1
|
Nie W, Gong B, Wen D, Qiao P, Guo H, Shi Q. Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO 3 by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response. PLANTS (BASEL, SWITZERLAND) 2024; 14:80. [PMID: 39795340 PMCID: PMC11723003 DOI: 10.3390/plants14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Under NaHCO3 stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na+ accumulation in cucumber plants, thereby decreasing the Na+/K+, Na+/Mg2+, and Na+/Ca2+ ratios. This mitigation was accompanied by elevated concentrations of K+, Ca2+, and Mg2+, as well as enhanced expression of the NHX and SOS1 genes. In addition, the activities of plasma membrane H+-ATPase, vesicular membrane H+-ATPase, and vesicular membrane H+-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants. NaHCO3 stress disrupted nitrogen metabolism, as evidenced by reductions in the activities of NR, GS, GOGAT, GOT, and GPT, along with altered GDH activity. These disruptions led to an accumulation of NH4+ and substantial decreases in NO3--N and total nitrogen content. Exogenous EBR alleviated these effects by enhancing the activities of NR, GS, GOGAT, GOT, and GPT, countering the prolonged suppression of GDH activity, and restoring NO3--N and total nitrogen levels. Consequently, EBR application reduced NH4+ toxicity induced by alkali stress. Additionally, NaHCO3 stress increased ABA accumulation while decreasing IAA and GA3 content in cucumber seedlings. In contrast, exogenous EBR application elevated IAA and GA3 levels and increased the IAA/ABA and GA3/ABA ratios, thus maintaining hormonal equilibrium under alkali stress. Collectively, these findings highlight that exogenous EBR enhances the alkaline tolerance of cucumber plants by regulating nitrogen metabolism, ion homeostasis, and phytohormonal responses.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Biao Gong
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Dan Wen
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Peng Qiao
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Hongen Guo
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
- Shandong Academy of Agricultural Machinery Science, Jinan 250100, China
| | - Qinghua Shi
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
2
|
McNellie JP, May WE, Rieseberg LH, Hulke BS. Association studies of salinity tolerance in sunflower provide robust breeding and selection strategies under climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:184. [PMID: 39008128 DOI: 10.1007/s00122-024-04672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/16/2024]
Abstract
Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.
Collapse
Affiliation(s)
- James P McNellie
- Sunflower and Plant Biology Research Unit, USDA-ARS Edward T Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102, USA
| | - William E May
- Indian Head Research Farm, Agriculture and Agri-Food Canada, 1 Government Rd., Indian Head, SK, S0G 2K0, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Brent S Hulke
- Sunflower and Plant Biology Research Unit, USDA-ARS Edward T Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102, USA.
| |
Collapse
|
3
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
4
|
Gaude AA, Siqueira RH, Botelho SB, Jalmi SK. Epigenetic arsenal for stress mitigation in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130620. [PMID: 38636616 DOI: 10.1016/j.bbagen.2024.130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Plant's ability to perceive, respond to, and ultimately adapt to various stressors is a testament to their remarkable resilience. In response to stresses, plants activate a complex array of molecular and physiological mechanisms. These include the rapid activation of stress-responsive genes, the manufacturing of protective compounds, modulation of cellular processes and alterations in their growth and development patterns to enhance their chances of survival. Epigenetic mechanisms play a pivotal role in shaping the responses of plants to environmental stressors. This review explores the intricate interplay between epigenetic regulation and plant stress mitigation. We delve into the dynamic landscape of epigenetic modifications, highlighting their influence on gene expression and ultimately stress tolerance. This review assembles current research, shedding light on the promising strategies within plants' epigenetic arsenal to thrive amidst adverse conditions.
Collapse
Affiliation(s)
- Aishwarya Ashok Gaude
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Roxiette Heromina Siqueira
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Savia Bernadette Botelho
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | - Siddhi Kashinath Jalmi
- Discipline of Botany, School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| |
Collapse
|
5
|
Chen X, Zhao C, Yun P, Yu M, Zhou M, Chen ZH, Shabala S. Climate-resilient crops: Lessons from xerophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1815-1835. [PMID: 37967090 DOI: 10.1111/tpj.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.
Collapse
Affiliation(s)
- Xi Chen
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Ping Yun
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
6
|
Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. PHYSIOLOGIA PLANTARUM 2023; 175:e13881. [PMID: 36840678 DOI: 10.1111/ppl.13881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.
Collapse
Affiliation(s)
- Noble Louis
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| |
Collapse
|
7
|
Fedorin DN, Eprintsev AT, Florez Caro OJ, Igamberdiev AU. Effect of Salt Stress on the Activity, Expression, and Promoter Methylation of Succinate Dehydrogenase and Succinic Semialdehyde Dehydrogenase in Maize ( Zea mays L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 12:68. [PMID: 36616197 PMCID: PMC9823291 DOI: 10.3390/plants12010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The effect of salt stress on the expression of genes, the methylation of their promoters, and the enzymatic activity of succinate dehydrogenase (SDH) and succinic semialdehyde dehydrogenase (SSADH) was investigated in maize (Zea mays L.). The incubation of maize seedlings in a 150 mM NaCl solution for 24 h led to a several-fold increase in the activity of SSADH that peaked at 6 h of NaCl treatment, which was preceded by an increase in the Ssadh1 gene expression and a decrease in its promoter methylation observed at 3 h of salt stress. The increase in SDH activity and succinate oxidation by mitochondria was slower, developing by 24 h of NaCl treatment, which corresponded to the increase in expression of the genes Sdh1-2 and Sdh2-3 encoding SDH catalytic subunits and of the gene Sdh3-1 encoding the anchoring SDH subunit. The increase in the Sdh2-3 expression was accompanied by the decrease in promoter methylation. It is concluded that salt stress results in the rapid increase in succinate production via SSADH operating in the GABA shunt, which leads to the activation of SDH, the process partially regulated via epigenetic mechanisms. The role of succinate metabolism under the conditions of salt stress is discussed.
Collapse
Affiliation(s)
- Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Orlando J. Florez Caro
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
8
|
Abiotic Stress Tolerance in Plants: Brassinosteroids Navigate Competently. Int J Mol Sci 2022; 23:ijms232314577. [PMID: 36498906 PMCID: PMC9737064 DOI: 10.3390/ijms232314577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Brassinosteroid hormones (BRs) multitask to smoothly regulate a broad spectrum of vital physiological processes in plants, such as cell division, cell expansion, differentiation, seed germination, xylem differentiation, reproductive development and light responses (photomorphogenesis and skotomorphogenesis). Their importance is inferred when visible abnormalities arise in plant phenotypes due to suboptimal or supraoptimal hormone levels. This group of steroidal hormones are major growth regulators, having pleiotropic effects and conferring abiotic stress resistance to plants. Numerous abiotic stresses are the cause of significant loss in agricultural yield globally. However, plants are well equipped with efficient stress combat machinery. Scavenging reactive oxygen species (ROS) is a unique mechanism to combat the deleterious effects of abiotic stresses. In light of numerous reports in the past two decades, the complex BR signaling under different stress conditions (drought, salinity, extreme temperatures and heavy metals/metalloids) that drastically hinders the normal metabolism of plants is gradually being untangled and revealed. Thus, crop improvement has substantial potential by tailoring either the brassinosteroid signaling, biosynthesis pathway or perception. This review aims to explore and dissect the actual mission of BRs in signaling cascades and summarize their positive role with respect to abiotic stress tolerance.
Collapse
|
9
|
Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize. Int J Mol Sci 2021; 22:ijms22116012. [PMID: 34199464 PMCID: PMC8199617 DOI: 10.3390/ijms22116012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
The influence of salt stress on gene expression, promoter methylation, and enzymatic activity of the mitochondrial and cytosolic forms of aconitase and fumarase has been investigated in maize (Zea mays L.) seedlings. The incubation of maize seedlings in 150-mM NaCl solution resulted in a several-fold increase of the mitochondrial activities of aconitase and fumarase that peaked at 6 h of NaCl treatment, while the cytosolic activity of aconitase and fumarase decreased. This corresponded to the decrease in promoter methylation of the genes Aco1 and Fum1 encoding the mitochondrial forms of these enzymes and the increase in promoter methylation of the genes Aco2 and Fum2 encoding the cytosolic forms. The pattern of expression of the genes encoding the mitochondrial forms of aconitase and fumarase corresponded to the profile of the increase of the stress marker gene ZmCOI6.1. It is concluded that the mitochondrial and cytosolic forms of aconitase and fumarase are regulated via the epigenetic mechanism of promoter methylation of their genes in the opposite ways in response to salt stress. The role of the mitochondrial isoforms of aconitase and fumarase in the elevation of respiration under salt stress is discussed.
Collapse
|
10
|
Singh P, Arif Y, Siddiqui H, Sami F, Zaidi R, Azam A, Alam P, Hayat S. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112020. [PMID: 33592373 DOI: 10.1016/j.ecoenv.2021.112020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 05/25/2023]
Abstract
The contribution of nanoparticles (NPs) in physiology of the plants became the new area of interest for the physiologists; as it is very much cost effective compared to the phytohormones. Our present investigation was also based on this interest in which the same doses (50 mg/L) of four different NPs were sprayed on stressed and non-stressed foliage. The experiment was conducted to assess the impact of four NPs viz., zinc oxide (ZnO), silicon dioxide (SiO2), titanium dioxide (TiO2), and ferric oxide (Fe2O3) on the morphology and physiology of linseed in the presence of sodium chloride (NaCl). Plants responded positively to all the treated NPs and improved the growth, carbon and nutrient assimilation, while salt stress increased the content of proline, hydrogen peroxide and superoxide anion. Application of NPs over the stressed plants further increased the antioxidant enzymatic system and other physiochemical reactions. Results indicate that application of NPs increased the growth and physiology of the plant and also increased the salt tolerance capacity of the plant.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Husna Siddiqui
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Fareen Sami
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Rumman Zaidi
- Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Ameer Azam
- Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
11
|
Qin C, Ahanger MA, Lin B, Huang Z, Zhou J, Ahmed N, Ai S, Mustafa NSA, Ashraf M, Zhang L. Comparative transcriptome analysis reveals the regulatory effects of acetylcholine on salt tolerance of Nicotiana benthamiana. PHYTOCHEMISTRY 2021; 181:112582. [PMID: 33246307 DOI: 10.1016/j.phytochem.2020.112582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Salinity is a major cause of crop losses worldwide. Acetylcholine (ACh) can ameliorate the adverse effects of abiotic stresses on plant growth, including salinity stress; however, the underlying molecular mechanisms of this process are unclear. Here, seedlings of Nicotiana benthamiana grown under normal conditions or exposed to 150 mmol L-1 NaCl salinity stress were then treated with a root application of 10 μM ACh. Exogenous ACh application resulted in the downregulation of the activity of the antioxidant enzymes, ascorbate peroxidase, and catalase. ACh-treated plants had lower levels of reactive oxygen species, including the superoxide anion radical and hydrogen peroxide. Transcriptome analysis indicated that ACh treatment under salt stress promoted the differential expression of 658 genes in leaves of N. benthamiana (527 were upregulated and 131 were downregulated). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that exogenous ACh application was associated with a substantial increase in the transcripts of genes related to cell wall peroxidases, xyloglucan endotransglucosylases or hydrolases, and expansins, indicating that ACh activates cell wall biosynthesis in salt-stressed plants. ACh also enhanced the expression of genes associated with the auxin, gibberellin, brassinosteroid, and salicylic acid signalling pathways, indicating that ACh induces the activation of these pathways under salt stress. Collectively, these findings indicate that ACh-induced salt tolerance in N. benthamiana seedlings is mediated by the inhibition of antioxidant enzymes, activation of cell wall biosynthesis, and hormone signalling pathways. Stress-induced genes involved in osmotic regulation and oxidation resistance were induced by ACh under salt stress. The genes whose transcript levels were elevated by ACh treatment in salt-stressed N. benthamiana could be used as molecular markers of the physiological status of plants under salt stress.
Collapse
Affiliation(s)
- Cheng Qin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Mohammad Abass Ahanger
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Bo Lin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Ziguang Huang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Jie Zhou
- Cangzhou Central Hospital, 061000 Cangzhou, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Suilong Ai
- Shaanxi Tobacco Scientific Institution, 71000, Xi'an, China
| | - Nabil S A Mustafa
- Department of Pomology, National Research Centre, 12622 Cairo, Egypt
| | - Muhammad Ashraf
- University of Agriculture, Faisalabad, 38000 Faisalabad, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China.
| |
Collapse
|
12
|
Amraee L, Rahmani F, Abdollahi Mandoulakani B. Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:565-575. [PMID: 32362312 DOI: 10.1071/fp19191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we investigated the ameliorative effects of 24-epibrassinosteroid (24-epiBL) on antioxidant response and ion homeostasis in two NaCl-stressed Linum usitatissimum L. (flax) cultivars differing in salt tolerance. The content and profile of amino acids were also studied in the tolerant cultivar. Salt stress differently altered the activity of antioxidant enzymes, phenol and flavonoid contents, total antioxidant capacity and ion homeostasis in both cultivars, whereas H2O2 and malondialdehyde (MDA) contents were induced only in the TN-97-95 cultivar. Free amino acid concentrations showed variable patterns under salinity conditions compared with the control plants. 24-epiBL decreased the soluble protein content in NaCl-treated plants and also decreased stimulatory effects of salinity on the production and accumulation of phenol and flavonoid contents and antioxidant capacity with altered ion (Na+, K+, and Cl-) contents. The 24-epiBL reduced the chlorophylls (a, b) and carotenoid contents in salt-treated TN-97-95 cultivar while enhanced the activity of antioxidant enzymes and declined the H2O2 content and lipid peroxidation in both NaCl-stressed cultivars. The profile and content of amino acids were significantly changed by 24-epiBL application under salinity treatment. In summary, our findings demonstrate that 24-epiBL seed priming mitigates the deleterious effects of salt stress in flax plants.
Collapse
Affiliation(s)
- Leila Amraee
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran; and Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran; and Institute of Biotechnology, Urmia University, Urmia, Iran; and Corresponding author. Email address:
| | - Babak Abdollahi Mandoulakani
- Institute of Biotechnology, Urmia University, Urmia, Iran; and Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|