1
|
Yayci A, Sassmann T, Boes A, Jakob F, Töpel A, Loreth A, Rauch C, Pich A, Schwaneberg U. Adhesion Peptide-Functionalized Biobased Microgels for Controlled Delivery of Pesticides. Angew Chem Int Ed Engl 2024; 63:e202319832. [PMID: 38652238 DOI: 10.1002/anie.202319832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Tim Sassmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Alexander Boes
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Alexander Töpel
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Anne Loreth
- Julius-Kühn-Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833, Siebeldingen, Germany
| | - Carolin Rauch
- Julius-Kühn-Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833, Siebeldingen, Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| |
Collapse
|
2
|
Du X, Gao Z, He L. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2630-2640. [PMID: 37985216 DOI: 10.1002/jsfa.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Klátyik S, Takács E, Barócsi A, Lenk S, Kocsányi L, Darvas B, Székács A. Hormesis, the Individual and Combined Phytotoxicity of the Components of Glyphosate-Based Formulations on Algal Growth and Photosynthetic Activity. TOXICS 2024; 12:257. [PMID: 38668480 PMCID: PMC11055126 DOI: 10.3390/toxics12040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5-5.8 mg glyphosate/L and 0.5-2.2 mg POEA/L) and its components individually (glyphosate: 13-27.2 mg/L, POEA: 0.6-4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6-50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.
Collapse
Affiliation(s)
- Szandra Klátyik
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Attila Barócsi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Sándor Lenk
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - László Kocsányi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Béla Darvas
- Hungarian Society of Ecotoxicology, H-1022 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| |
Collapse
|
4
|
Pimentel C, Pina CM, Müller N, Lara LA, Melo Rodriguez G, Orlando F, Schoelkopf J, Fernández V. Mineral Particles in Foliar Fertilizer Formulations Can Improve the Rate of Foliar Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 13:71. [PMID: 38202379 PMCID: PMC10780703 DOI: 10.3390/plants13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In this work, we focussed on analysing the effect of adding Ca-carbonate (calcite, CaCO3) micro- and nano-particles as model sparingly soluble mineral compounds to foliar fertilizer formulations in terms of increasing the rate of foliar absorption. For these purposes, we carried out short-term foliar application experiments by treating leaves of species with variable surface features and wettability rates. The leaf absorption efficacy of foliar formulations containing a surfactant and model soluble nutrient sources, namely Ca-chloride (CaCl2), magnesium sulphate (MgSO4), potassium nitrate (KNO3), or zinc sulphate (ZnSO4), was evaluated alone or after addition of calcite particles. In general, the combination of the Ca-carbonate particles with an essential element salt had a synergistic effect and improved the absorption of Ca and the nutrient element provided. In light of the positive effects of using calcite particles as foliar formulation adjuvants, dolomite nano- and micro-particles were also tested as foliar formulation additives, and the results were also positive in terms of increasing foliar uptake. The observed nutrient element foliar absorption efficacy can be partially explained by geochemical modelling, which enabled us to predict how these formulations will perform at least in chemical terms. Our results show the major potential of adding mineral particles as foliar formulation additives, but the associated mechanisms of action and possible additional benefits to plants should be characterised in future investigations.
Collapse
Affiliation(s)
- Carlos Pimentel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Carlos M. Pina
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Geociencias (UCM-CSIC), 28040 Madrid, Spain
| | - Nora Müller
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Luis Adrián Lara
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Gabriela Melo Rodriguez
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Fabrizio Orlando
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Joachim Schoelkopf
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Victoria Fernández
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Du X, Gao Z, Yang T, Qu Y, He L. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122954. [PMID: 37270975 DOI: 10.1016/j.saa.2023.122954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Pesticide active ingredients (AIs) are often applied with adjuvants to facilitate the stability and functionality of AIs in agricultural practice. The objective of this study is to investigate the role of a common non-ionic surfactant, alkylphenol ethoxylate (APEO), on the surface-enhanced Raman spectroscopic (SERS) analysis of pesticides as well as its impact on pesticide persistence on apple surfaces, as a model fresh produce surface. The wetted areas of two AIs (thiabendazole and phosmet) mixed with APEO were determined respectively to correct the unit concentration applied on apple surfaces for a fair comparison. SERS with gold nanoparticle (AuNP) mirror substrates was applied to measure the signal intensity of AIs with and without APEO on apple surfaces after a short-term (45 min) and a long-term (5 days) exposure. The limit of detection (LOD) of thiabendazole and phosmet using this SERS-based method were 0.861 ppm and 2.883 ppm, respectively. The result showed that APEO decreased the SERS signal for non-systemic phosmet, while increased SERS intensity of systemic thiabendazole on apple surfaces after 45 min pesticide exposure. After 5 days, the SERS intensity of thiabendazole with APEO was higher than thiabendazole alone, and there was no significant difference between phosmet with and without APEO. Possible mechanisms were discussed. Furthermore, a 1% sodium bicarbonate (NaHCO3) washing method was applied to test the impact of APEO on the persistence of the residues on apple surfaces after short-term and long-term exposures. The results indicated that APEO significantly enhanced the persistence of thiabendazole on plant surfaces after a 5-day exposure, while there was no significant impact on phosmet. The information obtained facilitates a better understanding of the impact of the non-ionic surfactant on SERS analysis of pesticide behavior on and in plants and helps further develop the SERS method for studying complex pesticide formulations in plant systems.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Tianxi Yang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanqi Qu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Bouranis DL, Stylianidis GP, Manta V, Karousis EN, Tzanaki A, Dimitriadi D, Bouzas EA, Siyiannis VF, Constantinou-Kokotou V, Chorianopoulou SN, Bloem E. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1272. [PMID: 36986960 PMCID: PMC10055910 DOI: 10.3390/plants12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (Sorg) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of Sorg, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g-1 DM); it reduced Sorg (-45%), GlIb (-31%), and GlBr (-27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g-1 DM) and increased Sorg (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased Sorg content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase Sorg, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Georgios P. Stylianidis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vassiliki Manta
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Evangelos N. Karousis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Andriani Tzanaki
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Emmanuel A. Bouzas
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Elke Bloem
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| |
Collapse
|
7
|
Vega C, Chi CJE, Fernández V, Burkhardt J. Nocturnal Transpiration May Be Associated with Foliar Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 12:531. [PMID: 36771616 PMCID: PMC9919148 DOI: 10.3390/plants12030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Aerosols can contribute to plant nutrition via foliar uptake. The conditions for this are best at night because the humidity is high and hygroscopic, saline deposits can deliquesce as a result. Still, stomata tend to be closed at night to avoid unproductive water loss. However, if needed, nutrients are on the leaf surface, and plants could benefit from nocturnal stomatal opening because it further increases humidity in the leaf boundary layer and allows for stomatal nutrient uptake. We tested this hypothesis on P-deficient soil by comparing the influence of ambient aerosols and additional foliar P application on nocturnal transpiration. We measured various related leaf parameters, such as the foliar water loss, minimum leaf conductance (gmin), turgor loss point, carbon isotope ratio, contact angle, specific leaf area (SLA), tissue element concentration, and stomatal and cuticular characteristics. For untreated leaves grown in filtered, aerosol-free air (FA), nocturnal transpiration consistently decreased overnight, which was not observed for leaves grown in unfiltered ambient air (AA). Foliar application of a soluble P salt increased nocturnal transpiration for AA and FA leaves. Crusts on stomatal rims were shown by scanning electron microscopy, supporting the idea of stomatal uptake of deliquescent salts. Turgor loss point and leaf moisture content indicated a higher accumulation of solutes, due to foliar uptake by AA plants than FA plants. The hypothesis that deliquescent leaf surface salts may play a role in triggering nocturnal transpiration was supported by the results. Still, further experiments are required to characterize this phenomenon better.
Collapse
Affiliation(s)
- Clara Vega
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Chia-Ju Ellen Chi
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| | - Victoria Fernández
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juergen Burkhardt
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| |
Collapse
|
8
|
Mixed micellar systems — efficient nanocontainers for the delivery of hydrophobic substrates. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Kayabaş A, Yildirim E. New approaches with ATR-FTIR, SEM, and contact angle measurements in the adaptation to extreme conditions of some endemic Gypsophila L. taxa growing in gypsum habitats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120843. [PMID: 35032761 DOI: 10.1016/j.saa.2021.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Gypsophila L. taxa growing on gypsum soils have to withstand limiting and restrictive conditions for plant life. This study aims to identify functional mechanisms determine the main functional groups in the vegetative and reproductive organs of some endemic Gypsophila taxa growing in gypsum soils, as well as to understand the relationship between the hidrophobicities and their micromorphological structures of the leaves of these plants grown in arid conditions. In this context, a series of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR), water contact angle (CA) measurements, and scanning electron microscopy (SEM) analyses were performed that may help to understand the survival mechanisms of Gypsophila eriocalyx Boiss., Gypsophila germanicopolitana Hub.-Mor. and Gypsophila simonii Hub.-Mor. growing in gypsum habitats. Our results showed the presence of O-H and C-O stretching bands belong to gypsum and calcium oxalate in the roots, stems, leaves and flowers of Gypsophila taxa is thought to be a way of tolerating the excess Ca and sulphate in the extreme habitat where these species grow. Leaves of Gypsophila taxa showed CAs above 90°, which indicates that G. eriocalyx, G. germanicopolitana, and G. simonii were hydrophobic. This study offers new approaches to understanding the adaptation of Gypsophila taxa to the extreme conditions typical of gypsum soils. The characterization of gypsum plants such as Gypsophila taxa, whose mechanisms for competition and survival on gypsum are still not fully understood, is very important in terms of shedding light on the adaptation of endemic plants to gypsum habitats.
Collapse
Affiliation(s)
- Ayşenur Kayabaş
- Faculty of Science, Department of Biology, Çankırı Karatekin University, Çankırı, Turkey.
| | - Ertan Yildirim
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Sharma P, Lew TTS. Principles of Nanoparticle Design for Genome Editing in Plants. Front Genome Ed 2022; 4:846624. [PMID: 35330692 PMCID: PMC8940305 DOI: 10.3389/fgeed.2022.846624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Precise plant genome editing technologies have provided new opportunities to accelerate crop improvement and develop more sustainable agricultural systems. In particular, the prokaryote-derived CRISPR platforms allow precise manipulation of the crop genome, enabling the generation of high-yielding and stress-tolerant crop varieties. Nanotechnology has the potential to catalyze the development of a novel molecular toolbox even further by introducing the possibility of a rapid, universal delivery method to edit the plant genome in a species-independent manner. In this Perspective, we highlight how nanoparticles can help unlock the full potential of CRISPR/Cas technology in targeted manipulation of the plant genome to improve agricultural output. We discuss current challenges hampering progress in nanoparticle-enabled plant gene-editing research and application in the field, and highlight how rational nanoparticle design can overcome them. Finally, we examine the implications of the regulatory frameworks and social acceptance for the future of nano-enabled precision breeding in the developing world.
Collapse
Affiliation(s)
- Pushkal Sharma
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Tedrick Thomas Salim Lew, , orcid.org/0000-0002-4815-9921
| |
Collapse
|
11
|
Zeisler-Diehl VV, Baales J, Migdal B, Tiefensee K, Weuthen M, Fleute-Schlachter I, Kremzow-Graw D, Schreiber L. Alcohol Ethoxylates Enhancing the Cuticular Uptake of Lipophilic Epoxiconazole Do Not Increase the Rates of Cuticular Transpiration of Leaf and Fruit Cuticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:777-784. [PMID: 35025485 DOI: 10.1021/acs.jafc.1c06927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surfactants are known to enhance the foliar uptake of agrochemicals by plasticizing the transport-limiting barrier of plant cuticles. The effects of two different polydisperse alcohol ethoxylates with a low degree [mean ethoxylation of 5 ethylene oxide units (EOs)] and a high degree (mean ethoxylation of 10 EOs) of ethoxylation on cuticular barrier properties were investigated. The diffusion of the lipophilic organic molecule 14C-epoxiconazole and of polar 3H-water across cuticles isolated from six different plant species was investigated. At low surfactant coverages (10 μg cm-2), the diffusion of water across the cuticles was not affected by the two surfactants. Only at very high surfactant coverages (100-1000 μg cm-2) was the diffusion of water enhanced by the two surfactants between 5- and 50-fold. Unlike that of water, the diffusion of epoxiconazole was significantly enhanced 12-fold at surfactant coverages of 10 and 100 μg cm2 by the surfactant with low ethoxylation (5 EOs), and it decreased to 6-fold at a surfactant coverage of 1000 μg cm-2. The alcohol ethoxylate with a high degree of ethoxylation (10 EOs) only weakly increased the epoxiconazole diffusion. Our results clearly indicate that those surfactants that significantly enhance the uptake of the lipophilic agrochemicals (e.g., epoxiconazole) at a realistic leaf surface coverage of 10 μg cm-2, as is applied in the field, do not interfere with cuticular transpiration as an unwanted negative side effect.
Collapse
Affiliation(s)
- Viktoria V Zeisler-Diehl
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Johanna Baales
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Britta Migdal
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Kristin Tiefensee
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen Am Rhein, Germany
| | - Manfred Weuthen
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen Am Rhein, Germany
| | | | | | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Baales J, Zeisler-Diehl VV, Malkowsky Y, Schreiber L. Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants. PLANTA 2021; 255:1. [PMID: 34837118 PMCID: PMC8626361 DOI: 10.1007/s00425-021-03785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Time-dependent contact angle measurements of pure water on barley leaf surfaces allow quantifying the kinetics of surfactant diffusion into the leaf. Barley leaf surfaces were sprayed with three different aqueous concentrations (0.1, 1.0 and 10%) of a monodisperse (tetraethylene glycol monododecyl ether) and a polydisperse alcohol ethoxylate (BrijL4). After 10 min, the surfactant solutions on the leaf surfaces were dry leading to surfactant coverages of 1, 10 and 63 µg cm-2, respectively. The highest surfactant coverage (63 µg cm-2) affected leaf physiology (photosynthesis and water loss) rapidly and irreversibly and leaves were dying within 2-6 h. These effects on leaf physiology did not occur with the lower surfactant coverages (1 and 10 µg cm-2). Directly after spraying of 0.1 and 1.0% surfactant solution and complete drying (10 min), leaf surfaces were fully wettable for pure water and contact angles were 0°. Within 60 min (0.1% surfactant) and 6 h (1.0% surfactant), leaf surfaces were non-wettable again and contact angles of pure water were identical to control leaves. Scanning electron microscopy investigations directly performed after surfactant spraying and drying indicated that leaf surface wax crystallites were partially or fully covered by surfactants. Wax platelets with unaltered microstructure were fully visible again within 2 to 6 h after treatment with 0.1% surfactant solutions. Gas chromatographic analysis showed that surfactant amounts on leaf surfaces continuously disappeared over time. Our results indicate that surfactants, applied at realistic coverages between 1 and 10 µg cm-2 to barley leaf surfaces, leading to total wetting (contact angles of 0°) of leaf surfaces, are rapidly taken up by the leaves. As a consequence, leaf surface non-wettability is fully reappearing. An irreversible damage of the leaf surface fine structure leading to enhanced wetting and increased foliar transpiration seems highly unlikely at low surfactant coverages of 1 µg cm-2.
Collapse
Affiliation(s)
- Johanna Baales
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Yaron Malkowsky
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
13
|
Palma-Bautista C, Cruz-Hipólito HE, Alcántara-de la Cruz R, Vázquez-García JG, Yanniccari M, De Prado R. Comparison of premix glyphosate and 2,4-D formulation and direct tank mixture for control of Conyza canadensis and Epilobium ciliatum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117013. [PMID: 33794397 DOI: 10.1016/j.envpol.2021.117013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Premix or tank mix of glyphosate and 2,4-D are a good alternative to control glyphosate-resistant and -tolerant weeds; however, the combination of herbicides may increase the environmental impacts, since mixtures often have higher toxicity than a single herbicide. In addition, antagonism between these herbicides has also been reported. We compared the efficacy of a premix glyphosate+2,4-D formulation with respect to the tank mix of both herbicides on glyphosate-resistant Conyza canadensis and -tolerant Epilobium ciliatum populations in laboratory and field experiments. 2,4-D suppressed the glyphosate-resistance/tolerance of both species, whose populations presented similar responses to their susceptible counterparts (LD50 ≥ 480+320 g ha-1 glyphosate + 2,4-D, respectively). Plants of both species treated with the premix formulations retained ∼100-μL more herbicide solution, accumulated 20-25% and 28-38% more shikimate and ethylene, respectively, and presented greater 14C-glyphosate absorption and translocation, depending on the species, compared to plants treated with the tank mix treatment. Although doubling the field dose (720 + 480 g ha-1) improved (5-22%) the control of these weeds in the field, split applications of both premix and tank mix provided the best control levels (≤70%), but premix treatments maintained control levels above 85% for longer (120-d). No antagonism between glyphosate and 2,4-D was found. The addition of 2,4-D controlled both broadleaf species. For all parameters evaluated on the C. canadensis and E. ciliatum populations in the laboratory and in the field, the premix treatments showed better performance than the tank mix treatments. Premix formulations could reduce the environmental impact of herbicides used to control glyphosate resistant/tolerant weeds by decreasing the herbicide amount needed to achieve an acceptable weed control level.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071, Cordoba, Spain
| | - Hugo E Cruz-Hipólito
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071, Cordoba, Spain
| | | | - José G Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071, Cordoba, Spain
| | - Marcos Yanniccari
- Chacra Experimental Integrada Barrow (MAIBA-INTA), National Scientific and Technical Research Council, Tres Arroyos, 7500, Argentina
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071, Cordoba, Spain
| |
Collapse
|
14
|
Shah P, Bhattarai A. Advances in Surfactants in Foliar Application of Agrochemicals on Mango Leaf Surfaces. TENSIDE SURFACT DET 2021. [DOI: 10.3139/113.110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The surface tension, pH and contact angle of the wetting liquid as well as the complex composition of the leaf surface are important parameters to describe the spreading, wettability and absorption of agrochemicals on the leaf surfaces. The contact angle of aqueous solutions of agrochemicals (multi-micronutrient fertilizers, growth regulator and insecticides) with/without Leaf guard, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) and Sapindus mukorrossi (Ritha) were measured over the surface of mango leaves. The order of contact angle (mean) values was found to be AOT < Ritha < Leaf guard, which implies that AOT is a better wetting agent, but Ritha has a higher range of adhesion work because of its acidic nature (low pH). The wetting free energy was found to be more negative in the presence of Leaf guard, Ritha and AOT than in water, which indicates that wetting is more spontaneous in the presence of surfactants. The adaxial surface of mango leaves had a higher surface free energy than the abaxial part and hence showed higher wettability than the abaxial part.
Collapse
|
15
|
Junqueira VB, Müller C, Rodrigues AA, Amaral TS, Batista PF, Silva AA, Costa AC. Do fungicides affect the physiology, reproductive development and productivity of healthy soybean plants? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104754. [PMID: 33518047 DOI: 10.1016/j.pestbp.2020.104754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Fungicides are widely used to control diseases in soybean crops. We hypothesized that fungicides applied to healthy soybean plants compromise the plant's physiology, affect the reproductive process and reduce crop productivity. We aimed to evaluate the photosynthetic process, pollen grain viability and yield components of soybean plants exposed to three commercial fungicides. The experiment was performed twice using soybean cultivar SYN 1378C, disease-free plants, with four treatments: i) control treatment (without any fungicide application); ii) cyproconazole 150 g L-1 + difenoconazole 250 g L-1 (CPZ + DFZ; 250 mL ha-1; without adjuvant); iii) azoxystrobin 300 g Kg-1 + benzovindiflupyr 150 g Kg-1 (AZB + BZP; 200 g ha-1; Nimbus® adjuvant (Syngenta)); and iv) propiconazole 250 g L-1 + difenoconazole 250 g L-1 (PPZ + DFZ; 150 mL ha-1; without adjuvant) in both soybean pre-bloom (V8) and bloom (R1) developmental stages. The experimental design was randomized blocks with four replicates. Phytotoxicity, gas exchange and chlorophyll a fluorescence traits, pollen grain viability, pollen grain germination, flower abortion and soybean production components were evaluated. The fungicides did not affect the physiological traits, pollen grain germination and crop yield.
Collapse
Affiliation(s)
- Verônica Barbosa Junqueira
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Arthur Almeida Rodrigues
- Laboratory of Plant Anatomy, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Thales Simioni Amaral
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Priscila Ferreira Batista
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Adinan Alves Silva
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil.
| |
Collapse
|
16
|
Rodríguez-Gil JL, Prosser RS, Duke SO, Solomon KR. Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:129-205. [PMID: 34104986 DOI: 10.1007/398_2020_56] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.
Collapse
Affiliation(s)
- Jose Luis Rodríguez-Gil
- IISD - Experimental Lakes Area, Winnipeg, MB, Canada.
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Mixed Micellar Solutions of Hexadecylpiperidinium Surfactants and Tween 80: Aggregation Behavior and Solubilizing Properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420090198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Palma-Bautista C, Vazquez-Garcia JG, Travlos I, Tataridas A, Kanatas P, Domínguez-Valenzuela JA, De Prado R. Effect of Adjuvant on Glyphosate Effectiveness, Retention, Absorption and Translocation in Lolium rigidum and Conyza canadensis. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9030297. [PMID: 32121525 PMCID: PMC7154921 DOI: 10.3390/plants9030297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
Glyphosate retention, absorption and translocation with and without adjuvant were examined in Lolium rigidum and Conyza canadensis in greenhouse and laboratory settings to develop an understanding of the influence of the selected adjuvant on glyphosate activity. Tests on whole plants show that the dose of herbicide needed to reduce dry weight by 50% (GR50) or plant survival (LD50) decreases by mixing glyphosate and adjuvant to 22%-24% and 42%-44% for both populations of L. rigidum and C. canadensis, respectively. This improvement in efficacy could be attributed to the higher herbicide retention and lower contact angle of the glyphosate + adjuvant drops on the leaf surface compared to the glyphosate solution alone. Plants of both species treated with 14C-glyphosate + adjuvant absorbed more glyphosate compared to non-adjuvant addition. Furthermore, the movement of the herbicide through the plant was faster and greater with the adjuvant. Our results reveal that the use of adjuvants improves the effectiveness of glyphosate in two of the most important weeds in agricultural crops in Mediterranean countries.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain; (C.P.-B.); (J.G.V.-G.)
| | - Jose G. Vazquez-Garcia
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain; (C.P.-B.); (J.G.V.-G.)
| | - Ilias Travlos
- Department of Crop Science, Laboratory of Agronomy, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.T.); (A.T.)
| | - Alexandros Tataridas
- Department of Crop Science, Laboratory of Agronomy, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.T.); (A.T.)
| | - Panagiotis Kanatas
- Agricultural Cooperative of Mesolonghi-Nafpaktia, 30200 Mesolonghi, Greece;
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain; (C.P.-B.); (J.G.V.-G.)
| |
Collapse
|
19
|
Mirgorodskaya АB, Kushnazarova RА, Lukashenko SS, Nikitin EN, Sinyashin KO, Nesterova LM, Zakharova LY. Carbamate-bearing surfactants as effective adjuvants promoted the penetration of the herbicide into the plant. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Peirce CAE, McBeath TM, Priest C, McLaughlin MJ. The Timing of Application and Inclusion of a Surfactant Are Important for Absorption and Translocation of Foliar Phosphoric Acid by Wheat Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:1532. [PMID: 31824546 PMCID: PMC6882945 DOI: 10.3389/fpls.2019.01532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/01/2019] [Indexed: 05/26/2023]
Abstract
Introduction: Foliar applied phosphorus (P) has the potential to provide a more tactical approach to P fertilization that could enhance P use efficiency. The aims of this study were to investigate the influence of adjuvant choice and application timing of foliar applied phosphoric acid on leaf wettability, foliar uptake, translocation, and grain yield of wheat plants. Materials and Methods: We measured the contact angles of water and fertilizers on wheat leaves, and the uptake, translocation and wheat yield response to isotopically-labelled phosphoric acid in combination with five different adjuvants when foliar-applied to wheat at either early tillering or flag leaf emergence. Results: There was high foliar uptake of phosphoric acid in combination with all adjuvants that contained a surfactant, but only one treatment resulted in a 12% increase in grain yield and two treatments resulted in a decrease in grain yield. Despite the wettability of all foliar fertilizers being markedly different, foliar uptake was similar for all treatments that contained a surfactant. The translocation of phosphorus from foliar sources was higher when applied at a later growth stage than when applied at tillering despite the leaf surface properties that affect wettability being similar across all leaves at both growth stages. Discussion: Both the timing of foliar application and the inclusion of a surfactant in the formulation are important for absorption and translocation of phosphoric acid by wheat leaves, however high foliar uptake and translocation will not always translate to a yield increase.
Collapse
Affiliation(s)
- Courtney A. E. Peirce
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Therese M. McBeath
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- CSIRO Agriculture and Food-Systems, Glen Osmond, SA, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Michael J. McLaughlin
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
21
|
Kolenčík M, Ernst D, Komár M, Urík M, Šebesta M, Dobročka E, Černý I, Illa R, Kanike R, Qian Y, Feng H, Orlová D, Kratošová G. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet ( Setaria italica L.) under Field Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1559. [PMID: 31684189 PMCID: PMC6915511 DOI: 10.3390/nano9111559] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.
Collapse
Affiliation(s)
- Marek Kolenčík
- Department of Soil Science and Geology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
- Nanotechnology Centre, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic.
| | - Dávid Ernst
- Department of Crop Production and Grassland Ecosystems, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | - Matej Komár
- Department of Crop Production and Grassland Ecosystems, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 3278/6, 841 04 Karlova Ves, Bratislava, Slovakia.
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 3278/6, 841 04 Karlova Ves, Bratislava, Slovakia.
| | - Edmud Dobročka
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.
| | - Ivan Černý
- Department of Crop Production and Grassland Ecosystems, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | - Ramakanth Illa
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, AP IIIT, Nuzvid, Krishna District 521202, India.
| | - Raghavendra Kanike
- Department of Biosciences, Rajiv Gandhi University of Knowledge Technologies, AP IIIT, Nuzvid, Krishna District 521202, India.
| | - Yu Qian
- School of Ecology and Environmental Science, Yunnan University, 2 Cuihubei Lu, Kunming 650 091, Yunnan, China.
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 070 43, USA.
| | - Denisa Orlová
- Nanotechnology Centre, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic.
| | - Gabriela Kratošová
- Nanotechnology Centre, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic.
| |
Collapse
|
22
|
Hu X, Gong H, Li Z, Ruane S, Liu H, Hollowell P, Pambou E, Bawn C, King S, Rogers S, Ma K, Li P, Padia F, Bell G, Ren Lu J. How does solubilisation of plant waxes into nonionic surfactant micelles affect pesticide release? J Colloid Interface Sci 2019; 556:650-657. [DOI: 10.1016/j.jcis.2019.08.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
|