cell wall. Our findings indicated that up to 40.7% and 48.1% of cell-wall-bound REEs were present in the root and leaf pectin, respectively. The removal of pectin led to a 39.8% and 23.6% decrease in the maximum adsorption of REEs in the CW, suggesting that pectin was the main binding site for REEs in the cell walls of P. americana. Hydroxyl (-OH) and carboxyl (-COOH) groups in the cell wall interacted mainly with REEs ions under stress conditions, which played a key role in REEs binding. An obvious REEs fractionation was found during the various fractions of the CW, and all fractions of the root cell wall were enriched with HREEs, whereas all fractions of the leaf cell wall were enriched with LREEs. Moreover, P. americana modulated cell wall composition in reaction to REEs stress. In conclusion, cell wall pectin is the main binding site of REEs, and the functional groups on the cell wall play a significant role in the binding of REEs. At the same time, plants can control the selective adsorption and fixation of REEs by adjusting the composition of cell walls. This study offers valuable insights into the mechanisms of REEs adsorption and fixation in cell walls of P. americana, contributing to a theoretical basis for the bioremediation of REEs pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
5
|
Wang L, Wu K, Liu Z, Li Z, Shen J, Wu Z, Liu H, You L, Yang G, Rensing C, Feng R. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130812. [PMID: 36709735 DOI: 10.1016/j.jhazmat.2023.130812] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.
Collapse
Affiliation(s)
- LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - LeXing You
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - GuiDi Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Peng A, Yu K, Yu S, Li Y, Zuo H, Li P, Li J, Huang J, Liu Z, Zhao J. Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea ( Camellia sinensis) Plants: Influences on Plant Tolerance, Tea Quality and Safety. Int J Mol Sci 2023; 24:4640. [PMID: 36902071 PMCID: PMC10003434 DOI: 10.3390/ijms24054640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.
Collapse
Affiliation(s)
- Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| |
Collapse
|
7
|
Fu Z, Jiang X, Kong D, Chen Y, Zhuang J, Han M, Shi Y, Lai S, Liu Y, Gao L, Xia T. Flavonol-Aluminum Complex Formation: Enhancing Aluminum Accumulation in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14096-14108. [PMID: 36256444 DOI: 10.1021/acs.jafc.2c04963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.
Collapse
Affiliation(s)
- Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Yifan Chen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Menglin Han
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, 230036 Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, 230036 Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, China
| |
Collapse
|
8
|
Sun W, Wu G, Xu H, Wei J, Chen Y, Yao M, Zhan J, Yan J, Chen H, Bu T, Tang Z, Li Q. Malate-mediated CqMADS68 enhances aluminum tolerance in quinoa seedlings through interaction with CqSTOP6, CqALMT6 and CqWRKY88. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129630. [PMID: 35872459 DOI: 10.1016/j.jhazmat.2022.129630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) stress in acidic soils has severe negative effects on crop productivity. In this study, the alleviating effect and related mechanism of malate on Al stress in quinoa (Chenopodium quinoa) seedlings were investigated. The findings indicated that malate alleviated the growth inhibition of quinoa seedlings under Al stress, maintained the enzymatic and nonenzymatic antioxidant systems, and aided resistance to the damage caused by excessive reactive oxygen species (ROS). Under Al stress, malate significantly increased the contents of chlorophyll and carotenoids in quinoa shoots by 103.8% and 240.7%, and significantly increased the ratios of glutathione (GSH)/oxidized glutathione (GSSG), and ascorbate (AsA)/dehydroascorbate (DHA) in roots by 59.9% and 699.2%, respectively. However, malate significantly decreased the superoxide radical (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA) and Al contents in quinoa roots under Al stress by 32.7%, 60.9%, 63.1% and 49%, respectively. Moreover, the CqMADS family and the Al stress-responsive gene families (CqSTOP, CqALMT, and CqWRKY) were identified from the quinoa genome. Comprehensive expression profiling identified CqMADS68 as being involved in malate-mediated Al resistance. Transient overexpression of CqMADS68 increased Al tolerance in quinoa seedlings. More importantly, we found that CqMADS68 regulated the expression of CqSTOP6, CqALMT6 and CqWRKY88 and further demonstrated the interaction of CqMADS68 with CqSTOP6, CqALMT6 and CqWRKY88 by bimolecular fluorescence complementation (BIFC) experiments. Moreover, transient overexpression and physiological and biochemical analyses demonstrated that CqSTOP6, CqALMT6 and CqWRKY88 could also improve Al tolerance by maintaining the antioxidant capacity of quinoa seedlings. Taken together, these findings reveal that CqMADS68, CqSTOP6, CqALMT6 and CqWRKY88 may be important contributors to the Al tolerance regulatory network in quinoa, providing new insights into Al stress resistance.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianglan Wei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zizong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
9
|
Huang D, Mao Y, Guo G, Ni D, Chen L. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:306. [PMID: 35751024 PMCID: PMC9229754 DOI: 10.1186/s12870-022-03686-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.
Collapse
Affiliation(s)
- Danjuan Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Mao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
10
|
Jiang X, Li WW, Han M, Chen G, Wu J, Lai S, Fu Z, Zhang S, Deng WW, Gao L, Xia T. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress. TREE PHYSIOLOGY 2022; 42:1043-1058. [PMID: 34850946 PMCID: PMC9092644 DOI: 10.1093/treephys/tpab159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unlike that of other crops, the growth of tea plants can be promoted by aluminum, but its regulation mechanism remains unclear. Some endophytes can also promote growth of plant hosts. In this paper, tea roots treated with aluminum were used to study the growth-promoting traits and aluminum tolerance of endophytes. Meta-16S rDNA analysis revealed that Burkholderia was enriched in tea roots after aluminum treatment, and it was the dominant strain for hydroponic tea roots and field tea roots. Actinomycetes constituted the dominant strains in hydroponic tea seedlings treated with aluminum. Sixteen endophytic bacteria, including 12 strains of Firmicutes, 2 strains of Proteobacteria and 2 strains of Actinomycetes, were isolated and identified from hydroponic tea roots treated with different aluminum concentrations. Growth-promoting activity analysis showed that the isolated endophytic bacteria all had more than one plant growth-promoting trait. Among them, B4 (Bacillus nealsonii), B8 (Brevibacterium frigoritolerans) and A2 (Nocardia nova) bacteria each had three growth-promoting traits. Aluminum tolerance ability analysis indicated that endophyte A1 (Leifsonia shinshuensis) had the strongest aluminum tolerance ability, up to 200 mg l-1 aluminum. Plant-bacteria interactions showed that endophytes A1, A2 and B4 and their synthetic community all had a growth-promoting effect on the growth of wheat lateral roots. Moreover, endophytes A1 and B4 alleviated aluminum stress in wheat. Endophyte A1 also promoted the growth of tea cuttings, especially lateral roots, with/without aluminum. Taken together, aluminum enhanced the distribution of aluminum-tolerant and growth-promoting bacteria, thereby promoting the growth of tea roots. This study provides a new aspect for research on the mechanism by which aluminum promotes tea plant growth.
Collapse
Affiliation(s)
- Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Menglin Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Gao Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Jing Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Shuxiang Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China
| |
Collapse
|
11
|
Huang WX, Zhang DM, Cao YQ, Dang BJ, Jia W, Xu ZC, Han D. Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111412. [PMID: 33039872 DOI: 10.1016/j.ecoenv.2020.111412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 μM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.
Collapse
Affiliation(s)
- Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Duo-Min Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu-Qiao Cao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Bing-Jun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Zi-Cheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
| |
Collapse
|
12
|
Lan Y, Chai Y, Xing C, Wu K, Wang L, Cai M. Nitric oxide reduces the aluminum-binding capacity in rice root tips by regulating the cell wall composition and enhancing antioxidant enzymes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111499. [PMID: 33120266 DOI: 10.1016/j.ecoenv.2020.111499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Plant cell wall, the first interface or barrier for toxic ions entering into protoplast, suffers from risk. Nitric oxide (NO) plays an important role in plant growth and responses to abiotic stresses, however, it is not clear whether NO is connected with the response of cell wall to aluminum (Al) tolerance in rice (Oryza sativa L.). In this study, we found that the application of 50 µM Al induces nitrate reductase (NR) activity and endogenous NO production, but not nitric oxide synthase (NOS) activity in two rice genotypes. Pretreatment with 100 µM NO donor (sodium nitroprusside, SNP) reduced Al-induced inhibition of root elongation by 32.3% and 91.7%, and Al accumulation in root-tip by 38.4% and 44.3% in Nipponbare and Zhefu802, respectively. The addition of SNP significantly decreased Al-induced accumulation of pectin, hemicellulose 1 and hemicellulose 2 by 43.1%, 13.1% and 19.2% in Zhefu802 and by 16.9%, 13.4% and 14.0% in Nipponbare, compared with roots treated with Al alone, as well as pectin methylesterase (PME) activity. Therefore, the content of Al absorbed in cell walls was decreased, indicating that the Al-induced structure damage to cell walls was alleviated. Furthermore, the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) treated by Al were all increased by SNP pretreatment, and the lipid peroxidation and damage to plasma membrane of root tips detected with Schiff's reagent and Evans blue reduced. In contrast, the effect was abolished when NO scavenger (cPTIO), and NR inhibitor (NaN3), were added. These results indicated that by regulating the Al-binding capacity to cell walls and lipid peroxidation, the structure of cell walls can be stabilized and that Al toxicity in rice can be alleviated with increased NO.
Collapse
Affiliation(s)
- Yilun Lan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Yiqing Chai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Chenghua Xing
- College of Agriculture, Jinhua Polytechnic, Jinhua, Zhejiang 321007, PR China
| | - Kun Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Liping Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| |
Collapse
|
13
|
Fu Z, Jiang X, Li WW, Shi Y, Lai S, Zhuang J, Yao S, Liu Y, Hu J, Gao L, Xia T. Proanthocyanidin-Aluminum Complexes Improve Aluminum Resistance and Detoxification of Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7861-7869. [PMID: 32680420 DOI: 10.1021/acs.jafc.0c01689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.
Collapse
Affiliation(s)
- Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Jingwei Hu
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| |
Collapse
|
14
|
Pan J, Li D, Zhu J, Shu Z, Ye X, Xing A, Wen B, Ma Y, Zhu X, Fang W, Wang Y. Aluminum relieves fluoride stress through stimulation of organic acid production in Camellia sinensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1127-1137. [PMID: 32549678 PMCID: PMC7266864 DOI: 10.1007/s12298-020-00813-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Tea plants (Camellia sinensis O. Kuntze) can hyperaccumulate fluoride (F) in leaves. Although, aluminum (Al) can alleviate F toxicity in C. sinensis, the mechanisms driving this process remain unclear. Here, we measured root length, root activity, soluble proteins content, and levels of peroxidase, superoxide dismutase, catalase, malondialdehyde (MDA), and chlorophyll in tea leaves after treatment with different F concentrations. In addition, we focused on the content of organic acids, the gene transcription of malate dehydrogenase (MDH), glycolate oxidase (GO) and citrate synthase (CS) and the relative enzyme activity involved in the tolerance to F in C. sinensis. We also examined the role of Al in this process by analyzing the content of these physiological indicators in tea leaves treated with F and Al. Our results demonstrate that increased MDA content, together with decreased chlorophyll content and soluble proteins are responsible for oxidative damage and metabolism inhibition at high F concentration. Moreover, increased antioxidant enzymes activity regulates ROS damage to protect tea leaves during F stress. Furthermore, exogenous Al alleviated F stress in tea leaves through the regulation of MDA content and antioxidant enzymes activity. In addition, organic acids in exudate stimulated root growth in tea plants exposed to low F concentrations are regulated by MDH, GO, and CS. In addition, Al can stimulate the exudation of organic acids, and may participate in regulating rhizosphere pH of the roots through the interaction with F, eventually leading to the response to F stress in C. sinensis.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- Lishui Academy of Agricultural Sciences, Lishui, 323000 Zhejiang China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Zeng X, Pang L, Chen Y, Kong X, Chen J, Tian X. Bacteria Sphingobium yanoikuyae Sy310 enhances accumulation capacity and tolerance of cadmium in Salix matsudana Koidz roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19764-19773. [PMID: 32222921 DOI: 10.1007/s11356-020-08474-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
Phytoremediation assisted by plant growth-promoting bacteria (PGPB) is considered an effective strategy for cadmium (Cd) removal in contaminated sites. This study uses a hydroponic experiment to investigate how Sphingobium yanoikuyae Sy310 affects Cd accumulation capacity and tolerance of Salix matsudana Koidz (S. matsudana) roots. The results showed that Cd induced growth change and physiological response on S. matsudana roots, displaying with reduced root length, increased antioxidant enzyme activities, and most importantly, enhanced cell wall polysaccharide contents. The Sy310 inoculation enhanced Cd accumulation in roots and alleviated the Cd toxic effects by regulating root growth, antioxidant enzyme system, and cell wall polysaccharide remodeling. Under Cd stress, Sy310 significantly induced increased root length and biomass, as well as higher root IAA level and Cd retention in cell walls. The Sy310 inoculation enhanced root pectin and hemicellulose 1 content, and pectin methylesterase activity, indicating that more amount of -COOH and -OH in cell walls for binding Cd. With Sy310-regulated extensive Cd regional sequestration in root cell walls and enhanced catalase activity, the root H2O2 and malondialdehyde content decreased, which contributes to improve Cd tolerance of S. matsudana roots. Furthermore, the Sy310 inoculation did not affect root cell wall structure and oxidative stress in the absence of Cd, representing a well-symbiotic relationship between Sy310 and S. matsudana. Therefore, Sy310 plays an important role in expediting the phytoremediation process of Cd with S. matsudana and has practical application potential.
Collapse
Affiliation(s)
- Xiaoyi Zeng
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yunru Chen
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Xiangshi Kong
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Junxiu Chen
- School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Qu X, Zhou J, Masabni J, Yuan J. Phosphorus relieves aluminum toxicity in oil tea seedlings by regulating the metabolic profiling in the roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:12-22. [PMID: 32361398 DOI: 10.1016/j.plaphy.2020.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Oil tea (Camellia oleifera Abel.) is an important edible oil tree mainly grown in acidic soils, whose growth and yield can be severely limited due to soil aluminum (Al) toxicity and phosphorus (P) deficiency. In this study, we investigated the physiological and metabolic responses of oil tea to Al and P treatment for an 8-week duration. Al reduced root length, root volume, and plant biomass, while P addition alleviated the effects of Al toxicity. P addition increased P content and reduced Al accumulation in roots. The profiles of 58 metabolites were significantly changed in roots of oil tea seedlings. Al toxicity increased various amino acids, but decreased many kinds of organic acids and carbohydrates. Interestingly, P addition reduced the amino acids accumulation which were induced by Al toxicity, while only a few organic acids changed under P supply. Most carbohydrates, including sucrose and glucose, significantly increased with P addition under Al toxicity. Results indicated that Al toxicity increased the accumulation of amino acids and reduced the accumulation of organic acids and carbohydrates, while the addition of P promoted root growth by alleviating the inhibition of protein synthesis and increasing carbohydrates content. However, P addition did not increase the organic acids content in roots.
Collapse
Affiliation(s)
- Xinjing Qu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Joseph Masabni
- Texas A&M AgriLife Research and Extension Center at Dallas, Texas A&M University, 17360 Coit Road, Dallas, TX, 75252, USA.
| | - Jun Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
17
|
Fan K, Wang M, Gao Y, Ning Q, Shi Y. Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots' growth and nutrient uptake. PLANT CELL REPORTS 2019; 38:715-729. [PMID: 30911819 DOI: 10.1007/s00299-019-02401-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Transcriptome profiling of roots indicated that genes involved in cell wall modification, cytoskeleton, H+ exchange and K+ influx played important roles in tea root growth under Al addition. Tea (Camellia sinensis) is considered as an Al accumulator species. It can accumulate a high concentration of Al in mature leaves without any symptom of toxicity, even improve roots' growth and nutrient uptake. However, the molecular mechanisms underlying this tolerance remain unclear. Here, we investigated the accumulation of elements and transcriptional profiles in tea roots treated with various Al doses. The results showed that the growth of tea plants was improved by a low dose of Al (0.2, 0.4, 0.6, 1 mM); however, this beneficial effect disappeared when higher concentrations of Al were supplied (2, 4, 10 mM). Ionomic analysis suggested that accumulation of P and K increased under a low Al supply (< 1 mM), while Ca and Mg contents were negatively correlated with external Al doses. The RNA seq obtained 523,391 unigenes, among which 20,448 were annotated in all databases. In total, 1876 unigenes were expressed significantly different in any Al treatment. A large number of DEGs involved in cell growth and division, such as those linked to cell wall-modifying enzymes, actin cytoskeleton, cyclin and H+-ATPase were identified, suggesting that these pathways were involved in root growth under different Al supply. Furthermore, expression of transporters significantly changed in roots supplied with Al. Among them, HAK5, which is involved in K uptake by plants, had a significant positive correlation with the K content.
Collapse
Affiliation(s)
- Kai Fan
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Min Wang
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Yaoyao Gao
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Qiuyan Ning
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Yuanzhi Shi
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Qiao L, Tanveer M, Wang L, Tian C. Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:341-344. [PMID: 30248520 DOI: 10.1016/j.plaphy.2018.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Apocynum venetum is a promising species to remediate an emerging environmental contaminant lithium (Li). However, no research has been conducted so far relating Li tolerance mechanism. In order to improve the understanding of Li transportation and detoxification, subcellular accumulation and distribution of different chemical forms of Li was studied in Apocynum venetum. Subcellular Li compartmentalization analysis showed that majority of Li was located in vacuole (45.52-72.65%) and cell wall (14.84-29.02%) under Li treatment. Furthermore, water soluble and ethonal extracted Li (inorganic Li) are the main chemical forms of Li taken up by A. venetum. With the increase of Li concentration in the medium, Li content in all subcellular fractions and proportion of F-ethanol form with high mobility increased. The greatest amount of Li was found in soluble fraction in leaves at 25 mg L-1 Li treatment, followed by soluble fraction in leaves at 2.5 mg L-1. These results suggest that Li compartmentation in leaf vacuoles is important in Li detoxification and Li accumulation of A. venetum.
Collapse
Affiliation(s)
- Litao Qiao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mohsin Tanveer
- School of Land and Food, University of Tasmania, Hobart, Australia
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|