1
|
Tian R, Nájera-González HR, Nigam D, Khan A, Chen J, Xin Z, Herrera-Estrella L, Jiao Y. Leucine-rich repeat receptor kinase BM41 regulates cuticular wax deposition in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6331-6345. [PMID: 39041593 DOI: 10.1093/jxb/erae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cuticular wax (CW) is the first defensive barrier of plants that forms a waterproof barrier, protects the plant from desiccation, and defends against insects, pathogens, and UV radiation. Sorghum, an important grass crop with high heat and drought tolerance, exhibits a much higher wax load than other grasses and the model plant Arabidopsis. In this study, we explored the regulation of sorghum CW biosynthesis using a bloomless mutant. The CW on leaf sheaths of the bloomless 41 (bm41) mutant showed significantly reduced very long-chain fatty acids (VLCFAs), triterpenoids, alcohols, and other wax components, with an overall 86% decrease in total wax content compared with the wild type. Notably, the 28-carbon and 30-carbon VLCFAs were decreased in the mutants. Using bulk segregant analysis, we identified the causal gene of the bloomless phenotype as a leucine-rich repeat transmembrane protein kinase. Transcriptome analysis of the wild-type and bm41 mutant leaf sheaths revealed BM41 as a positive regulator of lipid biosynthesis and steroid metabolism. BM41 may regulate CW biosynthesis by regulating the expression of the gene encoding 3-ketoacyl-CoA synthase 6. Identification of BM41 as a new regulator of CW biosynthesis provides fundamental knowledge for improving grass crops' heat and drought tolerance by increasing CW.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79415, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79415, USA
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
4
|
Man YY, Lv YH, Lv HM, Jiang H, Wang T, Zhang YL, Li YY. MdDEWAX decreases plant drought resistance by regulating wax biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108288. [PMID: 38160533 DOI: 10.1016/j.plaphy.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Apple epidermal wax protects plants from environmental stresses, determines fruit gloss and improves postharvest storage quality. However, the molecular mechanisms underlying the biosynthesis and regulation of apple epidermal waxes are not fully understood. In this study, we isolated a MdDEWAX gene from apple, which localized in the nucleus, expressed mainly in apple fruit, and induced by drought. We transformed the MdDEWAX gene into Arabidopsis, and found that heterologous expression of MdDEWAX reduced the accumulation of cuticular waxes in leaves and stems, increased epidermal permeability, the rate of water loss, and the rate of chlorophyll extraction of leaves and stems, altered the sensitivity to ABA, and reduced drought tolerance. Meanwhile, overexpression or silencing of the gene in the epidermis of apple fruits decreased or increased wax content, respectively. This study provides candidate genes for breeding apple cultivars and rootstocks with better drought tolerance.
Collapse
Affiliation(s)
- Yao-Yang Man
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yan-Hui Lv
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui-Min Lv
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Han Jiang
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tao Wang
- Tai'an Institute for Food and Drug Control, Tai-An, 271000, Shandong, China
| | - Ya-Li Zhang
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yuan-Yuan Li
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
5
|
Jiang H, Qi CH, Gao HN, Feng ZQ, Wu YT, Xu XX, Cui JY, Wang XF, Lv YH, Gao WS, Jiang YM, You CX, Li YY. MdBT2 regulates nitrogen-mediated cuticular wax biosynthesis via a MdMYB106-MdCER2L1 signalling pathway in apple. NATURE PLANTS 2024; 10:131-144. [PMID: 38172573 DOI: 10.1038/s41477-023-01587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Cuticular waxes play important roles in plant development and the interaction between plants and their environment. Researches on wax biosynthetic pathways have been reported in several plant species. Also, wax formation is closely related to environmental condition. However, the regulatory mechanism between wax and environmental factors, especially essential mineral elements, is less studied. Here we found that nitrogen (N) played a negative role in the regulation of wax synthesis in apple. We therefore analysed wax content, composition and crystals in BTB-TAZ domain protein 2 (MdBT2) overexpressing and antisense transgenic apple seedlings and found that MdBT2 could downregulate wax biosynthesis. Furthermore, R2R3-MYB transcription factor 16-like protein (MdMYB106) interacted with MdBT2, and MdBT2 mediated its ubiquitination and degradation through the 26S proteasome pathway. Finally, HXXXD-type acyl-transferase ECERIFERUM 2-like1 (MdCER2L1) was confirmed as a downstream target gene of MdMYB106. Our findings reveal an N-mediated apple wax biosynthesis pathway and lay a foundation for further study of the environmental factors associated with wax regulatory networks in apple.
Collapse
Affiliation(s)
- Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chen-Hui Qi
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Ting Wu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin-Xiang Xu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jian-Ying Cui
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yan-Hui Lv
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wen-Sheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Xiang You
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
6
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
7
|
Yuan M, Shu G, Zhou J, He P, Xiang L, Yang C, Chen M, Liao Z, Zhang F. AabHLH113 integrates jasmonic acid and abscisic acid signaling to positively regulate artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2023; 237:885-899. [PMID: 36271612 DOI: 10.1111/nph.18567] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Artemisinin, a sesquiterpene lactone isolated from Artemisia annua, is in huge market demand due to its efficient antimalarial action, especially after the COVID-19 pandemic. Many researchers have elucidated that phytohormones jasmonic acid (JA) and abscisic acid (ABA) positively regulate artemisinin biosynthesis via types of transcription factors (TFs). However, the crosstalk between JA and ABA in regulating artemisinin biosynthesis remains unclear. Here, we identified a novel ABA- and JA-induced bHLH TF, AabHLH113, which positively regulated artemisinin biosynthesis by directly binding to the promoters of artemisinin biosynthetic genes, DBR2 and ALDH1. The contents of artemisinin and dihydroartemisinic acid increased by 1.71- to 2.06-fold and 1.47- to 2.23-fold, respectively, in AabHLH1113 overexpressed A. annua, whereas they decreased by 14-36% and 26-53%, respectively, in RNAi-AabHLH113 plants. Furthermore, we demonstrated that AabZIP1 and AabHLH112, which, respectively, participate in ABA and JA signaling pathway to regulate artemisinin biosynthesis, directly bind to and activate the promoter of AabHLH113. Collectively, we revealed a complex network in which AabHLH113 plays a key interrelational role to integrate ABA- and JA-mediated regulation of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaheng Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ming Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Li D, Cheng Y, Shang Z, Guan J. Changing surface wax compositions and related gene expression in three cultivars of Chinese pear fruits during cold storage. PeerJ 2022; 10:e14328. [PMID: 36340202 PMCID: PMC9635359 DOI: 10.7717/peerj.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The surface wax of fruit has a significant effect on abiotic stress and fruit quality. In this study, the composition of the waxes found on fruit surfaces and the related gene expression of three different pear cultivars (Xuehua, Yali, and Yuluxiang) were investigated during cold storage. The results showed that 35 wax compositions were found on the surfaces of the three pear cultivars, mainly including C29 alkane, three fatty acids, two esters, three aldehydes, three fatty alcohols, and three triterpenoids. The largest amount of C29 alkane, three fatty acids and two esters were found in Yuluxiang (YLX) on day 90, while aldehydes with carbons of C30 and C32 were the highest in Yali (YL). Xuehua (XH) showed the largest amount of C22 fatty alcohol on day 180 compared to YLX and YL. Larger amounts of triterpenoids were found in XH and YL when compared to YLX. The expression levels of fifteen wax related genes (LACS1, KCS2, KCS6, FDH, KCS20, GL8, CER10, CER60, LTPG1, LTP4, ABCG12, CER1L, CAC3, CAC3L, and DGAT1L) reached their peak at day 45 in YLX, compared to XH and YL, their expression levels in YLX were higher to different degrees. These results suggest that the different expression patterns of wax-related genes may be closely related to the difference in wax compositions of the surface wax of three pear cultivars.
Collapse
Affiliation(s)
- Dan Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China,College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China,School of Life Science and Engineering, Handan University, Handan, Hebei, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Li JJ, Zhang CL, Zhang YL, Gao HN, Wang HB, Jiang H, Li YY. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:115-125. [PMID: 36084527 DOI: 10.1016/j.plaphy.2022.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epidermal waxes are part of the outermost hydrophobic structures of apples and play a significant role in enhancing apple resistance and improving fruit quality. The biosynthetic precursors of epidermal waxes are very long-chain fatty acids (VLCFAs), which are made into different wax components through various wax synthesis pathways. In Arabidopsis thaliana, the AtLACS1 protein can activate the alkane synthesis pathway to produce very long-chain acyl CoAs (VLC-acyl-CoAs), which provide substrates for wax synthesis, from VLCFAs. The apple protein MdLACS1, encoded by the MdLACS1 gene, belongs to the AMP-binding superfamily and has long-chain acyl coenzyme A synthase activity, but its function in apple remains unclear. Here, we identified MdLACS1 in apple (Malus × domestica) and analyzed its function. Our results suggest that MdLACS1 promotes wax synthesis and improves biotic and abiotic stress tolerance, which were directly or indirectly dependent on wax. Our study further refines the molecular mechanism of wax biosynthesis in apples and elucidates the physiological function of wax in resistance to external stresses. These findings provide candidate genes for the synergistic enhancement of apple fruit quality and stress tolerance.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - He-Bing Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
10
|
Zhang C, Yang J, Meng W, Zeng L, Sun L. Genome-wide analysis of the WSD family in sunflower and functional identification of HaWSD9 involvement in wax ester biosynthesis and osmotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:975853. [PMID: 36212375 PMCID: PMC9539440 DOI: 10.3389/fpls.2022.975853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The wax esters are important cuticular wax composition that cover the outer surface of plant organs and play a critical role in protection and energy metabolism. Wax ester synthesis in plant is catalyzed by a bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase (WSD). Sunflower (Helianthus annuus L.) is an important oil crop in the world; however, little is known about WSD in sunflower. In this study, we identified and performed a functional analysis of twelve HaWSD genes from sunflower genome. Tissue-specific expression revealed that 12 HaWSD genes were differentially expressed in various organs and tissues of sunflower, except seeds. HaWSD genes were highly induced by salinity, drought, cold, and abscisic acid (ABA) in sunflower. To ascertain their function, HaWSD9, with highly expressed levels in stems and leaves, was cloned and expressed in a yeast mutant defective in triacylglycerol (TAG) biosynthesis. HaWSD9 complemented the phenotype by producing wax ester but not TAG in vivo, indicating that it functions as a wax ester synthase. Subcellular localization analysis indicated that HaWSD9 was located in the endoplasmic reticulum (ER). Heterologous introduction of HaWSD9 into Arabidopsis wsd1 mutant exhibited increased epicuticular wax crystals and cuticular wax contents on the stems. As compared with the wsd1 mutant, HaWSD9 overexpressing transgenic Arabidopsis showed less cuticle permeability, chlorophyll leaching and water loss rate. Further analysis showed that the HaWSD9 transgenics enhanced tolerance to ABA, mannitol, drought and salinity, and maintained higher leaf relative water content (RWC) than the wsd1 mutant under drought stress, suggesting that HaWSD9 play an important physiological role in stress response as well as wax synthase. These results contribute to understanding the function of HaWSD genes in wax ester synthesis and stress tolerance in sunflower.
Collapse
|
11
|
Zhang H, Zhang S, Li M, Wang J, Wu T. The PoLACS4 Gene May Participate in Drought Stress Resistance in Tree Peony (Paeonia ostii ‘Feng Dan Bai’). Genes (Basel) 2022; 13:genes13091591. [PMID: 36140759 PMCID: PMC9498442 DOI: 10.3390/genes13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The tree peony (Paeonia ostii ‘Feng Dan Bai’) has excellent drought tolerance. Although it has already been reported that the cuticle is an essential barrier against drought stress, the critical genes for cuticle resistance to drought remain unclear. However, the long-chain acyl-CoA synthetases (LACS) family of genes may be significant for the synthesis of cuticle wax. To test whether the LACS gene family is involved in cuticle response to drought stress in tree peony, we measure the thickness of cuticle stems and leaves alongside LACS enzyme activity. It is found that the cuticle thickens and the LACS enzyme increases with the maturation of stems and leaves, and there is a positive correlation between them. The LACS enzyme increases within 12 h under drought stress induced by polyethylene glycol (PEG). The transcriptome sequencing result (BioProject accession number PRJNA317164) is searched for, and a LACS gene with high expression is cloned. This gene has high homology and similarity with LACS4 from Arabidopsis thaliana. The gene is named PoLACS4. It is show to be highly expressed in mature leaves and peaks within 1 h under drought and salt stresses. All these results suggest that the LACS family of genes may be involved in cuticle response to drought stress and that PoLACS4 is a crucial gene which responds rapidly to drought in the tree peony.
Collapse
Affiliation(s)
- Hongye Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Shan Zhang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Meng Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
| | - Juan Wang
- Institute of Ecological Development, Southwest Forestry University, Kunming 650224, China
| | - Tian Wu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Yunnan Functional Flower Resources and Industrialization Technology Engineering Research Center, Kunming 650224, China
- Correspondence:
| |
Collapse
|
12
|
Liu L, Wang X, Chang C. Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. FRONTIERS IN PLANT SCIENCE 2022; 13:961829. [PMID: 35958191 PMCID: PMC9358614 DOI: 10.3389/fpls.2022.961829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Drought, salinity, extreme temperatures, and ultraviolet (UV) radiation are major environmental factors that adversely affect plant growth and crop production. As a protective shield covering the outer epidermal cell wall of plant aerial organs, the cuticle is mainly composed of cutin matrix impregnated and sealed with cuticular waxes, and greatly contributes to the plant adaption to environmental stresses. Past decades have seen considerable progress in uncovering the molecular mechanism of plant cutin and cuticular wax biosynthesis, as well as their important roles in plant stress adaptation, which provides a new direction to drive strategies for stress-resilient crop breeding. In this review, we highlighted the recent advances in cuticle biosynthesis in plant adaptation to drought, salinity, extreme temperatures, and UV radiation stress, and discussed the current status and future directions in harnessing cuticle biosynthesis for crop improvement.
Collapse
|
13
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
14
|
Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Int J Mol Sci 2022; 23:ijms23105660. [PMID: 35628469 PMCID: PMC9145189 DOI: 10.3390/ijms23105660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Drought is one of the main abiotic stresses limiting the quality and yield of citrus. Cuticular waxes play an important role in regulating plant drought tolerance and water use efficiency (WUE). However, the contribution of cuticular waxes to drought tolerance, WUE and the underlying molecular mechanism is still largely unknown in citrus. 'Longhuihong' (MT) is a bud mutant of 'Newhall' navel orange with curly and bright leaves. In this study, significant increases in the amounts of total waxes and aliphatic wax compounds, including n-alkanes, n-primary alcohols and n-aldehydes, were overserved in MT leaves, which led to the decrease in cuticular permeability and finally resulted in the improvements in drought tolerance and WUE. Compared to WT leaves, MT leaves possessed much lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), significantly higher levels of proline and soluble sugar, and enhanced superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress, which might reduce reactive oxygen species (ROS) damage, improve osmotic regulation and cell membrane stability, and finally, enhance MT tolerance to drought stress. Transcriptome sequencing results showed that seven structural genes were involved in wax biosynthesis and export, MAPK cascade, and ROS scavenging, and seven genes encoding transcription factors might play an important role in promoting cuticular wax accumulation, improving drought tolerance and WUE in MT plants. Our results not only confirmed the important role of cuticular waxes in regulating citrus drought resistance and WUE but also provided various candidate genes for improving citrus drought tolerance and WUE.
Collapse
|
15
|
Wang Y, Zhang J, Wang X, Zhang T, Zhang F, Zhang S, Li Y, Gao W, You C, Wang X, Yu K. Cellulose Nanofibers Extracted From Natural Wood Improve the Postharvest Appearance Quality of Apples. Front Nutr 2022; 9:881783. [PMID: 35634411 PMCID: PMC9136226 DOI: 10.3389/fnut.2022.881783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
To prolong the shelf life of perishable food with a simple and environmentally friendly postharvest preservation technology is one of the global concerns. This study aimed to explore the application value of biological macromolecule natural cellulose nanofibers (CNFs) in extending the postharvest fruit shelf life. In this study, 0.5% (wt%) CNFs were prepared from natural wood and coated on the surface of early-ripening apple fruits. After 10 days of storage at room temperature, the results revealed that the shelf life of apple fruits with CNF coating was significantly prolonged, and the fruit appearance quality improved. The invisible network structure of CNFs in the fruit epidermis was observed under an atomic force microscope (AFM). The gas chromatography and mass spectrometry (GC-MS) analysis showed that CNFs significantly promoted the formation of epidermal wax, especially fatty alcohols, during storage. In addition, the CNFs remarkably promoted the upregulation of genes related to the synthesis of cuticular wax of apple. In conclusion, this study provides an environmentally sustainable nanomaterial for post-harvest preservation of horticultural products, and also provides a new insight into the effect of CNFs on postharvest storage of apple fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wensheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Xiaofei Wang
| | - Kun Yu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- Kun Yu
| |
Collapse
|
16
|
Huang H, Ayaz A, Zheng M, Yang X, Zaman W, Zhao H, Lü S. ArabidopsisKCS5 and KCS6 Play Redundant Roles in Wax Synthesis. Int J Mol Sci 2022; 23:ijms23084450. [PMID: 35457268 PMCID: PMC9027390 DOI: 10.3390/ijms23084450] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea;
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| |
Collapse
|
17
|
Lian XY, Gao HN, Jiang H, Liu C, Li YY. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. PLANT CELL REPORTS 2021; 40:2357-2368. [PMID: 34468851 DOI: 10.1007/s00299-021-02776-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
We found that the apple wax related gene played a role in changing plant epidermal permeability and enhancing plant resistance to drought stress by increasing wax accumulation. The content and composition of epidermal wax in plants are affected by genetic and environmental factors. The KCS gene encodes the β-ketoalionyl-CoA synthetase, which is a rate-limiting enzyme in the synthesis of very-long-chain fatty acids (VLCFAs). In this study, we identified the MdKCS2 gene from apple as a homolog of Arabidopsis AtKCS2. The KCS protein is localized on the endoplasmic reticulum membrane. MdKCS2 exhibited the highest expression in apple pericarp, and was induced by abiotic stresses, such as drought and salt. Transgenic analysis indicated that the MdKCS2 improved the resistance to abiotic stress in apple calli. Ectopic expression of MdKCS2 in Arabidopsis increased the content of wax in leaves and stems, changed the permeability of cuticle of leaves, and enhanced plant drought resistance.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, 32601, USA
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
18
|
Gu X, Gao S, Li J, Song P, Zhang Q, Guo J, Wang X, Han X, Wang X, Zhu Y, Zhu Z. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:269-279. [PMID: 34823144 DOI: 10.1016/j.plaphy.2021.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress limiting crop growth and yield. In this study, we characterized a novel drought tolerance induced WIH gene in rice, OsWIH2. Overexpression of OsWIH2 in rice resulted in significantly higher drought tolerance, probably due to the decreased water loss rate and reactive oxygen species (ROS) accumulation under drought stress. We identified a long-chain fatty acid HOTHEAD (HTH) that interacted with OsWIH2 using yeast two-hybrid screening. OsWIH2 is an enzyme which is involved in fatty acid synthesis. We further demonstrated that the drought-inducible bHLH transcription factor OsbHLH130 could activate the expression of OsWIH2. Overall, our results suggest that drought stress may induce OsbHLH130 accumulation, which in turn activates OsWIH2 expression, and the latter improves rice drought tolerance by participating in cuticular wax biosynthesis and reducing the water loss rate as well as ROS accumulation. This research provides new genes for crop improvement.
Collapse
Affiliation(s)
- Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxin Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinfeng Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyu Han
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
19
|
Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry ( Morus Alba L.) Trees Against Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:720452. [PMID: 34691101 PMCID: PMC8528201 DOI: 10.3389/fpls.2021.720452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The improvement of a plant's tolerance to drought is a major endeavor in agriculture. Polyploid plants often exhibit enhanced stress tolerance relative to their diploid progenitor, but the matching stress tolerance is still little understood. Own-rooted stem cuttings of mulberry (Morus alba L.) cultivar Shinichinose (2n = 2x = 28) and Shaansang-305 (2n = 3x = 42) were used in this study, of which the latter (triploid) has more production and application purposes. The responses of triploid Shaansang-305 and diploid progenitor ShinIchinose under drought stress were compared through an investigation of their physiological traits, RNA-seq, and secondary metabolome analysis. The results showed that the triploid exhibited an augmented abscisic acid (ABA) content and a better stress tolerance phenotype under severe drought stress. Further, in the triploid plant some genes (TSPO, NCED3, and LOC21398866) and ATG gene related to ABA signaling showed significantly upregulated expression. Interestingly, the triploid accumulated higher levels of RWC and SOD activity, as well as more wax on the leaf surface, but with less reductive flavonoid than in diploid. Our results suggest triploid plants may better adapt to with drought events. Furthermore, the flavonoid metabolism involved in drought resistance identified here may be of great value to medicinal usage of mulberry. The findings presented here could have substantial implications for future studies of crop breeding.
Collapse
Affiliation(s)
- Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
20
|
Gao HN, Jiang H, Lian XY, Cui JY, You CX, Hao YJ, Li YY. Identification and functional analysis of the MdLTPG gene family in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:338-347. [PMID: 33906121 DOI: 10.1016/j.plaphy.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Cuticular wax is synthesized from intracellular lipids that are exported by epidermal cells, and plant lipid transfer proteins (LTPs) play an important role in this process. The glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs) are a large subgroup within the LTP family and function in lipid transport and wax formation. Although LTPG family members have been identified in several plant species, the LTPG gene family of apple (Malus domestica) remains uncharacterized. In this paper, we identified 26 potential LTPG genes by searching apple whole-genome annotation files using "GPI-anchored" and "lipid transferase" as keywords. Twenty of the 26 putative LTPG genes were confirmed as MdLTPG family members based on their subcellular localization predictions. The MdLTPGs were divided into four classes based on phylogenetic analysis and functional domain prediction. One member of each class was analyzed for subcellular localization, and all identified members were located on the plasma membrane. Most MdLTPG genes were induced by abiotic stress treatments such as low temperature, NaCl, and ABA. Finally, the MdLTPG17 protein was shown to interact with the lysine-rich arabinogalactan protein MdAGP18 to perform its function in wax transport during plant growth and development.
Collapse
Affiliation(s)
- Huai-Na Gao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yang ling, Shannxi, 712100, China
| | - Xin-Yu Lian
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jian-Ying Cui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
21
|
Yang YY, Zheng PF, Ren YR, Yao YX, You CX, Wang XF, Hao YJ. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. PLANTA 2021; 253:46. [PMID: 33484359 DOI: 10.1007/s00425-020-03528-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study identified a new bHLHm1 transcription factor MdSAT1 which functioned in mediating tolerance to salt and drought resistance. Changes in the expression of stress-related genes play crucial roles in response to environmental stress. Basic helix-loop-helix (bHLH) proteins are the largest superfamily of transcription factors and a large number of bHLH proteins function in plant responses to abiotic stresses. We identified a new bHLHm1 transcription factor from apple and named it MdSAT1. β-Glucuronidase (GUS) staining showed that MdSAT1 expressed in various tissues with highly expressed in leaves. Promoter analysis revealed that MdSAT1 contained multiple response elements and its transcription was induced by several environmental cues, particularly salt and drought stresses. Overexpression of MdSAT1 in apple calli and Arabidopsis resulted in a phenotype of increased tolerance to salt and drought. Altering abscisic acid (ABA) treatment increased the sensitivity of MdSAT1-OE Arabidopsis to ABA, and heavy metal stress, osmotic stress, and ethylene did not participate in MdSAT1 mediated plant development. These findings reveal the abiotic stress functions of MdSAT1 and pave the way for further functional investigation.
Collapse
Affiliation(s)
- Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu-Xin Yao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
22
|
Zheng PF, Wang X, Yang YY, You CX, Zhang ZL, Hao YJ. Identification of Phytochrome-Interacting Factor Family Members and Functional Analysis of MdPIF4 in Malus domestica. Int J Mol Sci 2020; 21:ijms21197350. [PMID: 33027937 PMCID: PMC7582839 DOI: 10.3390/ijms21197350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Phytochrome-interacting factors (PIFs), members of the basic helix-loop-helix transcription factor family that have been extensively investigated in Arabidopsis thaliana, play essential roles in plant growth and development. However, PIF members have not been systematically investigated in apples, a worldwide perennial woody crop of economic importance. Here, seven PIF genes were identified from the Malus × domestica reference genome. Chromosomal locations, gene structures, and phylogenetic relationships of these members were analyzed. Analysis of cis-acting elements in promoter regions of MdPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Subsequently, subcellular localization and transcriptional activity analysis revealed that MdPIFs were typical nuclear transcription factors with transcriptional activation ability. Expression analysis demonstrated that MdPIF genes had different gene expression patterns for various abiotic factors. Moreover, overexpressed MdPIF4 reduced the sensitivity of apple calluses to abscisic acid (ABA). Our work lays foundations for further investigation of PIF functions in plant growth and development in apples.
Collapse
|
23
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
24
|
Zhang CL, Zhang YL, Hu X, Xiao X, Wang GL, You CX, Li YY, Hao YJ. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110529. [PMID: 32563467 DOI: 10.1016/j.plantsci.2020.110529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 05/08/2023]
Abstract
The aerial parts of apple are protected against environmental stress by cuticular wax. Although it has been suggested that several long-chain acyl-CoA synthetases are involved in wax biosynthesis, the molecular pathway of apple cuticular wax biosynthesis remains unclear. In this study, an MdLACS4 protein with long-chain acyl-CoA synthetase activity was isolated from apple. The MdLACS4 gene was highly expressed in pericarp, stem, and mature leaf tissues. Ectopic expression of MdLACS4 in Arabidopsis induced early flowering. Compared with wild-type plants, MdLACS4 transgenic Arabidopsis exhibited lower water loss rates, reduced epidermal permeability, increased cuticular wax in stems and leaves, and altered cuticular ultrastructure. Furthermore, the accumulation of cuticular wax enhanced the resistance of MdLACS4 transgenic plants to drought and salt stress. Finally, predicted protein functional interaction networks for LACS4 suggested that the molecular regulation pathway of MdLACS4 mediates wax biosynthesis in apple.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xing Hu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xu Xiao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
25
|
Lian XY, Wang X, Gao HN, Jiang H, Mao K, You CX, Li YY, Hao YJ. Genome wide analysis and functional identification of MdKCS genes in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:299-312. [PMID: 32251955 DOI: 10.1016/j.plaphy.2020.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
26
|
Zhang YL, You CX, Li YY, Hao YJ. Advances in Biosynthesis, Regulation, and Function of Apple Cuticular Wax. FRONTIERS IN PLANT SCIENCE 2020; 11:1165. [PMID: 32849720 PMCID: PMC7419609 DOI: 10.3389/fpls.2020.01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 05/05/2023]
Abstract
A layer of cuticular wax is deposited on the surface of terrestrial plants, which reduces the damage caused by environmental stress and maintains growth in a relatively stable internal environment. Apple cuticular wax is an important part of the fruit epidermis that plays an essential role in apple development, storage, and adaptation to environmental stress. The formation of cuticular wax has been described at the transcriptional, post-transcriptional, and translational levels in Arabidopsis, whereas less research has been performed on apple cuticular wax. Here, we provide a brief overview of how apple cuticular wax is formed, as well as its structure, composition, and function. An association among the environment, genes, and apple cuticular wax deposition was revealed. Cuticular wax prevents fruit rust from occurring on apple. Taken together, a detailed understanding of apple cuticular wax is discussed. The results will act as a reference for extending the storage period and increasing the commodity value of apple.
Collapse
Affiliation(s)
| | | | | | - Yu-Jin Hao
- *Correspondence: Yuan-Yuan Li, ; Yu-Jin Hao,
| |
Collapse
|