1
|
Smoleń S, Kowalska I, Wisła-Świder A, Ledwożyw-Smoleń I, Pitala J, Kiełbasa D, Koronowicz A. Use of iodoquinolines for iodine biofortification of potato plants. Food Chem 2025; 472:142825. [PMID: 39824073 DOI: 10.1016/j.foodchem.2025.142825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Recent studies on iodine biofortification of potato have documented various iodine contents in tubers: from very low to such covering the Recommended Daily Allowance (RDA-I). The aim of the work was to evaluate the efficiency of iodine biofortification of potato using six iodoquinolines applied in two doses, with KIO3 as a reference compound. The mineral status of potato plants and the nutritional and health-promoting value of tubers were also studied. Iodine enrichment of tubers ranged as followed: KIO3 (1.44-28.53 % RDA-I) > 5,7-diiodo-8-quinolinol (1.53-9.80 % RDA-I) > 5-chloro-7-iodo-8-quinolinol (1.24-8.81 % RDA-I) > 8-hydroxy-7-iodo-5-quinolinesulfonic acid (1.06-7.35 % RDA-I) > 4-hydroxy-7-iodoquinoline-3-carboxylic acid (0.94-6.53 % RDA-I) > 4-hydroxy-6-iodoquinoline-3-carboxylic acid (1.03-3.10 % RDA-I) > 4-hydroxy-8-iodoquinoline-3-carboxylic acid (1.08-1.18 % RDA-I) versus control (0.42-0.94 % RDA-I). Higher levels were obtained for 50 than 10 μM doses. Iodoquinolines were detected in control plants. The iodine metabolic profile (including the content of iodotyrosine, iodosalicylates and iodobenzoates) after the application of iodoquinolines was similar to that noted in the control plants.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Anna Wisła-Świder
- Department of Chemistry, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Iwona Ledwożyw-Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Daniel Kiełbasa
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| |
Collapse
|
2
|
Krzemińska J, Piątkowska E, Kopeć A, Smoleń S, Leszczyńska T, Koronowicz A. Iodine Bioavailability and Biochemical Effects of Brassica oleracea var. sabellica L. Biofortified with 8-Hydroxy-7-iodo-5-quinolinesulfonic Acid in Wistar Rats. Nutrients 2024; 16:3578. [PMID: 39519410 PMCID: PMC11547991 DOI: 10.3390/nu16213578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Iodine is one of the essential trace elements for human life. The main objective of the biofortification of plants with iodine is to obtain food with a higher content of this element compared to conventional food. Biofortification of plants with iodine can increase the intake of this trace element by different populations. In addition, it may reduce the risk of iodine deficiency diseases. OBJECTIVES The aim of the study was to investigate the effect of kale biofortified with 8-hydroxy-7-iodo-5-quinolinesulfonic acid (8-OH-7-I-5QSA) on iodine bioavailability and biochemical effects in Wistar rats. METHODS Kale biofortified with (8-OH-7-I-5QSA) was tested for iodine levels in urine, feces, and selected tissues using the ICP-MS/MS technique. The feeding experiment was designed to investigate potential changes in selected thyroid-regulated biochemical parameters in blood serum of Wistar rats. RESULTS The dietary intake of Wistar rats fed kale biofortified with (8-OH-7-I-5QSA) from both the "Oldenbor F1" and "Redbor F1" cultivars for 8 weeks resulted in significantly (p ≤ 0.05) higher iodine concentrations in the urine and kidneys of rats, which proves iodine bioavailability. Rats' diets with "Oldenbor F1" and "Redbor F1" kale non- and -biofortified with 8-OH-7-I-5QSA had a significantly (p ≤ 0.05) lower or a tendency for lower concentration of TSH, triglyceride, total and direct bilirubin, TBARs, uric acid, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations in serum. Dietary intake of "Oldenbor F1" and "Redbor F1" kale biofortified with 8-OH-7-I-5QSA significantly (p ≤ 0.05) increased the total antioxidant status (TAS). CONCLUSIONS Our study confirms that kale biofortified with iodine in organic form iodoquinoline 8-OH-7-I-5QSA is bioavailable and well absorbed by the Wistar rat and has a positive effect on selected biochemical parameters. The results obtained in this study may be highly predictive for further studies in humans.
Collapse
Affiliation(s)
- Joanna Krzemińska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (J.K.); (E.P.); (A.K.); (T.L.)
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (J.K.); (E.P.); (A.K.); (T.L.)
| | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (J.K.); (E.P.); (A.K.); (T.L.)
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (J.K.); (E.P.); (A.K.); (T.L.)
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (J.K.); (E.P.); (A.K.); (T.L.)
| |
Collapse
|
3
|
Bian S, Shao D, Zhao Q, Li Q, Ren Y. Transcriptome-Based Screening of Candidate Low-Temperature-Associated Genes and Analysis of the BocARR-B Transcription Factor Gene Family in Kohlrabi ( Brassica oleracea L. var. caulorapa L.). Int J Mol Sci 2024; 25:9261. [PMID: 39273211 PMCID: PMC11394831 DOI: 10.3390/ijms25179261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.
Collapse
Affiliation(s)
- Shuanling Bian
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Qingsheng Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Quanhui Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
4
|
Zhao M, Wu Y, Ren Y. Complete Chloroplast Genome Sequence Structure and Phylogenetic Analysis of Kohlrabi ( Brassica oleracea var. gongylodes L.). Genes (Basel) 2024; 15:550. [PMID: 38790180 PMCID: PMC11120933 DOI: 10.3390/genes15050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.
Collapse
Affiliation(s)
- Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Yanxun Wu
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Xining 810016, China
- Qinghai Provincial Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| |
Collapse
|
5
|
Bian S, Zhao M, Zhang H, Ren Y. Differentially Expressed Genes Identification of Kohlrabi Seedlings ( Brassica oleracea var. caulorapa L.) under Polyethylene Glycol Osmotic Stress and AP2/ERF Transcription Factor Family Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1167. [PMID: 38674577 PMCID: PMC11054715 DOI: 10.3390/plants13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.
Collapse
Affiliation(s)
- Shuanling Bian
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Huijuan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
6
|
Amerian M, Palangi A, Gohari G, Ntatsi G. Enhancing salinity tolerance in cucumber through Selenium biofortification and grafting. BMC PLANT BIOLOGY 2024; 24:24. [PMID: 38166490 PMCID: PMC10762928 DOI: 10.1186/s12870-023-04711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Salinity stress is a major limiting factor for plant growth, particularly in arid and semi-arid environments. To mitigate the detrimental effects of salinity stress on vegetable production, selenium (Se) biofortification and grafting onto tolerant rootstocks have emerged as effective and sustainable cultivation practices. This study aimed to investigate the combined effects of Se biofortification and grafting onto tolerant rootstock on the yield of cucumber grown under salinity stress greenhouse conditions. The experiment followed a completely randomized factorial design with three factors: salinity level (0, 50, and 100 mM of NaCl), foliar Se application (0, 5, and 10 mg L-1 of sodium selenate) and grafting (grafted and non-grafted plants) using pumpkin (Cucurbita maxima) as the rootstock. Each treatment was triplicated. RESULTS The results of this study showed that Se biofortification and grafting significantly enhanced salinity tolerance in grafted cucumbers, leading to increased yield and growth. Moreover, under salinity stress conditions, Se-Biofortified plants exhibited increased leaf relative water content (RWC), proline, total soluble sugars, protein, phenol, flavonoids, and antioxidant enzymes. These findings indicate that Se contributes to the stabilization of cucumber cell membrane and the reduction of ion leakage by promoting the synthesis of protective compounds and enhancing antioxidant enzyme activity. Moreover, grafting onto pumpkin resulted in increased salinity tolerance of cucumber through reduced Na uptake and translocation to the scion. CONCLUSION In conclusion, the results highlight the effectiveness of Se biofortification and grafting onto pumpkin in improving cucumber salinity tolerance. A sodium selenate concentration of 10 mg L-1 is suggested to enhance the salinity tolerance of grafted cucumbers. These findings provide valuable insights for the development of sustainable cultivation practices to mitigate the adverse impact of salinity stress on cucumber production in challenging environments.
Collapse
Affiliation(s)
- Masoomeh Amerian
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Amir Palangi
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Gholamreza Gohari
- Department of Horticultural Sciecne, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
7
|
Giordano M, Ciriello M, Formisano L, El-Nakhel C, Pannico A, Graziani G, Ritieni A, Kyriacou MC, Rouphael Y, De Pascale S. Iodine-Biofortified Microgreens as High Nutraceutical Value Component of Space Mission Crew Diets and Candidate for Extraterrestrial Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2628. [PMID: 37514243 PMCID: PMC10384207 DOI: 10.3390/plants12142628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The success of Space missions and the efficacy of colonizing extraterrestrial environments depends on ensuring adequate nutrition for astronauts and autonomy from terrestrial resources. A balanced diet incorporating premium quality fresh foods, such as microgreens, is essential to the mental and physical well-being of mission crews. To improve the nutritional intake of astronaut meals, two levels of potassium iodide (KI; 4 µM and 8 µM) and an untreated control were assessed for iodine (I) biofortification, and overall nutraceutical profile of four microgreens: tatsoi (Brassica rapa L. subsp. narinosa), coriander (Coriandrum sativum L.), green basil, and purple basil (Ocimum basilicum L.). A dose-dependent increase in I was observed at 8 µM for all species, reaching concentrations of 200.73, 118.17, 93.97, and 82.70 mg kg-1 of dry weight, in tatsoi, coriander, purple basil, and green basil, respectively. Across species, I biofortification slightly reduced fresh yield (-7.98%) while increasing the antioxidant activity (ABTS, FRAP, and DPPH). LC-MS/MS Q extractive orbitrap analysis detected 10 phenolic acids and 23 flavonoids among microgreen species. The total concentration of phenolic acids increased (+28.5%) in purple basil at 8 µM KI, while total flavonoids in coriander increased by 23.22% and 34.46% in response to 4 and 8 µM KI, respectively. Both doses of KI increased the concentration of total polyphenols in all species by an average of 17.45%, compared to the control.
Collapse
Affiliation(s)
- Maria Giordano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, 95123 Catania, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Sathasivam R, Park SU, Kim JK, Park YJ, Kim MC, Nguyen BV, Lee SY. Metabolic Profiling of Primary and Secondary Metabolites in Kohlrabi ( Brassica oleracea var. gongylodes) Sprouts Exposed to Different Light-Emitting Diodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061296. [PMID: 36986982 PMCID: PMC10057582 DOI: 10.3390/plants12061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 05/27/2023]
Abstract
Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Cheol Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Bao Van Nguyen
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun 59146, Republic of Korea
| |
Collapse
|
9
|
Antoshkina M, Golubkina N, Poluboyarinov P, Skrypnik L, Sekara A, Tallarita A, Caruso G. Effect of Sodium Selenate and Selenocystine on Savoy Cabbage Yield, Morphological and Biochemical Characteristics under Chlorella Supply. PLANTS (BASEL, SWITZERLAND) 2023; 12:1020. [PMID: 36903880 PMCID: PMC10005640 DOI: 10.3390/plants12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.
Collapse
Affiliation(s)
- Marina Antoshkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Pavel Poluboyarinov
- Medical Faculty, Department of General and Clinical Pharmacology, Penza State University, 440026 Penza, Russia
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
10
|
Duborská E, Šebesta M, Matulová M, Zvěřina O, Urík M. Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients 2022; 14:nu14224717. [PMID: 36432402 PMCID: PMC9694821 DOI: 10.3390/nu14224717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Selenium and iodine are essential trace elements for both humans and animals. Among other things, they have an essential role in thyroid function and the production of important hormones by the thyroid gland. Unfortunately, in many areas, soils are deficient in selenium and iodine, and their amount is insufficient to produce crops with adequate contents to cover the recommended daily intake; thus, deficiencies have an endemic character. With the introduction of iodized table salt in the food industry, the thyroid status of the population has improved, but several areas remain iodine deficient. Furthermore, due to the strong relationship between iodine and selenium in metabolic processes, selenium deficiency often compromises the desired positive impact of salt iodization efforts. Therefore, a considerable number of studies have looked for alternative methods for the simultaneous supplementation of selenium and iodine in foodstuff. In most cases, the subject of these studies is crops; recently, meat has also been a subject of interest. This paper reviews the most recent strategies in agriculture to fortify selenium and iodine in crop plants, their effect on the quality of the plant species used, and the potential impact of food processing on their stability in fortified crops.
Collapse
Affiliation(s)
- Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Ondřej Zvěřina
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2602-96392
| |
Collapse
|
11
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Cheng B, Wang C, Chen F, Yue L, Cao X, Liu X, Yao Y, Wang Z, Xing B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153712. [PMID: 35149065 DOI: 10.1016/j.scitotenv.2022.153712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
A selenium (Se)-nanoenabled agriculture strategy was established in this work to improve crop yield and quality. The results demonstrated that Se engineering nanomaterials (Se ENMs, 10 mg·L-1) were absorbed and translocated in cherry radish (Raphanus sativus L. var. radculus pers) from shoots to taproots after foliar application. RNA-Seq and metabolomic results indicated that the glucolysis, pyruvate and tricarboxylic acid (TCA) cycle metabolism pathways were accelerated by exposure to Se ENMs, resulting in increased production of flavonoids (3.2-fold), amino acids (1.4-fold), and TCA (2.5-fold) compared with the control. Moreover, Se content was enhanced by 5.4 and 2.6 times in pericarp and pulp upon Se ENMs exposure, respectively, which was more efficient (2.2 and 1.1 times) than SeO32- treatment. Additionally, the yield of cherry radish was increased by 67.6% under Se ENMs, whereas SeO32- exposure only led to an increase of 7.4%. Therefore, the application of Se ENMs could reduce the amount of fertilizer used to minimize the environmental impact in agriculture while improve crop production and quality. These findings highlighted the significant potential of Se ENMs-enabled agriculture practices as an eco-friendly and sustainable crop strategy.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yusong Yao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Assessment of Ultraviolet Impact on Main Pigment Content in Purple Basil (Ocimum basilicum L.) by the Spectrometric Method and Hyperspectral Images Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This research is aimed at the assessing the impact of the ultraviolet radiation in the A, B, and C ranges (as additives to the main light) on general plan condition, the stress experienced by them, the pigment concentration in the leaves and leaf reflective characteristics. Under studying, there were the photo-protective reactions of the purple variety basil plants. The plants were grown in plastic pots in a phyto-chamber equipped with an automatic microclimate system. The phyto-chamber was divided into four compartments where, in addition to the main lighting, there were installed the additional LEDs emitting their radiation in the ranges UV-A, UV-B, and UV-C. Plant reactions were evaluated by the contents of the main pigments as detected by the spectrometric method. Then correlations were revealed between those values and the vegetative indices obtained based on the hyperspectral images. A strong correlation (R2 ˃ 0.83) was observed between the values of the vegetative indices ARI and mARI and the anthocyanins concentration in basil leaves. A weak correlation (R2 = 0.0479) was found between the ARI and mARI values and the carotenoids index CRI700, which is attributed to the shielding effect of the anthocyanins. Deviations in the results are influenced by leaf surface unevenness, its thickness and density. Additional research is needed including developing reflection indices taking into account the shielding effect of the purple pigments.
Collapse
|
14
|
Saeedi M, Soltani F, Babalar M, Izadpanah F, Wiesner-Reinhold M, Baldermann S. Selenium Fortification Alters the Growth, Antioxidant Characteristics and Secondary Metabolite Profiles of Cauliflower ( Brassica oleracea var. botrytis) Cultivars in Hydroponic Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081537. [PMID: 34451582 PMCID: PMC8399412 DOI: 10.3390/plants10081537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 05/29/2023]
Abstract
Nowadays the importance of selenium for human health is widely known, but most of the plants are poor in terms of selenium storage and accumulation because of the low selenium mineralization potential of the soil. For this purpose, foliar application of different sodium selenate concentrations (0, 5, 10, 15, 20 mg/L) was used to treat the cauliflower cultivars "Clapton" and "Graffiti". Higher yields and other related vegetative attributes were improved at 10 and 15 mg/L sodium selenate application. At a concentration of 10 mg/L sodium selenate, photosynthetic pigments, total phenolic compounds and antioxidant capacity were enhanced in both cultivars, but the "Graffiti" cultivar responded stronger than the "Clapton" cultivar. The glucosinolates were accumulated in response to selenium fortification and the highest amounts were found in the "Graffiti" cultivar at 10 mg/L. Selenium accumulated concentration-dependently and rose with higher fertilization levels. In general, foliar application of selenium at 10 mg/L led to an accumulation of secondary metabolites and also positively affected the growth and yield of florets.
Collapse
Affiliation(s)
- Mahboobeh Saeedi
- Department of Horticultural Science, University of Tehran, Daneshkade Str., Karaj 31587-77871, Iran; (M.S.); (M.B.)
| | - Forouzandeh Soltani
- Department of Horticultural Science, University of Tehran, Daneshkade Str., Karaj 31587-77871, Iran; (M.S.); (M.B.)
| | - Mesbah Babalar
- Department of Horticultural Science, University of Tehran, Daneshkade Str., Karaj 31587-77871, Iran; (M.S.); (M.B.)
| | - Fatemeh Izadpanah
- Food Chemistry, Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (F.I.); (S.B.)
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
| | - Melanie Wiesner-Reinhold
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
| | - Susanne Baldermann
- Food Chemistry, Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (F.I.); (S.B.)
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
- Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Campus Kulmbach, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326 Kulmbach, Germany
| |
Collapse
|
15
|
Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. PLANTS (BASEL, SWITZERLAND) 2021; 10:1352. [PMID: 34371555 PMCID: PMC8309223 DOI: 10.3390/plants10071352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Helene Kekina
- Medical Academy of Post Graduate Education, Moscow 123995, Russia;
| | - Victor Kharchenko
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Viliana Vasileva
- Institute of Forage Crops, 89 General Vladimir Vazov Str, 5802 Pleven, Bulgaria;
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|
16
|
Rakoczy-Lelek R, Smoleń S, Grzanka M, Ambroziak K, Pitala J, Skoczylas Ł, Liszka-Skoczylas M, Kardasz H. Effectiveness of Foliar Biofortification of Carrot With Iodine and Selenium in a Field Condition. FRONTIERS IN PLANT SCIENCE 2021; 12:656283. [PMID: 34093613 PMCID: PMC8177008 DOI: 10.3389/fpls.2021.656283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/23/2021] [Indexed: 05/26/2023]
Abstract
Iodine (I) and selenium (Se) are essential to human and animal development. There is a worldwide deficit of I and Se in the diet of humans, as well as in animals. It is advisable to enrich plants with these elements to ensure adequate uptake in animals and humans. The aim of this study was to determine the efficacy of the application of I and Se in the cultivation of carrot crops, to better understand the metabolic pathways and processes of I applied through foliar spray. Carrots were fertilized with 4-fold foliar applications of I and Se, which were applied as the liquid fertilizers "I + Se", "Solo iodine" and "Solo selenium", all containing an organic stabilizer, in two field trials. Foliar nutrient applications of I and Se were translocated by the plant for storage in the roots. The level of enriched I and Se in the roots was considered safe for the consumer. The Recommended Daily Allowance values for I and Se in the roots of 100 g of fresh carrots are 4.16% and 4.37%, respectively. Furthermore, I and Se accumulated in the roots to a level that was physiologically tolerated by carrot. Biofortification through foliar feeding did not impact negatively on the yield or quality of the carrot crop. Iodides applied via foliar application were the dominant form of I in the plant tissues and were included in the metabolic process of the synthesis of iodosalicylates, iodobenzoates, iodotyrosine (I-Tyr), and plant-derived thyroid hormone analogs. No synergistic or antagonistic interaction between I and Se, with respect to the effectiveness of biofortification in roots, was observed in any treatments. The molar ratio of I:Se in the roots after foliar application of both elements was approximately 1.6:1 and was similar to the control (1.35:1).
Collapse
Affiliation(s)
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Marlena Grzanka
- Intermag Sp. z o.o., Olkusz, Poland
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | | | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | | |
Collapse
|
17
|
Smoleń S, Czernicka M, Kowalska I, Kȩska K, Halka M, Grzebelus D, Grzanka M, Skoczylas Ł, Pitala J, Koronowicz A, Kováčik P. New Aspects of Uptake and Metabolism of Non-organic and Organic Iodine Compounds-The Role of Vanadium and Plant-Derived Thyroid Hormone Analogs in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:653168. [PMID: 33936138 PMCID: PMC8086602 DOI: 10.3389/fpls.2021.653168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
The process of uptake and translocation of non-organic iodine (I) ions, I- and IO3 -, has been relatively well-described in literature. The situation is different for low-molecular-weight organic aromatic I compounds, as data on their uptake or metabolic pathway is only fragmentary. The aim of this study was to determine the process of uptake, transport, and metabolism of I applied to lettuce plants by fertigation as KIO3, KIO3 + salicylic acid (KIO3+SA), and iodosalicylates, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA), depending on whether additional fertilization with vanadium (V) was used. Each I compound was applied at a dose of 10 μM, SA at a dose of 10 μM, and V at a dose of 0.1 μM. Three independent 2-year-long experiments were carried out with lettuce; two with pot systems using a peat substrate and mineral soil and one with hydroponic lettuce. The effectiveness of I uptake and translocation from the roots to leaves was as follows: 5-ISA > 3,5-diISA > KIO3. Iodosalicylates, 5-ISA and 3,5-diISA, were naturally synthesized in plants, similarly to other organic iodine metabolites, i.e., iodotyrosine, as well as plant-derived thyroid hormone analogs (PDTHA), triiodothyronine (T3) and thyroxine (T4). T3 and T4 were synthesized in roots with the participation of endogenous and exogenous 5-ISA and 3,5-diISA and then transported to leaves. The level of plant enrichment in I was safe for consumers. Several genes were shown to perform physiological functions, i.e., per64-like, samdmt, msams5, and cipk6.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Kinga Kȩska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Maria Halka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Marlena Grzanka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
18
|
Mateus MPDB, Tavanti RFR, Tavanti TR, Santos EF, Jalal A, Reis ARD. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111772. [PMID: 33316726 DOI: 10.1016/j.ecoenv.2020.111772] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 05/19/2023]
Abstract
There are conclusive evidences of selenium (Se) deficiency in Brazilian soils and foods. Brazil is the largest producer and consumer of coffee worldwide, which favors agronomic biofortification of its coffee. This study aimed to evaluate effects of foliar application of three formulations and six rates of Se on antioxidant metabolism, agronomic biofortification and yield of coffee beans. Seven Se concentrations (0, 10, 20, 40, 80, 100 and 160 mg L-1) were applied from three formulations of Se (sodium selenate, nano-Se 1500, and nano-Se 5000). Selenium application up to 40 mg L-1 increased the concentration of photosynthetic pigments such as chlorophylls, pheophytins and carotenoids in coffee leaves. Foliar application of Se ranging from 20 to 80 mg L-1 decreased lipid peroxidation and concentration of hydrogen peroxide, but increased superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities in coffee leaves. These results indicated that foliar Se application stimulates antioxidative metabolism to mitigate reactive oxygen species. Foliar application of 20 mg Se L-1 of sodium selenate increased coffee yield by 38%, and 160 mg Se L-1 of nano-Se 5000 increased dramatically coffee yield by 42%. Selenium concentration in grains ranged from 0.116 to 4.47 mg kg-1 (sodium selenate), 4.84 mg kg-1 (nano-Se 1500) and 5.82 mg kg-1 (nano-Se 5000). The results suggest the beneficial effect of Se on the increment of photosynthetic pigments, antioxidative metabolism, increased coffee yield and nutritional quality of grains. The recommended foliar Se application in this study can mitigate abiotic stressors such as high temperatures resulting in higher yield of coffee plants.
Collapse
Affiliation(s)
| | | | | | - Elcio Ferreira Santos
- Federal Institute of Mato Grosso do Sul (IFMS), MS - 473, km 23, Nova Andradina 75.750-000, MS, Brazil
| | - Arshad Jalal
- São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã 17602-496, SP, Brazil.
| |
Collapse
|
19
|
Germ M, Kacjan-Maršić N, Kroflič A, Jerše A, Stibilj V, Golob A. Significant Accumulation of Iodine and Selenium in Chicory ( Cichorium intybus L. var. foliosum Hegi) Leaves after Foliar Spraying. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121766. [PMID: 33322207 PMCID: PMC7764295 DOI: 10.3390/plants9121766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
The interactions between the uptake of selenium (as selenite and selenate) and iodine (as iodate and iodide) by red chicory (Cichorium intybus L. var. foliosum Hegi) and their effects on selected morphological and physiological characteristics were investigated. Seedlings were transplanted to the field, and at the onset of head formation, the plants were foliar-sprayed with the following solutions: Milli-Q water (control), Se (IV), Se (VI), I (-I), I (V), Se (IV) + I (-I), Se (IV) + I (V), Se (VI) + I (-I) and Se (VI) + I (V). The different treatments had no significant effects on the yield (39.8-51.5 t ha-1) and mass (970-1200 g) of the chicory heads. The selenium content in Se-treated plants was up to 5.5-times greater than the control plants. The iodine content in the chicory leaves enriched with I was 3.5-times greater than the control plants. Iodide or iodate, applied together with selenite in the spray solution, increased the uptake of Se by chicory plants, while both forms of iodine, applied together with selenate, reduced the uptake of Se. Plants treated with I (V) had lower amounts of chlorophyll a and carotenoids than the control, while respiratory potential was higher than the control, which indicated the possible presence of stress in I (V)-treated plants. However, the potential photochemical efficiency of photosystem II was similar and close to the theoretical maximum (0.83) in the control and treated groups, which indicated that all of the plants were in good condition. Furthermore, the plant mass and yield were comparable in the control and treated groups. Molecular studies, like gene expression analysis, would represent a major upgrade of the present study by defining the mechanisms of Se and I uptake and their interactions and by enhancing the knowledge of the Se and I transporters.
Collapse
Affiliation(s)
- Mateja Germ
- Biotechnical Faculty, University of Ljubljana, 1501 Ljubljana, Slovenia; (M.G.); (N.K.-M.)
| | - Nina Kacjan-Maršić
- Biotechnical Faculty, University of Ljubljana, 1501 Ljubljana, Slovenia; (M.G.); (N.K.-M.)
| | - Ana Kroflič
- Jožef Stefan Institute, 1501 Ljubljana, Slovenia; (A.K.); (A.J.); (V.S.)
| | - Ana Jerše
- Jožef Stefan Institute, 1501 Ljubljana, Slovenia; (A.K.); (A.J.); (V.S.)
| | - Vekoslava Stibilj
- Jožef Stefan Institute, 1501 Ljubljana, Slovenia; (A.K.); (A.J.); (V.S.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, 1501 Ljubljana, Slovenia; (M.G.); (N.K.-M.)
- Correspondence: ; Tel.: +386-1-320-3334
| |
Collapse
|
20
|
Dobosy P, Endrédi A, Sandil S, Vetési V, Rékási M, Takács T, Záray G. Biofortification of Potato and Carrot With Iodine by Applying Different Soils and Irrigation With Iodine-Containing Water. FRONTIERS IN PLANT SCIENCE 2020; 11:593047. [PMID: 33362822 PMCID: PMC7755595 DOI: 10.3389/fpls.2020.593047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.
Collapse
Affiliation(s)
- Péter Dobosy
- MTA Centre for Ecological Research, Danube Research Institute, Budapest, Hungary
| | - Anett Endrédi
- GINOP Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary
| | - Sirat Sandil
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Vetési
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Márk Rékási
- MTA Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Budapest, Hungary
| | - Tünde Takács
- MTA Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Budapest, Hungary
| | - Gyula Záray
- MTA Centre for Ecological Research, Danube Research Institute, Budapest, Hungary
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
21
|
Golob A, Kroflič A, Jerše A, Kacjan Maršić N, Šircelj H, Stibilj V, Germ M. Response of Pumpkin to Different Concentrations and Forms of Selenium and Iodine, and their Combinations. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9070899. [PMID: 32708745 PMCID: PMC7412523 DOI: 10.3390/plants9070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 05/21/2023]
Abstract
The elements selenium (Se) and iodine (I) are both crucial for the normal functioning of the thyroid. Biofortification with these elements is particularly feasible in areas where they show a deficit. Iodine and selenium can have positive effects on different plants when applied at the correct concentrations. The effects of their simultaneous addition on plant physiology and biochemistry, as well as on seed germination and sprout biomass, were studied in pumpkin (Cucurbita pepo L. ssp. pepo). To study the effect of Se and I on sprouts, sprouts were grown from seeds soaked in solutions of different forms of Se, I and their combination in the growth chamber experiment. In the field experiment, pumpkins plants were foliarly treated with the same concentrations and forms of Se and I. The combination of Se and I treatments enhanced the germination of the soaked seeds, with no significant differences between Se and I treatments for sprout mass. The yield of pumpkins and seed production were unaffected by Se and I foliar application. The anthocyanin levels and respiratory potential measured via the electron transport system's activity showed different patterns according to treatments and plant parts (sprouts, leaves, seeds). The redistribution of Se and I from seeds to sprouts was significant. The accumulation of Se was higher in sprouts from the seeds treated with Se together with I, compared to sprouts from the seeds treated with Se alone. Interactions between Se and I were also noted in the seeds, which developed in the treated plants.
Collapse
Affiliation(s)
- Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia; (N.K.M.); (H.S.); (M.G.)
- Correspondence: (A.G.); (V.S.)
| | - Ana Kroflič
- Jožef Stefan International Postgraduate School, SI 1000 Ljubljana, Slovenia; (A.K.); (A.J.)
- Department of Environmental Sciences, Jožef Stefan Institute, SI 1000 Ljubljana, Slovenia
| | - Ana Jerše
- Jožef Stefan International Postgraduate School, SI 1000 Ljubljana, Slovenia; (A.K.); (A.J.)
- Department of Environmental Sciences, Jožef Stefan Institute, SI 1000 Ljubljana, Slovenia
| | - Nina Kacjan Maršić
- Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia; (N.K.M.); (H.S.); (M.G.)
| | - Helena Šircelj
- Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia; (N.K.M.); (H.S.); (M.G.)
| | - Vekoslava Stibilj
- Jožef Stefan International Postgraduate School, SI 1000 Ljubljana, Slovenia; (A.K.); (A.J.)
- Department of Environmental Sciences, Jožef Stefan Institute, SI 1000 Ljubljana, Slovenia
- Correspondence: (A.G.); (V.S.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI 1000 Ljubljana, Slovenia; (N.K.M.); (H.S.); (M.G.)
| |
Collapse
|
22
|
Prom-u-thai C, Rashid A, Ram H, Zou C, Guilherme LRG, Corguinha APB, Guo S, Kaur C, Naeem A, Yamuangmorn S, Ashraf MY, Sohu VS, Zhang Y, Martins FAD, Jumrus S, Tutus Y, Yazici MA, Cakmak I. Simultaneous Biofortification of Rice With Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. FRONTIERS IN PLANT SCIENCE 2020; 11:589835. [PMID: 33304367 PMCID: PMC7691665 DOI: 10.3389/fpls.2020.589835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Widespread malnutrition of zinc (Zn), iodine (I), iron (Fe) and selenium (Se), known as hidden hunger, represents a predominant cause of several health complications in human populations where rice (Oryza sativa L.) is the major staple food. Therefore, increasing concentrations of these micronutrients in rice grain represents a sustainable solution to hidden hunger. This study aimed at enhancing concentration of Zn, I, Fe and Se in rice grains by agronomic biofortification. We evaluated effects of foliar application of Zn, I, Fe and Se on grain yield and grain concentration of these micronutrients in rice grown at 21 field sites during 2015 to 2017 in Brazil, China, India, Pakistan and Thailand. Experimental treatments were: (i) local control (LC); (ii) foliar Zn; (iii) foliar I; and (iv) foliar micronutrient cocktail (i.e., Zn + I + Fe + Se). Foliar-applied Zn, I, Fe or Se did not affect rice grain yield. However, brown rice Zn increased with foliar Zn and micronutrient cocktail treatments at all except three field sites. On average, brown rice Zn increased from 21.4 mg kg-1 to 28.1 mg kg-1 with the application of Zn alone and to 26.8 mg kg-1 with the micronutrient cocktail solution. Brown rice I showed particular enhancements and increased from 11 μg kg-1 to 204 μg kg-1 with the application of I alone and to 181 μg kg-1 with the cocktail. Grain Se also responded very positively to foliar spray of micronutrients and increased from 95 to 380 μg kg-1. By contrast, grain Fe was increased by the same cocktail spray at only two sites. There was no relationship between soil extractable concentrations of these micronutrients with their grain concentrations. The results demonstrate that irrespective of the rice cultivars used and the diverse soil conditions existing in five major rice-producing countries, the foliar application of the micronutrient cocktail solution was highly effective in increasing grain Zn, I and Se. Adoption of this agronomic practice in the target countries would contribute significantly to the daily micronutrient intake and alleviation of micronutrient malnutrition in human populations.
Collapse
Affiliation(s)
- Chanakan Prom-u-thai
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Abdul Rashid
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Hari Ram
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chunqin Zou
- Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | | | | | - Shiwei Guo
- College of Resources and Environment, Nanjing Agricultural University, Nanjing, China
| | - Charanjeet Kaur
- Punjab Agricultural University Regional Research Station, Gurdaspur, India
| | - Asif Naeem
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Supapohn Yamuangmorn
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Muhammad Yasin Ashraf
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Virinder Singh Sohu
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, India
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Suchada Jumrus
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Yusuf Tutus
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- *Correspondence: Ismail Cakmak,
| |
Collapse
|
23
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|