1
|
Ribeiro C, de Marcos Lapaz A, de Freitas-Silva L, Ribeiro KVG, Yoshida CHP, Dal-Bianco M, Cambraia J. Aluminum promotes changes in rice root structure and ascorbate and glutathione metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2085-2098. [PMID: 36573146 PMCID: PMC9789240 DOI: 10.1007/s12298-022-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In acidic soil, aluminum (Al) ionizes into trivalent cation and becomes highly toxic to plants. Thus, the objectives of this work were (i) to evaluate the Al concentration and identify sites of Al toxicity and its effect on the structure on rice root tips and (ii) to elucidate the adjustments involved in the activities/contents of enzymes/compounds in the roots against Al. For this, two genotypes with contrasting Al tolerance were used. Our results showed that the root length of the tolerant genotype was not affected after Al exposure. We also observed that both the genotypes used strategies to avoid Al uptake, such as the overlap of P and Al in the tolerant genotype and the presence of border cells in the sensitive genotype, which proved inefficient. In the tolerant genotype, other external Al detoxification mechanisms may have contributed to the lower Al concentration in roots and lower fluorescence of the Al-lumogallion complex. Additionally, both genotypes present the activation of key enzymes to decrease oxidative stress, such as CAT, POX, APX, and DHAR, and a more reducing redox environment, mainly due to the increase in the AA/DHA ratio. However, higher total ascorbate, AA, total glutathione, and GSH contents associated with higher SOD, GPX, and GR activities contributed to the reduction of oxidative stress in the tolerant genotype after Al exposure. Furthermore, there was a strong association between the sensitive genotype to Al concentration, O2 •- content, and MDA amount; therefore, these traits can be used as sensitivity indicators in Al studies.
Collapse
Affiliation(s)
- Cleberson Ribeiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900 Brazil
| | - Allan de Marcos Lapaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais Brazil
| | | | | | | | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais Brazil
| | - José Cambraia
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900 Brazil
| |
Collapse
|
2
|
Qin Z, Chen S, Feng J, Chen H, Qi X, Wang H, Deng Y. Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress. PeerJ 2022; 10:e13620. [PMID: 35769137 PMCID: PMC9235816 DOI: 10.7717/peerj.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Hydrangea (Hydrangea macrophylla (Thunb.) Ser.) is a famous ornamental plant species with high resistance to aluminum (Al). The aluminum-activated malate transporter (ALMT) family encodes anion channels, which participate in many physiological processes, such as Al tolerance, pH regulation, stomatal movement, and mineral nutrition. However, systematic studies on the gene family have not been reported in hydrangea. In this study, 11 candidate ALMT family members were identified from the transcriptome data for hydrangea, which could be divided into three clusters according to the phylogenetic tree. The protein physicochemical properties, phylogeny, conserved motifs and protein structure were analyzed. The distribution of base conservative motifs of HmALMTs was consistent with that of other species, with a highly conserved WEP motif. Furthermore, tissue-specific analysis showed that most of the HmALMTs were highly expressed in the stem under Al treatment. In addition, overexpression of HmALMT5, HmALMT9 and HmALMT11 in yeasts enhanced their tolerance to Al stress. Therefore, the above results reveal the functional role of HmALMTs underlying the Al tolerance of hydrangea. The present study provides a reference for further research to elucidate the functional mechanism and expression regulation of the ALMT gene family in hydrangea.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanming Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH. Fluoride mitigates aluminum-toxicity in barley: morpho-physiological responses and biochemical mechanisms. BMC PLANT BIOLOGY 2022; 22:287. [PMID: 35698026 PMCID: PMC9190151 DOI: 10.1186/s12870-022-03610-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND To our knowledge, the role of exogenous fluoride (F-) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al3+ concentrations (aluminum chloride, 0.5, 1.0, 2.0, 3.0, and 4.0 mM) with and without fluoride (0.025% sodium fluoride) to explore the possible roles of fluoride on the alleviation of Al-toxicity. RESULTS Overall, Al-stress caused inhibition of growth and the production of photosynthetic pigments. Principal component analysis showed that the growth inhibitory effects were driven by increased oxidative stress and the interruption of water balance in barley under Al-stress. Fluoride priming, on the other hand, enhanced growth traits, chlorophyll a and b content, as well as invigorated the protection against oxidative damage by enhancing overall antioxidant capacity. Fluoride also improved osmotic balance by protecting the plasma membrane. Fluoride reduced endogenous Al3+ content, restored Al-induced inhibition of glutathione-S-transferase, and increased the contents of phytochelatins and metallothioneins, suggesting that fluoride reduced Al3+ uptake and improved chelation of Al3+. CONCLUSIONS Aluminum chloride-induced harmful effects are abridged by sodium fluoride on barely via enhancing antioxidative responses, the chelation mechanism causing reduction of Al uptake and accumulation of barely tissues. Advanced investigations are necessary to uncover the putative mechanisms underpinning fluoride-induced Al-stress tolerance in barley and other economically significant crops, where our results might serve as a solid reference.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | |
Collapse
|
4
|
Nagayama T, Tatsumi A, Nakamura A, Yamaji N, Satoh S, Furukawa J, Iwai H. Effects of polygalacturonase overexpression on pectin distribution in the elongation zones of roots under aluminium stress. AOB PLANTS 2022; 14:plac003. [PMID: 35356145 PMCID: PMC8963292 DOI: 10.1093/aobpla/plac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/22/2022] [Indexed: 05/04/2023]
Abstract
The roots of many plant species contain large amounts of pectin and it contributes to the formation of the rhizosphere. In the present study, the relationship between the root-tip pectin content and aluminium (Al) tolerance in wild-type (WT) and demethylesterified pectin degradation enzyme gene overexpressor (OsPG2-FOX) rice lines was compared. OsPG2-FOX rice showed reduced pectin content in roots, even under control conditions; Al treatment reduced root elongation and the pectin content in the root elongation zone. Wild-type rice showed more pectin accumulation in the root elongation zone after Al treatment. Relative to WT rice, OsPG2-FOX rice showed more Al accumulation in the root elongation zone. These results indicate that the amount of pectin influences Al tolerance and that the distribution of pectin in the root elongation zone inhibits Al accumulation in rice roots. Pectin accumulation in cell walls in the root elongation zone may play a role in protecting rice plants from the Al-induced inhibition of root elongation by regulating pectin distribution.
Collapse
Affiliation(s)
- Teruki Nagayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Akane Tatsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding authors’ e-mail addresses: iwai.hiroaki.gb.@u.tsukuba.ac.jp;
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding authors’ e-mail addresses: iwai.hiroaki.gb.@u.tsukuba.ac.jp;
| |
Collapse
|
5
|
Bao G, Zhou Q, Li S, Ashraf U, Huang S, Miao A, Cheng Z, Wan X, Zheng Y. Transcriptome Analysis Revealed the Mechanisms Involved in Ultrasonic Seed Treatment-Induced Aluminum Tolerance in Peanut. FRONTIERS IN PLANT SCIENCE 2022; 12:807021. [PMID: 35211134 PMCID: PMC8861904 DOI: 10.3389/fpls.2021.807021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Ultrasonic (US) treatment is an efficient method to induce crop tolerance against heavy metal toxicity; however, US-induced aluminum (Al) tolerance in peanuts was rarely studied. This study was comprised of two treatments, namely, CK, without ultrasonic treatment, and US, an ultrasonic seed treatment, for 15 min. Both treated and non-treated treatments were applied with Al in the form of AlCl3.18H2O at 5 mmol L-1 in Hoagland solution at one leaf stage. Results depicted that plant height, main root length, and number of lateral roots increased significantly under US treatment. Transcriptome analysis revealed that plant hormone signal transduction and transcription factors (TFs) were significantly enriched in the differentially expressed genes (DEGs) in US treatment, and the plant hormones were measured, including salicylic acid (SA) and abscisic acid (ABA) contents, were substantially increased, while indole acetic acid (IAA) and jasmonic acid (JA) contents were decreased significantly in US treatment. The TFs were verified using quantitative real-time (qRT)-PCR, and it was found that multiple TFs genes were significantly upregulated in US treatment, and ALMT9 and FRDL1 genes were also significantly upregulated in US treatment. Overall, the US treatment induced the regulation of hormone content and regulated gene expression by regulating TFs to improve Al tolerance in peanuts. This study provided a theoretical rationale for US treatment to improve Al tolerance in peanuts.
Collapse
Affiliation(s)
- Gegen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qi Zhou
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shengyu Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Aricultural University, Guangzhou, China
| | - Aimin Miao
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhishang Cheng
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Bossolani JW, Crusciol CAC, Garcia A, Moretti LG, Portugal JR, Rodrigues VA, da Fonseca MDC, Calonego JC, Caires EF, Amado TJC, dos Reis AR. Long-Term Lime and Phosphogypsum Amended-Soils Alleviates the Field Drought Effects on Carbon and Antioxidative Metabolism of Maize by Improving Soil Fertility and Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:650296. [PMID: 34322140 PMCID: PMC8313040 DOI: 10.3389/fpls.2021.650296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Long-term surface application of lime (L) and/or phosphogypsum (PG) in no-till (NT) systems can improve plant growth and physiological and biochemical processes. Although numerous studies have examined the effects of L on biomass and plant growth, comprehensive evaluations of the effects of this practice on net CO2 assimilation, antioxidant enzyme activities and sucrose synthesis are lacking. Accordingly, this study examined the effects of long-term surface applications of L and PG on soil fertility and the resulting impacts on root growth, plant nutrition, photosynthesis, carbon and antioxidant metabolism, and grain yield (GY) of maize established in a dry winter region. At the study site, the last soil amendment occurred in 2016, with the following four treatments: control (no soil amendments), L (13 Mg ha-1), PG (10 Mg ha-1), and L and PG combined (LPG). The long-term effects of surface liming included reduced soil acidity and increased the availability of P, Ca2+, and Mg2+ throughout the soil profile. Combining L with PG strengthened these effects and also increased SO4 2--S. Amendment with LPG increased root development at greater depths and improved maize plant nutrition. These combined effects increased the concentrations of photosynthetic pigments and gas exchange even under low water availability. Furthermore, the activities of Rubisco, sucrose synthase and antioxidative enzymes were improved, thereby reducing oxidative stress. These improvements in the physiological performance of maize plants led to higher GY. Overall, the findings support combining soil amendments as an important strategy to increase soil fertility and ensure crop yield in regions where periods of drought occur during the cultivation cycle.
Collapse
Affiliation(s)
- João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Ariani Garcia
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Eduardo Fávero Caires
- Department of Soil Science and Agricultural Engineering, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - André Rodrigues dos Reis
- Department of Biosystems Engineering, School of Sciences and Engineering, São Paulo State University, Tupã, Brazil
| |
Collapse
|
7
|
Gurajala HK, Cao X, Tang L, Ramesh TM, Lu M, Yang X. Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113085. [PMID: 31494406 DOI: 10.1016/j.envpol.2019.113085] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 05/24/2023]
Abstract
Heavy metal removal by phytoremediation bears a great potential to decontaminate soils and Brassica juncea L. (Indian mustard) seems to be a possible candidate species for this purpose. A field experiment was conducted to compare the efficiency of eighty Indian mustard cultivars for phytoextraction of cadmium (Cd) and lead (Pb) from bimetal contaminated soil. Our results indicated that total Cd and Pb concentrations in the shoots and roots were in the range of 2.43 ± 0.00 to 0.31 ± 0.02 mg/kg and 2.94 ± 0.05 to 0.44 ± 0.03 mg/kg and 5.33 ± 0.76 to 0.47 ± 0.20 mg/kg and 3.78 ± 0.06 to 0.16 ± 0.08 mg/kg. Significant differences based on the translocation factors indicated that root-to-shoot transfer is higher for Pb (3.87 ± 0.12 to 0.48 ± 0.03) than Cd (3.38 ± 0.05 to 0.22 ± 0.01). Furthermore, significant correlations between dry weights, Cd and Pb concentrations and uptake in both shoots and roots were observed, but translocation factor showed a negative correlation with roots, but not in shoots. Among 80 genotypes of Indian mustard IM-25, IM-13 and IM-65 for Cd and IM-79, IM-24 and IM-32 for Pb seems to perform well for phytoextraction. The results of the field experiment suggest that certain Brassica juncea L. cultivars are suitable for removal of Cd and Pb in low to moderately contaminated soils.
Collapse
Affiliation(s)
- Hanumanth Kumar Gurajala
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xuerui Cao
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Thanusree Mallakuntla Ramesh
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Min Lu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
8
|
Chen Q, Wu W, Zhao T, Tan W, Tian J, Liang C. Complex Gene Regulation Underlying Mineral Nutrient Homeostasis in Soybean Root Response to Acidity Stress. Genes (Basel) 2019; 10:E402. [PMID: 31137896 PMCID: PMC6563148 DOI: 10.3390/genes10050402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022] Open
Abstract
Proton toxicity is one of the major environmental stresses limiting crop production and becomes increasingly serious because of anthropogenic activities. To understand acid tolerance mechanisms, the plant growth, mineral nutrients accumulation, and global transcriptome changes in soybean (Glycine max) in response to long-term acidity stress were investigated. Results showed that acidity stress significantly inhibited soybean root growth but exhibited slight effects on the shoot growth. Moreover, concentrations of essential mineral nutrients were significantly affected by acidity stress, mainly differing among soybean organs and mineral nutrient types. Concentrations of phosphorus (P) and molybdenum (Mo) in both leaves and roots, nitrogen (N), and potassium (K) in roots and magnesium (Mg) in leaves were significantly decreased by acidity stress, respectively. Whereas, concentrations of calcium (Ca), sulfate (S), and iron (Fe) were increased in both leaves and roots. Transcriptome analyses in soybean roots resulted in identification of 419 up-regulated and 555 down-regulated genes under acid conditions. A total of 38 differentially expressed genes (DEGs) were involved in mineral nutrients transportation. Among them, all the detected five GmPTs, four GmZIPs, two GmAMTs, and GmKUPs, together with GmIRT1, GmNramp5, GmVIT2.1, GmSKOR, GmTPK5, and GmHKT1, were significantly down-regulated by acidity stress. Moreover, the transcription of genes encoding transcription factors (e.g., GmSTOP2s) and associated with pH stat metabolic pathways was significantly up-regulated by acidity stress. Taken together, it strongly suggests that maintaining pH stat and mineral nutrient homeostasis are adaptive strategies of soybean responses to acidity stress, which might be regulated by a complex signaling network.
Collapse
Affiliation(s)
- Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqi Tan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Lavres J, Silveira Rabêlo FH, Capaldi FR, Dos Reis AR, Rosssi ML, Franco MR, Azevedo RA, Abreu-Junior CH, de Lima Nogueira N. Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:578-589. [PMID: 30576893 DOI: 10.1016/j.ecoenv.2018.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 05/11/2023]
Abstract
Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 μmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- José Lavres
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil.
| | | | - Flávia Regina Capaldi
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Monica Lanzoni Rosssi
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| | - Mônica Regina Franco
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | - Ricardo Antunes Azevedo
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Neusa de Lima Nogueira
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| |
Collapse
|
10
|
de Souza Mateus N, Victor de Oliveira Ferreira E, Arthur Junior JC, Domec JC, Jordan-Meille L, Leonardo de Moraes Gonçalves J, Lavres J. The ideal percentage of K substitution by Na in Eucalyptus seedlings: Evidences from leaf carbon isotopic composition, leaf gas exchanges and plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:102-112. [PMID: 30771564 DOI: 10.1016/j.plaphy.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/11/2023]
Abstract
Potassium (K) is the most required macronutrient by Eucalyptus, while sodium (Na) can partially substitute some physiological functions of K and have a positive response on plant growth in K-depleted tropical soils. However, the right percentage of K substitution by Na is not yet known for Eucalyptus seedlings, since a few experiments have only compared treatments receiving K or Na. This study evaluated five levels of Na supply (0, 0.45, 0.90, 1.35 and 1.80 mM) as substitution for K in Eucalyptus seedlings grown in nutrient solution. Plants growth, biomass, K-nutritional status, leaf gas exchange, leaf carbon isotopic composition (δ13C ‰), leaf water potential (Ψw), leaf area (LA), stomatal density (SD) and water use efficiency (WUE) were measured. The highest total biomass yield was achieved by the Na estimated rate of 0.25 mM, corresponding to a leaf K: Na ratio of 3.41, and having the lowest δ13C values. Conversely, the highest Na rate (1.8 mM) induced K deficiency symptoms, lower growth, reduced total dry matter yield, leaf gas exchange, LA, SD and a higher δ13C, which presented a trend to an inverse correlation with CO2 assimilation rate (A), WUE and shoot dry matter. Collectively, our results conclude that substitution of 25% of K by Na (0.45 mM of Na) provided significant gains in nutritional status and positive plant physiological responses by increasing WUE, stomatal diffusion, and by augmenting CO2 uptake efficiency. This nutritional management can therefore be an alternative option to optimize yields and resource use efficiencies in Eucalyptus cultivation.
Collapse
Affiliation(s)
- Nikolas de Souza Mateus
- Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, 303 Ave. Centenário, Piracicaba, SP, 13416-000, Brazil
| | | | - José Carlos Arthur Junior
- Universidade Federal Rural do Rio de Janeiro, Instituto Florestal, BR-465 Km 7, Seropédica, RJ, 23897-000, Brazil
| | | | | | | | - José Lavres
- Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, 303 Ave. Centenário, Piracicaba, SP, 13416-000, Brazil.
| |
Collapse
|