1
|
Zhang H, Wu Y, Zhang H, Sun N, Zhang H, Tian B, Zhang T, Wang K, Nan X, Zhang H. AtMYB72 aggravates photosynthetic inhibition and oxidative damage in Arabidopsis thaliana leaves caused by salt stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2371694. [PMID: 38916149 PMCID: PMC11204036 DOI: 10.1080/15592324.2024.2371694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
MYB transcription factor is one of the largest families in plants. There are more and more studies on plants responding to abiotic stress through MYB transcription factors, but the mechanism of some family members responding to salt stress is unclear. In this study, physiological and transcriptome techniques were used to analyze the effects of the R2R3-MYB transcription factor AtMYB72 on the growth and development, physiological function, and key gene response of Arabidopsis thaliana. Phenotypic observation showed that the damage of overexpression strain was more serious than that of Col-0 after salt treatment, while the mutant strain showed less salt injury symptoms. Under salt stress, the decrease of chlorophyll content, the degree of photoinhibition of photosystem II (PSII) and photosystem I (PSI) and the degree of oxidative damage of overexpressed lines were significantly higher than those of Col-0. Transcriptome data showed that the number of differentially expressed genes (DEGs) induced by salt stress in overexpressed lines was significantly higher than that in Col-0. GO enrichment analysis showed that the response of AtMYB72 to salt stress was mainly by affecting gene expression in cell wall ectoplast, photosystem I and photosystem II, and other biological processes related to photosynthesis. Compared with Col-0, the overexpression of AtMYB72 under salt stress further inhibited the synthesis of chlorophyll a (Chla) and down-regulated most of the genes related to photosynthesis, which made the photosynthetic system more sensitive to salt stress. AtMYB72 also caused the outbreak of reactive oxygen species and the accumulation of malondialdehyde under salt stress, which decreased the activity and gene expression of key enzymes in SOD, POD, and AsA-GSH cycle, thus destroying the ability of antioxidant system to maintain redox balance. AtMYB72 negatively regulates the accumulation of osmotic regulatory substances such as soluble sugar (SS) and soluble protein (SP) in A. thaliana leaves under salt stress, which enhances the sensitivity of Arabidopsis leaves to salt. To sum up, MYB72 negatively regulates the salt tolerance of A. thaliana by destroying the light energy capture, electron transport, and antioxidant capacity of Arabidopsis.
Collapse
Affiliation(s)
- Hongrui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Nan Sun
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongjiao Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Bei Tian
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tanhang Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Kexin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xu Nan
- Key Laboratory of Heilongjiang Province for Cold-Regions Wetlands Ecology and Environment Research, Harbin University, School of Geography and Tourism, Harbin, China
| | - Huiui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, Pattanayak A, Singh BK. Identification, genomic localization, and functional validation of salt-stress-related lncRNAs in Indian Mustard (Brassica juncea L.). BMC Genomics 2024; 25:1121. [PMID: 39567864 PMCID: PMC11580500 DOI: 10.1186/s12864-024-10964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Indian Mustard (Brassica juncea L.) is a globally cultivated winter oilseed crop of the rapeseed-mustard group. It is predominantly grown in the semi-arid northwest agroclimatic zone of India, characterized by high soil salinity. Enhancing tolerance to salt stress in B. juncea is therefore crucial for sustaining its production in this region. Long non-coding RNAs (lncRNAs) play critical roles in coordinating gene expression under various abiotic stresses, including salt stress, but their involvement in the salt stress response in B. juncea remains largely unknown. In this study, we conducted RNA-seq analysis on control, salt-stressed, and salt-shocked young leaves of the salt-tolerant B. juncea cv CS-52. We identified a total of 3,602 differentially expressed transcripts between stress versus control and shock versus control samples. Among these, 61 were identified as potential lncRNAs, with 21 specific to salt stress and 40 specific to salt shock. Of the 21 lncRNAs specific to salt stress, 15 were upregulated and six were downregulated, while all 40 lncRNAs unique to salt shock were downregulated. Chromosomal distribution analysis of the lncRNAs revealed their uneven placement across 18 chromosomes in B. juncea. RNA-RNA interaction analysis between salt stress-upregulated lncRNAs and salt stress-related miRNAs identified 26 interactions between 10 lncRNAs and 23 miRNAs and predicted 13 interactions between six miRNAs and 13 mRNAs. Finally, six lncRNA-miRNA-mRNA interaction networks were established, involving five lncRNAs, 13 miRNAs, and 23 mRNAs. RT-qPCR analysis revealed the upregulation of four out of five lncRNAs, along with their target mRNAs, supporting their involvement in the salt stress response in B. juncea.
Collapse
Affiliation(s)
- Kishor U Tribhuvan
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - M Shivakumaraswamy
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Twinkle Mishra
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Simardeep Kaur
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India
| | - Biplab Sarkar
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - A Pattanayak
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Binay K Singh
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India.
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India.
| |
Collapse
|
4
|
Phukela B, Leonard H, Sapir Y. In silico analysis of R2R3-MYB transcription factors in the basal eudicot model, Aquilegia coerulea. 3 Biotech 2024; 14:284. [PMID: 39479299 PMCID: PMC11522220 DOI: 10.1007/s13205-024-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
R2R3-MYBs are an important group of transcription factors that regulate crucial developmental processes across the plant kingdom; yet no comprehensive analysis of the R2R3-MYBs in the early-diverging eudicot clade of Ranunculaceae has been conducted so far. In the present study, Aquilegia coerulea is chosen to understand the extent of conservation and divergence of R2R3-MYBs as a representative of the family by analysing the genomic distribution, organization, gene structure, physiochemical properties, protein architecture, evolution and possible mode of expansion. Genome-wide analysis showed the presence of 82 putative homologues classified into 21 subgroups, based on phylogenetic analysis of full-length protein sequences. The domain has remained largely conserved across all homologues with few differences from the characterized Arabidopsis thaliana R2R3-MYBs. The topology of the phylogenetic tree remains the same when full-length protein sequences are used, indicating that the evolution of R2R3-MYBs is driven by the domain region only. This is supported by the presence of similar structures of exon-intron and conserved motifs within the same subgroup. Furthermore, comparisons of the AqcoeR2R3-MYB members with monocots and core-eudicots revealed the evolutionary expansion of a few functional clades, such as A. thaliana R2R3-MYB subgroup 6 (SG6), the upstream regulatory factors of floral pigment biosynthesis and floral color. The reconstructed evolutionary history of SG6-like genes across angiosperms highlights the occurrence of independent duplication events in the genus Aquilegia. AqcoeR2R3-MYB genes are present in all seven chromosomes of A. coerulea, most of which result from local and segmental duplications. Selection analysis of these duplicated gene pairs indicates purifying selection except one, and the physiochemical analyses of R2R3-MYBs reveal differences among the MYBs signifying their functional diversification. This study paves the way for further investigation of paralogous copies and their probable role in the evolution of different floral traits in A. coerulea. It lays the foundation for functional genomic studies of R2R3-MYBs in the basal eudicots and facilitates comparative studies among angiosperms. The work also provides a framework for deciphering novel genetic regulatory pathways that govern the diversity of floral morphology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04119-y.
Collapse
Affiliation(s)
- Banisha Phukela
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Leonard
- Department of Botany, Miami University, Oxford, OH 45056 USA
| | - Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Liu Y, Guo P, Gao Z, Long T, Xing C, Li J, Xue J, Chen G, Xie Q, Hu Z. Silencing of SlMYB78-like Reduces the Tolerance to Drought and Salt Stress via the ABA Pathway in Tomato. Int J Mol Sci 2024; 25:11449. [PMID: 39519002 PMCID: PMC11546358 DOI: 10.3390/ijms252111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The MYB transcription factor family plays a crucial regulatory role in plant growth, development, biological progress, and stress responses. Here, we identified a R2R3-MYB transcription factor gene, SlMYB78-like, from tomato and characterized its function by gene silencing via RNA interference (RNAi). The results exhibited that the silencing of SlMYB78-like reduced the sensitivity of tomato seedlings to exogenous ABA. In addition, when exposed to drought and salt stresses, the RNAi lines grown in soil showed decreased tolerance, with lower ABA accumulation, relative water content, and chlorophyll content while displaying higher relative conductivity and malondialdehyde (MDA) content than the wild type. Moreover, the expression of genes related to chlorophyll biosynthesis, photosynthesis, and ABA biosynthesis/response were down-regulated in SlMYB78-like-silenced lines. Notably, the transcript level of SlCYP707-A2, which encodes a protein involved in ABA degradation, was up-regulated significantly after stresses. The transient expression assay Dual-luciferase (Dual-LUC) and a yeast one-hybrid (Y1H) assay demonstrated that SlMYB78-like bound to the promoter of SlCYP707-A2. Additionally, the physical interaction between SlMYB78-like and SlDREB3, which functioned in ABA signaling transduction, was identified through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Collectively, our study illustrates that SlMYB78-like participates in the abiotic stress response via the ABA pathway.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Ting Long
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Chuanji Xing
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing 100097, China; (C.X.); (J.X.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Jing Xue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing 100097, China; (C.X.); (J.X.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| |
Collapse
|
6
|
Banerjee S, Mitra M, Roy S. Study of changes in folding/unfolding properties and stability of Arabidopsis thaliana MYB12 transcription factor following UV-B exposure in vitro. Heliyon 2024; 10:e34189. [PMID: 39071576 PMCID: PMC11279800 DOI: 10.1016/j.heliyon.2024.e34189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| | | | - Sujit Roy
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| |
Collapse
|
7
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
8
|
Mu Y, Shi L, Tian H, Tian H, Zhang J, Zhao F, Zhang Q, Zhang S, Geng G. Characterization and transformation of TtMYB1 transcription factor from Tritipyrum to improve salt tolerance in wheat. BMC Genomics 2024; 25:163. [PMID: 38336658 PMCID: PMC10854188 DOI: 10.1186/s12864-024-10051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Common wheat (Triticum aestivum L.) is a worldwide cereal crop, which is an integral part of the diets of many countries. In addition, the MYB gene of wheat plays a role in the response to salt stress. RESULTS "Y1805" is a Tritipyrum variety that is relatively tolerant to salt. We used transcriptome analysis to show that the "Y1805" MYB gene was both highly expressed and sensitive to salt stress. Compared with control roots, the level of MYB expression during salt stress was higher, which rapidly decreased to control levels during the recovery process. MYB gene relative expression showed the highest levels in "Y1805" roots during salt stress, with the stems and then leaves being the next highest stressed tissues. The novel MYB gene (TtMYB1) was successfully cloned from "Y1805". It showed a coding sequence length of 783 bp with 95.79% homology with Tel2E01G633100 from Thinopyrum elongatum. TtMYB1 and MYB from Th. elongatum were clustered in the same branch using phylogenetic analysis, which indicated high similarities. The TtMYB1 gene is located in the nucleus. The coleoptile method was employed when a TtMYB1 overexpression vector was used during transformation into "1718" (common wheat). Under high salt stress, TtMYB1 leaves of overexpression lines had decreased wilting, when compared with wild-type (WT) plants. During normal conditions, salt stress, and recovery, the lengths of the roots and the heights of seedlings from the overexpression lines were found to be significantly greater than roots and seedlings of WT plants. In addition, during high salt stress, the overexpression lines showed that proline and soluble sugar levels were higher than that of WT plants, but with lower malondialdehyde levels. Forty-three proteins that interacted with TtMYB1 were identified using the yeast two-hybrid assay. Protein-protein interaction analyses indicated that most were SANT domain-containing and Wd repeat region domain-containing proteins. Among these proteins, ribosomal proteins were the main node. Abiotic stress-related terms (such as "carbonate dehydratase activity", "protein targeting peroxisomes", and "glutathione peroxidase activity") were enriched in GO analysis. In KEGG analysis, "carbohydrate metabolism", "environmental information processing", "genetic information processing", "signaling and cell precursors", and "energy metabolism" pathways were enriched. CONCLUSION The TtMYB1 gene might enhance salt tolerance by increasing proline and soluble sugar content and antioxidase activity in transgenic wheat. It therefore has the potential to enhance high salt tolerance in plants.
Collapse
Affiliation(s)
- Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huan Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huaizhi Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Zunyi Acadamy of Agricultural Sciences, Zunyi, Guizhou, China
| | - Jv Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Fusheng Zhao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, Guizhou, China.
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Su J, Zhan N, Cheng X, Song S, Dong T, Ge X, Duan H. Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress. PLANT & CELL PHYSIOLOGY 2024; 65:79-94. [PMID: 37847105 DOI: 10.1093/pcp/pcad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
MYB transcription factors play important roles during abiotic stress responses in plants. However, little is known about the accurate systematic analysis of MYB genes in the four cotton species, Gossypium hirsutum, G. barbadense, G. arboreum and G. raimondii. Herein, we performed phylogenetic analysis and showed that cotton MYBs and Arabidopsis MYBs were clustered in the same subfamilies for each species. The identified cotton MYBs were distributed unevenly on chromosomes in various densities for each species, wherein genome-wide tandem and segment duplications were the main driving force of MYB family expansion. Synteny analysis suggested that the abundant collinearity pairs of MYBs were identified between G. hirsutum and the other three species, and that they might have undergone strong purification selection. Characteristics of conserved motifs, along with their consensus sequence, promoter cis elements and gene structure, revealed that MYB proteins might be highly conserved in the same subgroups for each species. Subsequent analysis of differentially expressed genes and expression patterns indicated that most GhMYBs might be involved in response to drought (especially) and salt stress, which was supported by the expression levels of nine GhMYBs using real-time quantitative PCR. Finally, we performed a workflow that combined virus-induced gene silencing and the heterologous transformation of Arabidopsis, which confirmed the positive roles of GhMYBs under drought conditions, as validated by determining the drought-tolerant phenotypes, damage index and/or water loss rate. Collectively, our findings not only expand our understanding of the relationships between evolution and function of MYB genes, but they also provide candidate genes for cotton breeding.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Na Zhan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoru Cheng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shanglin Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Wang D, Ji XL, Li Z, Zhang MY, Liu MP, Song XS. A Cerasus humilis transcription factor, ChDREB2C, enhances salt tolerance in transgenic Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:82-92. [PMID: 38014504 DOI: 10.1111/plb.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/22/2023] [Indexed: 11/29/2023]
Abstract
DREB transcription factors play important roles in plant responses to various abiotic and biotic stresses. We conducted bioinformatics analysis of ChDREB2C, explored subcellular localization, transcription activation activity, and heterologous expression in Arabidopsis, and measured expression of related physiological indicators and genes under salt stress. A transcription factor of the DREB family was cloned and named ChDREB2C. ChDREB2C protein was localized in the nucleus, and its C-terminal domain exhibited transcriptional activation activity. ChDREB2C formed a homologous dimer in yeast. Arabidopsis plants overexpressing ChDREB2C were more tolerant to salt stress than WT plants, through increased scavenging capacity of ROS and accumulation of proline. Overexpression of ChDREB2C resulted in increased expression of AtSOS1, AtNHX1, AtRD29A, AtRD29B, AtKIN1, AtABA4, and AtABF2 genes. The interaction between ChABF2 (ABA response element binding factor 2) and ChDREB2C was verified using yeast two-hybrid and firefly luciferase assays. The results suggest that ChDREB2C could have a positive role in mediating the abiotic response.
Collapse
Affiliation(s)
- D Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - X L Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Z Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - M Y Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - M P Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - X S Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Li J, Li X, Jia C, Liu D. Gene Cloning and Characterization of Transcription Factor FtNAC10 in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn.). Int J Mol Sci 2023; 24:16317. [PMID: 38003506 PMCID: PMC10671190 DOI: 10.3390/ijms242216317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
NAC transcription factors play a significant role in plant stress responses. In this study, an NAC transcription factor, with a CDS of 792 bp encoding 263 amino acids, was cloned from Fagopyrum tataricum (L.) Gaertn. (F. tataricum), a minor cereal crop, which is rich in flavonoids and highly stress resistant. The transcription factor was named FtNAC10 (NCBI accession number: MK614506.1) and characterized as a member of the NAP subgroup of NAC transcriptions factors. The gene exhibited a highly conserved N-terminal, encoding about 150 amino acids, and a highly specific C-terminal. The resulting protein was revealed to be hydrophilic, with strong transcriptional activation activity. FtNAC10 expression occurred in various F. tataricum tissues, most noticeably in the root, and was regulated differently under various stress treatments. The over-expression of FtNAC10 in transgenic Arabidopsis thaliana (A. thaliana) seeds inhibited germination, and the presence of FtNAC10 enhanced root elongation under saline and drought stress. According to phylogenetic analysis and previous reports, our experiments indicate that FtNAC10 may regulate the stress response or development of F. tataricum through ABA-signaling pathway, although the mechanism is not yet known. This study provides a reference for further analysis of the regulatory function of FtNAC10 and the mechanism that underlies stress responses in Tartary buckwheat.
Collapse
Affiliation(s)
- Jinghuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohua Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| |
Collapse
|
12
|
Zheng L, Liao L, Duan C, Ma W, Peng Y, Yuan Y, Han Y, Ma F, Li M, Ma B. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. PLANT PHYSIOLOGY 2023; 192:1877-1891. [PMID: 36810940 PMCID: PMC10315266 DOI: 10.1093/plphys/kiad111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an A→T SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Chenbo Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
13
|
Sukumaran S, Lethin J, Liu X, Pelc J, Zeng P, Hassan S, Aronsson H. Genome-Wide Analysis of MYB Transcription Factors in the Wheat Genome and Their Roles in Salt Stress Response. Cells 2023; 12:1431. [PMID: 37408265 DOI: 10.3390/cells12101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/07/2023] Open
Abstract
Large and rapidly increasing areas of salt-affected soils are posing major challenges for the agricultural sector. Most fields used for the important food crop Triticum aestivum (wheat) are expected to be salt-affected within 50 years. To counter the associated problems, it is essential to understand the molecular mechanisms involved in salt stress responses and tolerance, thereby enabling their exploitation in the development of salt-tolerant varieties. The myeloblastosis (MYB) family of transcription factors are key regulators of responses to both biotic and abiotic stress, including salt stress. Thus, we used the Chinese spring wheat genome assembled by the International Wheat Genome Sequencing Consortium to identify putative MYB proteins (719 in total). Protein families (PFAM) analysis of the MYB sequences identified 28 combinations of 16 domains in the encoded proteins. The most common consisted of MYB_DNA-binding and MYB-DNA-bind_6 domains, and five highly conserved tryptophans were located in the aligned MYB protein sequence. Interestingly, we found and characterized a novel 5R-MYB group in the wheat genome. In silico studies showed that MYB transcription factors MYB3, MYB4, MYB13 and MYB59 are involved in salt stress responses. qPCR analysis confirmed upregulation of the expression of all these MYBs in both roots and shoots of the wheat variety BARI Gom-25 (except MYB4, which was downregulated in roots) under salt stress. Moreover, we identified nine target genes involved in salt stress that are regulated by the four MYB proteins, most of which have cellular locations and are involved in catalytic and binding activities associated with various cellular and metabolic processes.
Collapse
Affiliation(s)
- Selvakumar Sukumaran
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna Lethin
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xin Liu
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, China
| | - Justyna Pelc
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, 71-434 Szczecin, Poland
| | - Peng Zeng
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210014, China
| | - Sameer Hassan
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- OlsAro Crop Biotech AB, Erik Dahlbergsgatan 11A, 41126 Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environment Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Yan H, Chen H, Liao Q, Xia M, Yao T, Peng L, Zou L, Zhao G, Zhao J, Wu DT. Genome-Wide Identification of Histone Deacetylases and Their Roles Related with Light Response in Tartary Buckwheat ( Fagopyrum tataricum). Int J Mol Sci 2023; 24:ijms24098090. [PMID: 37175799 PMCID: PMC10179446 DOI: 10.3390/ijms24098090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Histone deacetylases (HDACs), known as histone acetylation erasers, function crucially in plant growth and development. Although there are abundant reports focusing on HDACs of Arabidopsis and illustrating their important roles, the knowledge of HDAC genes in Tartary buckwheat (Polygonales Polygonaceae Fagopyrum tataricum (L.) Gaertn) is still scarce. In the study, a total of 14 HDAC genes were identified and divided into three main groups: Reduced Potassium Dependency-3/His-52 tone Deacetylase 1 (RPD3/HDA1), Silent Information Regulator 2 (SIR2), and the plant-53 specific HD2. Domain and motif composition analysis showed there were conserved domains and motifs in members from the same subfamilies. The 14 FtHDACs were distributed asymmetrically on 7 chromosomes, with three segmental events and one tandem duplication event identified. The prediction of the cis-element in promoters suggested that FtHDACs probably acted in numerous biological processes including plant growth, development, and response to environmental signals. Furthermore, expression analysis based on RNA-seq data displayed that all FtHDAC genes were universally and distinctly expressed in diverse tissues and fruit development stages. In addition, we found divergent alterations in FtHDACs transcript abundance in response to different light conditions according to RNA-seq and RT-qPCR data, indicating that five FtHDACs might be involved in light response. Our findings could provide fundamental information for the HDAC gene family and supply several targets for future function analysis of FtHDACs related with light response of Tartary buckwheat.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongxu Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qingxia Liao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mengying Xia
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Yao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Phylogenetic Analysis of R2R3-MYB Family Genes in Tetrastigma hemsleyanum Diels et Gilg and Roles of ThMYB4 and ThMYB7 in Flavonoid Biosynthesis. Biomolecules 2023; 13:biom13030531. [PMID: 36979467 PMCID: PMC10046264 DOI: 10.3390/biom13030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is an extensively used Chinese folk herb with multiple bioactivities. Among these bioactivities, flavonoids are recognized as the representative active ingredients. We previously found an elevated accumulation of flavonoids in T. hemsleyanum under water stress; however, the mechanism remains unclear. R2R3-MYB transcription factors play vital roles in the plant response to environmental stress and the regulation of secondary metabolites. Herein, a systematic transcriptome identification of R2R3-MYB family genes under water stress in T. hemsleyanum was performed to explore their potential function in the biosynthesis of flavonoids. A total of 26 R2R3-MYB genes were identified, most of which were clustered into functional branches of abiotic stress. ThMYB4 and ThMYB7 were then screened out to be associated with the biosynthesis of flavonoids through a protein-protein interaction prediction. An expression correlation analysis based on RNA-seq further confirmed that ThMYB4 and ThMYB7 were positively related to the flavonoid biosynthetic pathway genes of T. hemsleyanum. In ThMYB4- and ThMYB7-overexpression hairy roots, it was found that the expression of ThCHS and ThCHI was significantly increased, suggesting that ThMYB4 and ThMYB7 may act as regulators in flavonoid biosynthesis. This will shed new light on the promotion of flavonoid production and the medicinal value of T. hemsleyanum by manipulating transcription factors.
Collapse
|
16
|
Chen N, Pan L, Yang Z, Su M, Xu J, Jiang X, Yin X, Wang T, Wan F, Chi X. A MYB-related transcription factor from peanut, AhMYB30, improves freezing and salt stress tolerance in transgenic Arabidopsis through both DREB/CBF and ABA-signaling pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1136626. [PMID: 36925750 PMCID: PMC10013196 DOI: 10.3389/fpls.2023.1136626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as salinity and low temperature have serious impact on peanut growth and yield. The present work investigated the function of a MYB-related transcription factor gene AhMYB30 obtained from peanut under salt and low temperature stresses by transgenic methods. The results indicated that the overexpression of AhMYB30 in Arabidopsis could enhance the resistance of transgenic plants to freezing and salt stresses. The expression of stress-response genes RD29A (Response-to-Dehydration 29A), COR15A (Cold-Regulated 15A), KIN1 (Kinesin 1) and ABI2 (Abscisic acid Insensitive 2) increased in transgenic plants compared with in wild-type. Subcellular localization and transcriptional autoactivation validation demonstrated that AhMYB30 has essential features of transcription factors. Therefore, AhMYB30 may increase salt and freezing stress tolerance as the transcription factor (TF) in Arabidopsis through both DREB/CBF and ABA-signaling pathways. Our results lay the theoretical foundation for exploring stress resistance mechanisms of peanut and offering novel genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Lijuan Pan
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Zhen Yang
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Maowen Su
- Department of Animal and Plant Quarantine, Qingdao Customs, Qingdao, China
| | - Jing Xu
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao Jiang
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Xiangzhen Yin
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Tong Wang
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| | - Feifei Wan
- Division for Guidance of Cooperative Economy, Binzhou Agricultural Technology Extension Center, Binzhou, China
| | - Xiaoyuan Chi
- Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
17
|
Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, Martinelli F, Sunseri F, Frenda AS. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Sci Rep 2023; 13:116. [PMID: 36596823 PMCID: PMC9810663 DOI: 10.1038/s41598-022-26903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.
Collapse
Affiliation(s)
- Guglielmo Puccio
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Rosolino Ingraffia
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.14095.390000 0000 9116 4836Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Francesco Mercati
- grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Gaetano Amato
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Federico Martinelli
- grid.8404.80000 0004 1757 2304Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Sunseri
- grid.11567.340000000122070761Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso S. Frenda
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Chen Q, Peng L, Wang A, Yu L, Liu Y, Zhang X, Wang R, Li X, Yang Y, Li X, Wang J. An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153842. [PMID: 36434991 DOI: 10.1016/j.jplph.2022.153842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
R2R3-MYB transcription factors play important roles in response to abiotic stresses in planta, such as salt, drought, and osmotic stress. However, the role of FtMYB11 in Tartary buckwheat (Fagopyrum tataricum) in drought and osmotic tolerance has not yet been elucidated. In this study, we found that FtMYB11 was markedly induced by exogenous abscisic acid (ABA), salinity, and mannitol. Further, FtMYB11-overexpressing Arabidopsis showed hypersensitivity to ABA-mediated seed germination and seedling establishment through regulating transcripts of AtCBF1, AtDREB2A, and AtRD20, compared with wild type, indicating that FtMYB11 plays a positive role in ABA signaling. In contrast, transgenic lines overexpressing FtMYB11 were sensitive to mannitol and NaCl treatments, suggesting that FtMYB11 plays a negative role in osmotic tolerance. Intriguingly, the transcripts of ABA biosynthetic enzyme genes were significantly elevated in plants overexpressing FtMYB11 after exposure to osmotic stresses, such as AtABA3 and AtNCED3. In addition, flavonoid biosynthesis genes were also upregulated in transgenic Arabidopsis under ABA, salt, and drought treatments, including AtC4H, AtF3H, AtANS, AtFLS, and At4CL. The drought tolerance assay showed that plants overexpressing FtMYB11 displayed greater tolerance to water deficit through regulating MDA and proline content. Taken together, FtMYB11 has opposite roles in response to abiotic stresses, but it may mediate flavonoid biosynthesis through regulation of related enzyme genes.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Anhu Wang
- Xichang University, Xichang, 615013, Sichuan, China
| | - Lingzhi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xinrong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ruolin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Liu Y, Shen Y, Liang M, Zhang X, Xu J, Shen Y, Chen Z. Identification of Peanut AhMYB44 Transcription Factors and Their Multiple Roles in Drought Stress Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3522. [PMID: 36559634 PMCID: PMC9788490 DOI: 10.3390/plants11243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
MYB transcription factors (TFs) comprise a large gene family that plays an important role in plant growth, development, stress responses, and defense regulation. However, their functions in peanut remain to be further elucidated. Here, we identified six AhMYB44 genes (AhMYB44-01/11, AhMYB44-05/15, and AhMYB44-06/16) in cultivated peanut. They are typical R2R3-MYB TFs and have many similarities but different expression patterns in response to drought stress, suggesting different functions under drought stress. Homologous genes with higher expression in each pair were selected for further study. All of them were nuclear proteins and had no self-transactivation activity. In addition, we compared the performances of different lines at germination, seedling, and adult stages under drought stress. After drought treatment, the overexpression of AhMYB44-11 transgenic plants resulted in the longest root length at the seedling stage. Levels of proline, soluble sugar and chlorophyll, and expression levels of stress-related genes, including P5CS1, RD29A, CBF1, and COR15A, were higher than those of the wild type (WT) at the adult stage. While the overexpression of AhMYB44-16 significantly increased the drought sensitivity of plants at all stages, with differential ABA content, the expression levels of the ABA-related genes PP2CA and ABI1 were significantly upregulated and those of ABA1 and ABA2 were significantly downregulated compared with the WT. AhMYB44-05 showed similar downregulated expression as AhMYB44-16 under drought stress, but its overexpression in Arabidopsis did not significantly affect the drought resistance of transgenic plants. Based on the results, we propose that AhMYB44-11 plays a role as a positive factor in drought tolerance by increasing the transcription abundance of stress-related genes and the accumulation of osmolytes, while AhMYB44-16 negatively regulates drought tolerance through its involvement in ABA-dependent stress response pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Shen
- Correspondence: (Y.S.); (Z.C.)
| | | |
Collapse
|
20
|
Ginzburg DN, Bossi F, Rhee SY. Uncoupling differential water usage from drought resistance in a dwarf Arabidopsis mutant. PLANT PHYSIOLOGY 2022; 190:2115-2121. [PMID: 36053183 PMCID: PMC9706424 DOI: 10.1093/plphys/kiac411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Understanding the molecular and physiological mechanisms of how plants respond to drought is paramount to breeding more drought-resistant crops. Certain mutations or allelic variations result in plants with altered water-use requirements. To correctly identify genetic differences which confer a drought phenotype, plants with different genotypes must be subjected to equal levels of drought stress. Many reports of advantageous mutations conferring drought resistance do not control for soil water content (SWC) variations across genotypes and may therefore need to be re-examined. Here, we reassessed the drought phenotype of the Arabidopsis (Arabidopsis thaliana) dwarf mutant, chiquita1-1 (chiq1-1, also called constitutively stressed 1 (cost1)), by growing mutant seedlings together with the wild-type to ensure uniform soil water availability across genotypes. Our results demonstrate that the dwarf phenotype conferred by loss of CHIQ1 function results in constitutively lower water usage per plant, but not increased drought resistance. Our study provides an easily reproducible, low-cost method to measure and control for SWC and to compare drought-resistant genotypes more accurately.
Collapse
Affiliation(s)
- Daniel N Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| |
Collapse
|
21
|
Wang S, Wu H, Cao X, Fan W, Li C, Zhao H, Wu Q. Tartary buckwheat FtMYB30 transcription factor improves the salt/drought tolerance of transgenic Arabidopsis in an ABA-dependent manner. PHYSIOLOGIA PLANTARUM 2022; 174:e13781. [PMID: 36121384 DOI: 10.1111/ppl.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Drought and high salinity affect plant growth, development, yield, and quality. MYB transcription factors (TFs) in plants play an indispensable regulatory role in resisting adverse stress. In this study, screening and functional validation of the TF FtMYB30, which can respond extensively to abiotic stress and abscisic acid (ABA), was achieved in Tartary buckwheat. FtMYB30, one of the SG22 (sub-group 22) family of R2R3-MYB TFs, localized in the nucleus and had transcriptional activation activity. Under drought and salt stress, FtMYB30 overexpression reduced the oxidative damage in transgenic plants by increasing the activity of proline content and antioxidant enzymes and significantly upregulate the expression of RD29A, RD29B, and Cu/ZnSOD, thereby enhancing drought/salt tolerance in transgenic Arabidopsis. Additionally, overexpression of FtMYB30 can reduce the sensitivity of transgenic plants to ABA. Moreover, AtRCAR1/2/3 and AtMPK6 directly interact with the FtMYB30 TF, possibly through the crosstalk between MAPKs (mitogen-activated protein kinases) and the ABA signaling pathway. Taken together, these results suggest that FtMYB30, as a positive regulator, mediates plant tolerance to salt and drought through an ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Shuang Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xinxian Cao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Wenjing Fan
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
22
|
Zhang Y, Tan Q, Wang N, Meng X, He H, Wen B, Xiao W, Chen X, Li D, Fu X, Li L. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. FRONTIERS IN PLANT SCIENCE 2022; 13:971482. [PMID: 36035719 PMCID: PMC9413399 DOI: 10.3389/fpls.2022.971482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy, which enables damage from cold temperatures to be avoided during winter and early spring, is an important adaptive mechanism of deciduous fruit trees to cope with seasonal environmental changes and temperate climates. Understanding the regulatory mechanism of bud break in fruit trees is highly important for the artificial control of bud break and the prevention of spring frost damage. However, the molecular mechanism underlying the involvement of MYB TFs during the bud break of peach is still unclear. In this study, we isolated and identified the PpMYB52 (Prupe.5G240000.1) gene from peach; this gene is downregulated in the process of bud break, upregulated in response to ABA and downregulated in response to GA. Overexpression of PpMYB52 suppresses the germination of transgenic tomato seeds. In addition, Y2H, Bimolecular fluorescence complementation (BiFC) assays verified that PpMYB52 interacts with a RING-type E3 ubiquitin ligase, PpMIEL1, which is upregulated during bud break may positively regulate peach bud break by ubiquitination-mediated degradation of PpMYB52. Our findings are the first to characterize the molecular mechanisms underlying the involvement of MYB TFs in peach bud break, increasing awareness of dormancy-related molecules to avoid bud damage in perennial deciduous fruit trees.
Collapse
Affiliation(s)
- Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
23
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Li Y, Tian B, Wang Y, Wang J, Zhang H, Wang L, Sun G, Yu Y, Zhang H. The Transcription Factor MYB37 Positively Regulates Photosynthetic Inhibition and Oxidative Damage in Arabidopsis Leaves Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:943153. [PMID: 35903240 PMCID: PMC9315438 DOI: 10.3389/fpls.2022.943153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of electrons from Q A to Q B on the PSII receptor side of Arabidopsis under NaCl stress. Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl stress and decreased Y(NO). These results indicate that MYB37 overexpression increases PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress causes excess electrons and energy in the photosynthetic electron transport chain of Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins under NaCl stress, promote plant growth and improve salt tolerance.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Bei Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Genome-Wide Identification, Expression Patterns and Sugar Transport of the Physic Nut SWEET Gene Family and a Functional Analysis of JcSWEET16 in Arabidopsis. Int J Mol Sci 2022; 23:ijms23105391. [PMID: 35628209 PMCID: PMC9142063 DOI: 10.3390/ijms23105391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar transporters that play key roles in phloem loading, seed filling, pollen development and the stress response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.) and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes. Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for cloning and further functional analysis of these genes.
Collapse
|
26
|
Abubakar AS, Feng X, Gao G, Yu C, Chen J, Chen K, Wang X, Mou P, Shao D, Chen P, Zhu A. Genome wide characterization of R2R3 MYB transcription factor from Apocynum venetum revealed potential stress tolerance and flavonoid biosynthesis genes. Genomics 2022; 114:110275. [PMID: 35108591 DOI: 10.1016/j.ygeno.2022.110275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no studies is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYB) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYB under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8,AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 forexample, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analysis suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
27
|
Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Mol Genet Genomics 2022; 297:125-145. [PMID: 34978004 DOI: 10.1007/s00438-021-01839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.
Collapse
|
28
|
Liu X, Xia B, Purente N, Chen B, Zhou Y, He M. Transgenic Chrysanthemum indicum overexpressing cin-miR396a exhibits altered plant development and reduced salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:17-26. [PMID: 34619595 DOI: 10.1016/j.plaphy.2021.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 05/02/2023]
Abstract
The conserved microRNA396 (miR396) is involved in growth, development, and abiotic stress responses in a variety of plants by regulating target genes. Here, we obtained transgenic Chrysanthemum indicum (C. indicum) overexpressing the cin-miR396a gene. The transgenic plants (TGs) had longer internodes and fewer epidermal hairs in contrast with the wild-type (WT) control. cin-miR396a overexpression in C. indicum reduced salt tolerance and drought tolerance. After salt and drought stress compared with WT plants, the transgenic C. indicum exhibited a relative decrease in leaf water content, and the leaf free proline content, also exhibited a relative increase, in the leaf conductivity and leaf Malondialdehyde content, while the total chlorophyll content did not differ significantly from WT, and the Na+/K+ ratio in the roots of transgenic C. indicum increased after salt stress. We also identified two target genes of cin-miR396a, CiGRF1 and CiGRF5, whose expression was induced by salt and drought treatments and suppressed in transgenic C. indicum. Taken together, our results reveal a unique role for the regulatory module of miR396a-GRFs in C. indicum development and response to abiotic stresses. cin-miR396a plays a negative regulatory role in C. indicum in response to salt and drought stresses.
Collapse
Affiliation(s)
- Xiaowei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Nuananong Purente
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin, 132000, China
| | - Bin Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
29
|
Beathard C, Mooney S, Al-Saharin R, Goyer A, Hellmann H. Characterization of Arabidopsis thaliana R2R3 S23 MYB Transcription Factors as Novel Targets of the Ubiquitin Proteasome-Pathway and Regulators of Salt Stress and Abscisic Acid Response. FRONTIERS IN PLANT SCIENCE 2021; 12:629208. [PMID: 34489986 PMCID: PMC8417012 DOI: 10.3389/fpls.2021.629208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
Rapid response to environmental changes and abiotic stress to coordinate developmental programs is critical for plants. To accomplish this, plants use the ubiquitin proteasome pathway as a flexible and efficient mechanism to control protein stability and to direct cellular reactions. Here, we show that all three members of the R2R3 S23 MYB transcription factor subfamily, MYB1, MYB25, and MYB109, are degraded by the 26S proteasome, likely facilitated by a CUL3-based E3 ligase that uses MATH-BTB/POZ proteins as substrate adaptors. A detailed description of MYB1, MYB25, and MYB109 expression shows their nuclear localization and specific tissue specific expression patterns. It further demonstrates that elevated expression of MYB25 reduces sensitivities toward abscisic acid, osmotic and salt stress in Arabidopsis, while downregulation of all S23 members results in hypersensitivities. Transcriptional profiling in root and shoot of seedlings overexpressing MYB25 shows that the transcription factor widely affects cellular stress pathways related to biotic and abiotic stress control. Overall, the work extends our knowledge on proteins targeted by CUL3-based E3 ligases that use MATH-BTB/POZ proteins as substrate adaptors and provides first information on all members of the MYB S23 subfamily.
Collapse
Affiliation(s)
- Chase Beathard
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Raed Al-Saharin
- School of Biological Sciences, Washington State University, Pullman, WA, United States
- Department of Applied Biology, Tafila Technical University, At-Tafilah, Jordan
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
30
|
Zhang PY, Qiu X, Fu JX, Wang GR, Wei L, Wang TC. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1295-1309. [PMID: 34177148 PMCID: PMC8212317 DOI: 10.1007/s12298-021-01013-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
UNLABELLED MYB transcription factors play pivotal roles in hormone conduction signaling and abiotic stress response. In this study, 54 differentially expressed ZmMYB genes were identified and comprehensive analyses were conducted including gene's structure, chromosomal localization, phylogenetic tree, motif prediction, cis-elements and expression patterns. The results showed that 54 genes were unevenly distributed on 10 chromosomes and classified into eleven main subgroups by phylogenetic analysis, supported by motif and exon/intron analyses. The mainly stress-related cis-elements were ABRE, ARE, MBS and DRE-core. In addition, 8 core ZmMYB genes were identified by co-expression network. qRT-PCR results showed that the 8 ZmMYB genes exhibited different expression levels under different abiotic stresses, indicating that they were responsive to various abiotic stress. These results will provide insight for further functional investigation of ZmMYB genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01013-2.
Collapse
Affiliation(s)
- Peng-Yu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiao Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| | - Jia-Xu Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| | - Guo-Rui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| | - Li Wei
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| | - Tong-Chao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
31
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
32
|
Huang J, Chen Q, Rong Y, Tang B, Zhu L, Ren R, Shi T, Chen Q. Transcriptome analysis revealed gene regulatory network involved in PEG-induced drought stress in Tartary buckwheat ( Fagopyrum Tararicum). PeerJ 2021; 9:e11136. [PMID: 33850661 PMCID: PMC8019315 DOI: 10.7717/peerj.11136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Tartary buckwheat is a nutritious pseudo-cereal crop that is resistant to abiotic stresses, such as drought. However, the buckwheat’s mechanisms for responding to drought stress remains unknown. We investigated the changes in physiology and gene expression under drought stress, which was simulated by treatment with polyethylene glycol (PEG). Five physiological indexes, namely MDA content, H2O2 content, CAT activity, SOD activity, and POD activity, were measured over time after 20% PEG treatment. All indexes showed dramatic changes in response to drought stress. A total of 1,190 differentially expressed genes (DEGs) were identified using RNA-seq and the most predominant were related to a number of stress-response genes and late embryogenesis abundant (LEA) proteins. DEGs were gathered into six clusters and were found to be involved in the ABA biosynthesis and signal pathway based on hierarchical clustering and GO and KEGG pathway enrichment. Transcription factors, such as NAC and bZIP, also took part in the response to drought stress. We determined an ABA-dependent and ABA-independent pathway in the regulation of drought stress in Tartary buckwheat. To the best of our knowledge, this is the first transcriptome analysis of drought stress in Tartary buckwheat, and our results provide a comprehensive gene regulatory network of this crop in response to drought stress.
Collapse
Affiliation(s)
- Juan Huang
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Qijiao Chen
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Yuping Rong
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Bin Tang
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Liwei Zhu
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Rongrong Ren
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Taoxiong Shi
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| | - Qingfu Chen
- Guizhou Normal University, Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guiyang, Guizhou, P.R. China
| |
Collapse
|
33
|
Liu C, Ye X, Zou L, Xiang D, Wu Q, Wan Y, Wu X, Zhao G. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development. Int J Biol Macromol 2021; 171:435-447. [PMID: 33434548 DOI: 10.1016/j.ijbiomac.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
34
|
Guo W, Li G, Wang N, Yang C, Zhao Y, Peng H, Liu D, Chen S. A Na +/H + antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). PLANT MOLECULAR BIOLOGY 2020; 102:553-567. [PMID: 31989373 DOI: 10.1007/s11103-020-00969-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 05/02/2023]
Abstract
Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression of stress-related genes, and improved regulation of metabolic pathways, such as the SOS pathway. Drought and salinity are major abiotic stressors which negatively impact cotton yield under field conditions. Here, a plasma membrane Na+/H+ antiporter gene, K2-NhaD, was introduced into upland cotton R15 using an Agrobacterium tumefaciens-mediated transformation system. Homozygous transgenic lines K9, K17, and K22 were identified by PCR and glyphosate-resistance. TAIL-PCR confirmed that T-DNA carrying the K2-NhaD gene in transgenic lines K9, K17 and K22 was inserted into chromosome 3, 19 and 12 of the cotton genome, respectively. Overexpression of K2-NhaD in transgenic cotton plants grown in greenhouse conditions and subjected to drought and salinity stress resulted in significantly higher relative water content, chlorophyll, soluble sugar, proline levels, and SOD, CAT, and POD activity, relative to non-transgenic plants. The expression of stress-related genes was significantly upregulated, and this resulted in improved regulation of metabolic pathways, such as the salt overly sensitive pathway. K2-NhaD transgenic plants growing under field conditions displayed strong salinity and drought tolerance, especially at high levels of soil salinity and drought. Seed cotton yields in transgenic line were significantly higher than in wild-type plants. In conclusion, the data indicate that K2-NhaD transgenic lines have great potential for the production of stress-tolerant cotton under field conditions.
Collapse
Affiliation(s)
- Wenfang Guo
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
35
|
Lv B, Wu Q, Wang A, Li Q, Dong Q, Yang J, Zhao H, Wang X, Chen H, Li C. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:43-53. [PMID: 31841961 DOI: 10.1016/j.plaphy.2019.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 05/06/2023]
Abstract
The WRKY transcription factor family includes plant-specific transcription factors that are widely involved in plant biotic and abiotic stress responses, growth and development. Tartary buckwheat is a type of small grain with strong resistance to adverse growing conditions. No systematic exploration of the WRKY family in Tartary buckwheat has yet been reported. In this paper, we report the FtWRKY46 gene from Tartary buckwheat and study its role in salt tolerance. FtWRKY46 has transcriptional activation activity in yeast, and FtWRKY46 fused to yellow fluorescent protein localizes to the nucleus. Further studies have found that its transcriptional activation region is located at the N-terminus. A yeast one-hybrid assay indicated that FtWRKY46 could bind to a W-box and activate reporter gene expression. Similarly, transient cotransfection showed that FtWRKY46 could specifically bind to W-box regions and activate reporter gene expression in plants. Furthermore, ectopic expression of FtWRKY46 could enhance Arabidopsis tolerance to salt stress. More specifically, the seed germination rate, root length, chlorophyll content and proline content were significantly higher in transgenic plants ectopically expressing FtWRKY46 than in WT plants after salt stress (P < 0.05), while MDA levels were significantly lower than in WT plants (P < 0.05). Additionally, salt treatment increased the expression of stress-related genes. To summarize, our results suggest that ectopic expression of FtWRKY46 enhance the stress tolerance of transgenic plants by modulating ROS clearance and stress-related gene expression.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Anhu Wang
- Xichang College, 615013, Xichang, Sichuan, China
| | - Qi Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Jingjing Yang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
36
|
Zhou Q, Jia C, Ma W, Cui Y, Jin X, Luo D, Min X, Liu Z. MYB transcription factors in alfalfa ( Medicago sativa): genome-wide identification and expression analysis under abiotic stresses. PeerJ 2019; 7:e7714. [PMID: 31576246 PMCID: PMC6753925 DOI: 10.7717/peerj.7714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Alfalfa is the most widely cultivated forage legume and one of the most economically valuable crops in the world. Its survival and production are often hampered by environmental changes. However, there are few studies on stress-resistance genes in alfalfa because of its incomplete genomic information and rare expression profile data. The MYB proteins are characterized by a highly conserved DNA-binding domain, which is large, functionally diverse, and represented in all eukaryotes. The role of MYB proteins in plant development is essential; they function in diverse biological processes, including stress and defense responses, and seed and floral development. Studies on the MYB gene family have been reported in several species, but they have not been comprehensively analyzed in alfalfa. Methods To identify more comprehensive MYB transcription factor family genes, the sequences of 168 Arabidopsis thaliana, 430 Glycine max, 185 Medicago truncatula, and 130 Oryza sativa MYB proteins were downloaded from the Plant Transcription Factor Database. These sequences were used as queries in a BLAST search against the M. sativa proteome sequences provided by the Noble Research Institute. Results In the present study, a total of 265 MsMYB proteins were obtained, including 50 R1-MYB, 186 R2R3-MYB, 26 R1R2R3-MYB, and three atypical-MYB proteins. These predicted MsMYB proteins were divided into 12 subgroups by phylogenetic analysis, and gene ontology (GO) analysis indicated that most of the MsMYB genes are involved in various biological processes. The expression profiles and quantitative real-time PCR analysis indicated that some MsMYB genes might play a crucial role in the response to abiotic stresses. Additionally, a total of 170 and 914 predicted protein–protein and protein-DNA interactions were obtained, respectively. The interactions between MsMYB043 and MSAD320162, MsMYB253 and MSAD320162, and MsMYB253 and MSAD308489 were confirmed by a yeast two-hybrid system. This work provides information on the MYB family in alfalfa that was previously lacking and might promote the cultivation of stress-resistant alfalfa.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenxue Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yue Cui
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Li J, Chen C, Wei J, Pan Y, Su C, Zhang X. SpPKE1, a Multiple Stress-Responsive Gene Confers Salt Tolerance in Tomato and Tobacco. Int J Mol Sci 2019; 20:E2478. [PMID: 31137458 PMCID: PMC6566969 DOI: 10.3390/ijms20102478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Understanding the mechanism of abiotic-tolerance and producing germplasm of abiotic tolerance are important in plant research. Wild species often show more tolerance of environmental stress factors than their cultivated counterparts. Genes from wild species show potential abilities to improve abiotic resistance in cultivated species. Here, a tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 was isolated from abiotic-resistant species (Solanum pennellii LA0716) for over-expression in tomato and tobacco for salt tolerance. The protein encoded by SpPKE1 was predominantly localized in the cytoplasm in tobacco. SpPKE1 and SlPKE1 (from cultivated species S. lycopersicum cv. M82) shared 89.7% similarity in amino acid sequences and their transcripts abundance in flowers and fruits was reduced by the imposition of drought or oxidative stress and the exogenous supply of abscisic acid. The DNA of the PKE1 promoter was highly methylated in fruit and leaf, and the methylation of the coding sequence in leaf was significantly higher than that in fruit at different development stages. The over-expression of SpPKE1 under the control of a CaMV (Cauliflower Mosaic Virus) 35S promoter in transgenic tomato and tobacco plants enhanced their tolerance to salt stress. PKE1 was downregulated by abiotic stresses but enhanced the plant's salt stress tolerance. Therefore, this gene may be involved in post-transcriptional regulation and may be an important candidate for molecular breeding of salt-tolerant plants.
Collapse
Affiliation(s)
- Jinhua Li
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Chunrui Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Juanjuan Wei
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yu Pan
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Chenggang Su
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Xingguo Zhang
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| |
Collapse
|