1
|
Zhao J, Yang J, Huang R, Xie H, Qin X, Hu Y. Estimating evapotranspiration and drought dynamics of winter wheat under climate change: A case study in Huang-Huai-Hai region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175114. [PMID: 39084384 DOI: 10.1016/j.scitotenv.2024.175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drought is one of the vital meteorological disasters that influence crop growth. Timely and accurately estimating the drought dynamics of crops is valuable for decision-maker to formulate scientific management measures of agricultural drought risk. In this study, the evapotranspiration and drought dynamics of winter wheat from 1981 to 2020 in the Huang-Huai-Hai (HHH) region of China were evaluated based on long-term multi-source observation data. Four key developmental stages of winter wheat were given attentions: growth before winter stage, overwintering stage, stage of greening-heading, and stage of filling-maturity. The crop water deficit index (CWDI) on a daily scale was established for quantitatively appraising the impacts of drought on winter wheat. Our results indicated that interannual variation in reference crop evapotranspiration (ET0) during the growth season of winter wheat from 1981 to 2020 in the HHH region showed a slight increase trend, with an average of 602.4 mm and obvious spatial differences of decreasing from the Northeast to the Southwest. Over the past forty years, the winter wheat in the HHH region was most severely affected by severe drought, followed by moderate drought, and finally mild drought. In addition, the impacts of drought on winter wheat at different critical growth stages varied greatly. For the growth before winter stage, the winter wheat was mainly threatened by mild, moderate, and severe droughts. For the overwintering stage, the winter wheat was mainly threatened by moderate, severe, and extreme droughts. For the greening-heading stage, the winter wheat was mainly threatened by mild, moderate, severe, and extreme droughts. For the filling-maturity stage, the winter wheat was mainly threatened by mild and moderate droughts. Finally, the impacts of drought on winter wheat during 1981-2020 in the HHH region were revealed to differ extraordinarily in space. In particular, the areas of winter wheat affected by severe drought significantly decreased. However, the areas of winter wheat affected by moderate drought clearly expanded. Our findings provide new insights for further improving climate change impact studies and agricultural drought defense capabilities adapting to continuous environmental change.
Collapse
Affiliation(s)
- Junfang Zhao
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Jiaqi Yang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China; College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Ruixi Huang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hongfei Xie
- Lanzhou Center Meteorological Observatory, Lanzhou 730020, China
| | - Xi Qin
- Beijing Huayun Shinetek Science and Technology Co., Ltd, Beijing 100081, China
| | - Yichang Hu
- China Meteorological Administration Training Centre, Beijing 100081, China
| |
Collapse
|
2
|
Zhang Y, Wang M, Kitashov AV, Yang L. Development History, Structure, and Function of ASR ( Abscisic Acid-Stress-Ripening) Transcription Factor. Int J Mol Sci 2024; 25:10283. [PMID: 39408615 PMCID: PMC11476915 DOI: 10.3390/ijms251910283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Abiotic and biotic stress factors seriously affect plant growth and development. The process of plant response to abiotic stress involves the synergistic action of multiple resistance genes. The ASR (Abscisic acid stress-ripening) gene is a plant-specific transcription factor that plays a central role in regulating plant senescence, fruit ripening, and response to abiotic stress. ASR family members are highly conserved in plant evolution and contain ABA/WBS domains. ASR was first identified and characterized in tomatoes (Solanum lycopersicum L.). Subsequently, the ASR gene has been reported in many plant species, extending from gymnosperms to monocots and dicots, but lacks orthologues in Arabidopsis (Arabidopsis thaliana). The promoter regions of ASR genes in most species contain light-responsive elements, phytohormone-responsive elements, and abiotic stress-responsive elements. In addition, ASR genes can respond to biotic stresses via regulating the expression of defense genes in various plants. This review comprehensively summarizes the evolutionary history, gene and protein structures, and functions of the ASR gene family members in plant responses to salt stress, low temperature stress, pathogen stress, drought stress, and metal ions, which will provide valuable references for breeding high-yielding and stress-resistant plant varieties.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| | - Mengfan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| | - Andery V. Kitashov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ling Yang
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
- College of Forestry, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| |
Collapse
|
3
|
Jung WJ, Jeong JH, Yoon JS, Seo YW. Genome-wide identification of the plant homeodomain-finger family in rye and ScPHD5 functions in cold tolerance and flowering time. PLANT CELL REPORTS 2024; 43:142. [PMID: 38744747 DOI: 10.1007/s00299-024-03226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.
Collapse
Affiliation(s)
- Woo Joo Jung
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Korea
| | - Ji Hyeon Jeong
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea.
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
4
|
Liu H, Ding Q, Cao L, Huang Z, Wang Z, Zhang M, Jian S. Identification of the Abscisic Acid-, Stress-, and Ripening-Induced ( ASR) Family Involved in the Adaptation of Tetragonia tetragonoides (Pall.) Kuntze to Saline-Alkaline and Drought Habitats. Int J Mol Sci 2023; 24:15815. [PMID: 37958798 PMCID: PMC10650104 DOI: 10.3390/ijms242115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides' responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lisha Cao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zengwang Huang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.L.); (Q.D.); (L.C.); (Z.H.); (Z.W.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuguang Jian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Huang X, Wei JM, Feng WZ, Luo Q, Tan GF, Li YZ. Interaction between SlMAPK3 and SlASR4 regulates drought resistance in tomato ( Solanum lycopersicum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:73. [PMID: 37795156 PMCID: PMC10545654 DOI: 10.1007/s11032-023-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
Tomato is a leading vegetable in modern agriculture, and with global warming, drought has become an important factor threatening tomato production. Mitogen-activated protein kinase 3 (MAPK3) plays an important role in plant disease and stress resistance. To clarify the downstream target proteins of SlMAPK3 and the mechanism of stress resistance in tomato, this study was conducted with the SlMAPK3-overexpressing lines OE-1 and OE-2 and the CRISPR/Cas9-mediated mutant lines slmapk3-1 and slmapk3-2 under PEG 6000-simulated drought. The results of yeast two-hybrid (Y2H), pull-down, and coimmunoprecipitation (Co-IP) assays confirmed that SlASR4 (NP_001269248.1) interacted with SlMAPK3. Analyses of the SlASR4 protein structure and SlASR4 expression under PEG 6000 and BTH stress revealed that SlASR4 has a highly conserved protein structural domain involved in the drought stress response under PEG 6000 treatment. The function of the SlASR4 and SlMAPK3 downstream target protein, in drought resistance in tomato plants, was identified by virus-induced gene silencing (VIGS). This study clarified that SlMAPK3 interacts with SlASR4 to positively regulate drought resistance in tomato plants.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Jian-Ming Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Wen-Zhuo Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Yun-Zhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
7
|
Cao YH, Ren W, Gao HJ, Lü XP, Zhao Q, Zhang H, Rensing C, Zhang JL. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111572. [PMID: 36563942 DOI: 10.1016/j.plantsci.2022.111572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA), stress, and ripening-induced proteins (ASR), which belong to the ABA/WDS domain superfamily, are involved in the plant response to abiotic stresses. Haloxylon ammodendron is a succulent xerohalophyte species that exhibits strong resistance to abiotic stress. In this study, we isolated HaASR2 from H. ammodendron and demonstrated its detailed molecular function for drought and salt stress tolerance. HaASR2 interacted with the HaNHX1 protein, and its expression was significantly up-regulated under osmotic stress. Overexpression of HaASR2 improved drought and salt tolerance by enhancing water use efficiency and photosynthetic capacity in Arabidopsis thaliana. Overexpression of HaASR2 maintained the homeostasis of reactive oxygen species (ROS) and decreased sensitivity to exogenous ABA and endogenous ABA levels by down-regulating ABA biosynthesis genes under drought stress. Furthermore, a transcriptomic comparison between wild-type and HaASR2 transgenic Arabidopsis plants indicated that HaASR2 significantly induced the expression of 896 genes in roots and 406 genes in shoots under osmotic stress. Gene ontology (GO) enrichment analysis showed that those DEGs were mainly involved in ROS scavenging, metal ion homeostasis, response to hormone stimulus, etc. The results demonstrated that HaASR2 from the desert shrub, H. ammodendron, plays a critical role in plant adaptation to drought and salt stress and could be a promising gene for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hui-Juan Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
8
|
Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. PLANT PHYSIOLOGY 2023; 191:643-659. [PMID: 36264121 PMCID: PMC9806587 DOI: 10.1093/plphys/kiac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
To cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS). Overexpression of the BdRFS gene in Brachypodium distachyon delayed flowering, increased biomass accumulation, and promoted drought tolerance, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout mutants exhibited opposite phenotypes. A double T-DNA insertional mutant in the two Arabidopsis (Arabidopsis thaliana) homologs replicated the effects on flowering and water deprivation seen in the B. distachyon CRISPR knockout lines, highlighting the functional conservation of the family between monocots and dicots. Lipid analysis of B. distachyon and Arabidopsis revealed that digalactosyldiacylglycerol (DGDG) and phosphatidylcholine (PC) contents were significantly, and reciprocally, altered in overexpressor and knockout mutants. Importantly, alteration of C16:0-containing PC, a Flowering Locus T-interacting lipid, associated with flowering phenotype, with elevated levels corresponding to earlier flowering. Co-immunoprecipitation analysis suggested that BdRFS interacts with phospholipase Dα1 as well as several other abscisic acid-related proteins. Furthermore, reduction of C18:3 fatty acids in DGDG corresponded with reduced jasmonic acid metabolites in CRISPR mutants. Collectively, we suggest that stress-inducible RFS proteins represent a regulatory component of lipid metabolism that impacts several agronomic traits of biotechnological importance.
Collapse
Affiliation(s)
- Sheng Ying
- Authors for correspondence: (P.K.L.) and (S.Y.)
| | | | | |
Collapse
|
9
|
Zheng Y, Zong J, Liu J, Wang R, Chen J, Guo H, Kong W, Liu J, Chen Y. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. FRONTIERS IN PLANT SCIENCE 2022; 13:1063436. [PMID: 36466287 PMCID: PMC9714509 DOI: 10.3389/fpls.2022.1063436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Zoysia matrella is a salt-tolerant turfgrass grown in areas with high soil salinity irrigated with effluent water. Previous studies focused on explaining the regulatory mechanism of Z. matrella salt-tolerance at phenotypic and physiological levels. However, the molecular mechanism associated with salt tolerance of Z. matrella remained unclear. In this study, a high-efficient method named FOX (full-length cDNA overexpression) hunting system was used to search for salt-tolerant genes in Z. matrella. Eleven candidate genes, including several known or novel salt-tolerant genes involved in different metabolism pathways, were identified. These genes exhibited inducible expression under salt stress condition. Furthermore, a novel salt-inducible candidate gene ZmGnTL was transformed into Arabidopsis for functional analysis. ZmGnTL improved salt-tolerance through regulating ion homeostasis, reactive oxygen species scavenging, and osmotic adjustment. In summary, we demonstrated that FOX is a reliable system for discovering novel genes relevant to salt tolerance and several candidate genes were identified from Z. matrella that can assist molecular breeding for plant salt-tolerance improvement.
Collapse
Affiliation(s)
- Yuying Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weiyi Kong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Kim KH, Kim JY. Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. PLANTS (BASEL, SWITZERLAND) 2021; 10:2282. [PMID: 34834645 PMCID: PMC8624758 DOI: 10.3390/plants10112282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023]
Abstract
Wheat starch is one of the most important components in wheat grain and is extensively used as the main source in bread, noodles, and cookies. The wheat endosperm is composed of about 70% starch, so differences in the quality and quantity of starch affect the flour processing characteristics. Investigations on starch composition, structure, morphology, molecular markers, and transformations are providing new and efficient techniques that can improve the quality of bread wheat. Additionally, wheat starch composition and quality are varied due to genetics and environmental factors. Starch is more sensitive to heat and drought stress compared to storage proteins. These stresses also have a great influence on the grain filling period and anthesis, and, consequently, a negative effect on starch synthesis. Sucrose metabolizing and starch synthesis enzymes are suppressed under heat and drought stress during the grain filling period. Therefore, it is important to illustrate starch and sucrose mechanisms during plant responses in the grain filling period. In recent years, most of these quality traits have been investigated through genetic modification studies. This is an attractive approach to improve functional properties in wheat starch. The new information collected from hybrid and transgenic plants is expected to help develop novel starch for understanding wheat starch biosynthesis and commercial use. Wheat transformation research using plant genetic engineering technology is the main purpose of continuously controlling and analyzing the properties of wheat starch. The aim of this paper is to review the structure, biosynthesis mechanism, quality, and response to heat and drought stress of wheat starch. Additionally, molecular markers and transformation studies are reviewed to elucidate starch quality in wheat.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Jae-Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|