1
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
2
|
Li Y, Lin M, Zhang Q, Zhang P, Zhang Z, Li Y, Sun L, Li S, Li C, Chen D, Qi X. Overexpression of the Kiwifruit Transcription Factor AaMYB44 Decreases the Cold Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3126. [PMID: 39599335 PMCID: PMC11597321 DOI: 10.3390/plants13223126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Cold stress is one of the main abiotic stresses that affect the development and growth of kiwifruit (Actinidia arguta). Herein, we analyzed the transcriptomic data of A. arguta dormant shoots in response to low-temperature treatment, identified 52 MYB genes, and constructed a phylogenetic tree based on the encoded protein sequences. Then, the effect of one MYB gene on cold tolerance was analyzed. This gene had an open reading frame of 837 bp long and encoded 279 amino acids. Sequence alignment and phylogenetic analysis revealed that this gene belongs to the R2R3-MYB family and was named AaMYB44 based on its homology to other MYB family members. Quantitative real-time PCR revealed that AaMYB44 expression was significantly induced by low temperatures but exhibited the opposite trend in cold-tolerant genotypes. Subcellular localization assays revealed the nuclear localization of the AaMYB44 protein. Furthermore, AaMYB44 was transformed into Arabidopsis thaliana (A. thaliana) via inflorescence infection, and physiological and biochemical tests revealed that the cold resistance and antioxidant capacity of the transgenic A. thaliana were lower than those of wild-type plants. Overall, AaMYB44 might play a negative regulatory role in response to cold stress, providing new insight into the mechanism of cold tolerance.
Collapse
Affiliation(s)
- Yihang Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China;
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Qina Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Peng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Zhenzhen Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Sumei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Congcong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
| | - Dixin Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China;
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (Q.Z.); (P.Z.); (Z.Z.); (Y.L.); (L.S.); (S.L.); (C.L.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
3
|
Liu X, Ban Z, Yang Y, Xu H, Cui Y, Wang C, Bi Q, Yu H, Wang L. The yellowhorn MYB transcription factor MYB30 is required for wax accumulation and drought tolerance. TREE PHYSIOLOGY 2024; 44:tpae111. [PMID: 39190879 DOI: 10.1093/treephys/tpae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 08/29/2024]
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an economically important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of electrophoretic mobility shift assay, yeast one hybrid assay and dual-luciferase assay demonstrated that XsMYB30 could directly and specifically bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1 and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.
Collapse
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Zhuo Ban
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Huihui Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Chenxue Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
4
|
Luo G, Cai W, Wang H, Liu W, Liu X, Shi S, Wang L. Overexpression of a ' Paulownia fortunei' MYB Factor Gene, PfMYB44, Increases Salt and Drought Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2264. [PMID: 39204700 PMCID: PMC11360487 DOI: 10.3390/plants13162264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Paulownia fortunei (Seem.) Hemsl is a Paulownia Sieb.et tree of the family Scrophulariaceae. It has become an important short-to-medium-term fast-growing multi-purpose tree species in China due to its rapid growth, strong adaptability, and excellent material properties. MYB transcription factors in plants have numerous and diverse functions, playing important roles in various aspects such as plant stress response. To investigate the function of MYB transcription factors in Paulownia fortunei, this study used PCR technology to clone the PfMYB44 gene from Paulownia fortunei. The homology of PfMYB44 and SiMYB44 (Sesamum indicum) was the highest. Expression analysis results showed that PfMYB44 was expressed in the root, stem, young leaf, and mature leaf of Paulownia fortunei, with the highest content in the root. Cold, drought, hot, salt, and ABA treatments could increase the expression level of PfMYB44. Overexpression-PfMYB44 plants were constructed, and physiological and molecular analysis showed that PfMYB44 could positively regulate salt and drought stresses. Under drought stress, the expression levels of AtP5CS, AtCAT1, AtNCED3 and AtSnRK2.4 in transgenic lines were significantly induced. Salt stress induced the expression of AtNHX1, AtSOS1, AtSOS2 and AtSOS3 genes, and the relative expression levels of these genes in transgenic Arabidopsis were higher. In conclusion, the functional study of PfMYB44 laid a certain foundation for the study of Paulownia stress resistance, and was helpful to the study of its stress resistance mechanism and the cultivation of new stress resistance varieties.
Collapse
Affiliation(s)
- Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Shizheng Shi
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China
| |
Collapse
|
5
|
Teng Z, Chen C, He Y, Pan S, Liu D, Zhu L, Liang K, Li Y, Huang L. Melatonin confers thermotolerance and antioxidant capacity in Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108736. [PMID: 38797006 DOI: 10.1016/j.plaphy.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Zhiyan Teng
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Shihui Pan
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Luyu Zhu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Kexin Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yufei Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
6
|
Zhao Q, Xiong H, Yu H, Wang C, Zhang S, Hao J, Wang J, Zhang H, Zhang L. Function of MYB8 in larch under PEG simulated drought stress. Sci Rep 2024; 14:11290. [PMID: 38760385 PMCID: PMC11101485 DOI: 10.1038/s41598-024-61510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.
Collapse
Affiliation(s)
- Qingrong Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Huanhuan Xiong
- Forestry Research Institute in Heilongjiang Province, Harbin, China
| | - Hongying Yu
- State Administration of Forestry and Grassland, Harbin Research Institute of Forestry Machinery, Harbin, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Sufang Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junfei Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding (Chinese Academy of Forestry), Beijing, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| |
Collapse
|
7
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers. Mol Biotechnol 2023; 65:2004-2017. [PMID: 36913082 DOI: 10.1007/s12033-023-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Annual global temperature is increasing rapidly. Therefore, in the near future, plants will be exposed to severe heat stress. However, the potential of microRNAs-mediated molecular mechanism for modulating the expression of their target genes is unclear. To investigate the changes of miRNAs in thermo-tolerant plants, in this study, we first investigated the impact of four high temperature regimes including 35/30 °C, 40/35 °C, 45/40 °C, and 50/45 °C in a day/night cycle for 21 days on the physiological traits (total chlorophyll, relative water content and electrolyte leakage and total soluble protein), antioxidant enzymes activities (superoxide dismutase, ascorbic peroxidase, catalase and peroxidase), and osmolytes (total soluble carbohydrates and starch) in two bermudagrass accessions named Malayer and Gorgan. The results showed that more chlorophyll and the relative water content, lower ion leakage, more efficient protein and carbon metabolism and activation of defense proteins (such as antioxidant enzymes) in Gorgan accession, led to better maintained plant growth and activity during heat stress. In the next stage, to investigate the role of miRNAs and their target genes in response to heat stress in a thermo-tolerant plant, the impact of severe heat stress (45/40 °C) was evaluated on the expression of three miRNAs (miRNA159a, miRNA160a and miRNA164f) and their target genes (GAMYB, ARF17 and NAC1, respectively). All measurements were performed in leaves and roots simultaneously. Heat stress significantly induced the expression of three miRNAs in leaves of two accession, while having different effects on the expression of these miRNAs in roots. The results showed that a decrease in the expression of the transcription factor ARF17, no change in the expression of the transcription factor NAC1, and an increase in the expression of the transcription factor GAMYB in leaf and root tissues of Gorgan accession led to improved heat tolerance in it. These results also showed that the effect of miRNAs on the modulating expression of target mRNAs in leaves and roots is different under heat stress, and miRNAs and mRNAs show spatiotemporal expression. Therefore, the simultaneous analysis of miRNAs and mRNAs expressions in shoot and roots is needed to comprehensively understand miRNAs regulatory function under heat stress.
Collapse
Affiliation(s)
- Zohreh Amini
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mehrangiz Chehrazi
- Department of Horticultural Science, School of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mingying Xiang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
9
|
Zhou C, Wu S, Li C, Quan W, Wang A. Response Mechanisms of Woody Plants to High-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3643. [PMID: 37896106 PMCID: PMC10610489 DOI: 10.3390/plants12203643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Shengjiang Wu
- Guizhou Academy of Tobacco Science, Guiyang 550081, China;
| | - Chaochan Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| |
Collapse
|
10
|
Liu W, Chen G, He M, Wu J, Wen W, Gu Q, Guo S, Wang Y, Sun J. ABI5 promotes heat stress-induced chlorophyll degradation by modulating the stability of MYB44 in cucumber. HORTICULTURE RESEARCH 2023; 10:uhad089. [PMID: 37334179 PMCID: PMC10273075 DOI: 10.1093/hr/uhad089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/27/2023] [Indexed: 06/20/2023]
Abstract
The yellowing of leaves caused by the decomposition of chlorophyll (Chl) is a characteristic event during senescence, which can be induced by various environmental stresses. However, the molecular mechanisms of high temperature-induced Chl degradation in horticultural plants remain poorly understood. Here, we found that heat stress induced Chl degradation and the expression of ABI5 and MYB44 in cucumber. Silencing of ABI5 compromised heat stress-induced Chl degradation, and the transcription of pheophytinase (PPH) and pheophorbide a oxygenase (PAO), two key genes in Chl catabolic pathway, but silencing of MYB44 exhibited the opposite results. Furthermore, ABI5 interacted with MYB44 in vitro and in vivo. ABI5 positively regulated heat stress-induced Chl degradation through two pathways. ABI5 directly bound to PPH and PAO promoters to promote their expression, leading to accelerating Chl degradation. On the other hand, the interaction between ABI5 and MYB44 reduced the binding of MYB44 to PPH and PAO promoters and led to the ubiquitination-depended protein degradation of MYB44, thereby alleviating the transcription inhibitory effect of MYB44 on PPH and PAO. Taken together, our findings propose a new regulatory network for ABI5 in regulating heat stress-induced Chl degradation.
Collapse
Affiliation(s)
- Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxu Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Corresponding authors: E-mails: ;
| | - Jin Sun
- Corresponding authors: E-mails: ;
| |
Collapse
|
11
|
Hu D, Zhang X, Xue P, Nie Y, Liu J, Li Y, Wang C, Wan X. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107698. [PMID: 37060867 DOI: 10.1016/j.plaphy.2023.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is a floral crop that is highly valuable commercially. However, high temperatures adversely affect its growth and the quality of its cut flowers. Melatonin (MT) is a indole substance that can mitigate plant damage under heat stress. In this study, the leaves of carnation seedlings were sprayed with different concentrations of MT before exposure to high temperature. The indices of growth, physiological and chlorophyll fluorescence were measured and analyzed by the membership function method. The results showed that treatment with 100 μM MT was the most effective at ameliorating damage on carnation. We then analyzed the effects of 100 μM MT pretreatment on carnation at different time points of heat stress and found that this concentration of MT ameliorated the damage caused by heat stress, increased the content of photosynthetic pigments, enhanced the performance of photosystem II and improved photosynthesis. In addition, MT also reduced cell damage and lipid peroxidation, increased the activities of antioxidant enzymes and regulated the accumulation of osmotic substances in carnation. Moreover, MT increased the fresh/dry weight of stems and roots, promoted the opening of stomata, and protected the integrity of chloroplast structure of carnation. Compared with heat stress, pre-spraying with MT significantly down-regulated the transcription of a chlorophyll degradation gene and up-regulated the transcription of stress-related genes. Overall, this study provides a theoretical foundation for the mitigation of the adverse effects of exogenous MT under heat stress and proposes beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuanyuan Nie
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Jinyu Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yan Li
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Can Wang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
13
|
Sun M, Xu QY, Zhu ZP, Liu PZ, Yu JX, Guo YX, Tang S, Yu ZF, Xiong AS. AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:151. [PMID: 36941578 PMCID: PMC10029358 DOI: 10.1186/s12870-023-04157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. β-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response. RESULTS Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased β-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted β-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of H2O2 and MDA, and the inhibition of O2- generation. Meanwhile, β-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29. CONCLUSIONS The findings indicated that AgMYB5 up-regulated β-carotene biosynthesis and drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian-Xiang Yu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Yao-Xian Guo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Shu Tang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
14
|
Li J, Zhou X, Xiong C, Zhou H, Li H, Ruan C. Yellowhorn Xso-miR5149-XsGTL1 enhances water-use efficiency and drought tolerance by regulating leaf morphology and stomatal density. Int J Biol Macromol 2023; 237:124060. [PMID: 36933587 DOI: 10.1016/j.ijbiomac.2023.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolium) is a unique edible woody oil tree species in China. Drought stress is the major yield-limiting factor of yellowhorn. MicroRNAs play an important role in regulating the response of woody plants to drought stress. However, the regulatory function of miRNAs in yellowhorn remains unclear. Here, we first constructed coregulatory networks integrated with miRNAs and their target genes. According to GO function and expression pattern analysis, we selected the Xso-miR5149-XsGTL1 module for further study. Xso-miR5149 is a key regulator of leaf morphology and stomatal density by directly mediating the expression of the transcription factor XsGTL1. Downregulation of XsGTL1 in yellowhorn led to increased leaf area and reduced stomatal density. RNA-seq analysis indicated that downregulation of XsGTL1 increased the expression of genes involved in the negative control of stomatal density, leaf morphology, and drought tolerance. After drought stress treatments, the XsGTL1-RNAi yellowhorn plants were less damaged and had higher water-use efficiency than the WT plants, while destruction of Xso-miR5149 or overexpression of XsGTL1 had the opposite effect. Our findings indicated that the Xso-miR5149-XsGTL1 regulatory module plays a critical role in controlling leaf morphology and stomatal density; hence, it's a potential candidate module for engineering enhanced drought tolerance in yellowhorn.
Collapse
Affiliation(s)
- Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - Xudong Zhou
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, 311300 Lin'an, Zhejiang Province, PR China
| | - Chaowei Xiong
- College of Forestry, Northwest Agriculture and Forestry University, 712100 Yangling, Shaanxi Province, PR China
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China.
| |
Collapse
|
15
|
Lee SH, Yoon JS, Jung WJ, Kim DY, Seo YW. Genome-wide identification and characterization of the lettuce GASA family in response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:106. [PMID: 36814195 PMCID: PMC9945619 DOI: 10.1186/s12870-023-04101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Lettuce is one of the most extensively farmed vegetables in the world, and it prefers cool growing conditions. High temperatures promote premature bolt formation, reducing quality and yield. The gibberellic acid-stimulated Arabidopsis (GASA) family genes play critical roles in plant growth, development, and stress responses. However, the biological functions of GASA proteins in lettuce have yet to be thoroughly investigated. RESULTS Using genome-wide analysis, 20 GASAs were identified in lettuce including, three groups of LsGASA proteins based on the phylogenetic analysis. Except for one, all GASA proteins included a conserved GASA domain with 12 cysteine residues. Cis-element analysis showed that LsGASAs were closely associated with light, phytohormones, and stress resistance. Five segmental and three tandem duplication events were observed in the LsGASA family based on duplication analysis. GASA synteny analysis among lettuce, Arabidopsis, tobacco, and rice revealed that LsGASA5 is highly collinear with all species. Six of the 20 LsGASA showed increased expression patterns at specific time points in the shoot apical meristem when subjected to heat stress. According to gene expression analysis, the majority of GASA were highly expressed in flowers compared to other organs, and six GASA exhibited highly increased expression levels in response to NaCl, abscisic acid, and gibberellin treatment. Furthermore, LsGASA proteins are predominantly found in the plasma membrane and/or the cytosol. CONCLUSIONS This study provides a comprehensive characterization of LsGASA genes for their diversity and biological functions. Moreover, our results will be useful for further studies on the function of lettuce GASA in abiotic stress- and heat-induced bolting signaling.
Collapse
Affiliation(s)
- Sun Ho Lee
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, South Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Transcriptomic Analysis Provides Novel Insights into the Heat Stress-Induced Response in Codonopsis tangshen. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010168. [PMID: 36676120 PMCID: PMC9867074 DOI: 10.3390/life13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Codonopsis tangshen Oliv (C. tangshen) is a valuable traditional Chinese medicinal herb with tremendous health benefits. However, the growth and development of C. tangshen are seriously affected by high temperatures. Therefore, understanding the molecular responses of C. tangshen to high-temperature stress is imperative to improve its thermotolerance. Here, RNA-Seq analysis was performed to investigate the genome-wide transcriptional changes in C. tangshen in response to short-term heat stress. Heat stress significantly damages membrane stability and chlorophyll biosynthesis in C. tangshen, as evidenced by pronounced malonaldehyde (MDA), electrolyte leakage (EL), and reduced chlorophyll content. Transcriptome analysis showed that 2691 differentially expressed genes (DEGs) were identified, including 1809 upregulated and 882 downregulated. Functional annotations revealed that the DEGs were mainly related to heat shock proteins (HSPs), ROS-scavenging enzymes, calcium-dependent protein kinases (CDPK), HSP-HSP network, hormone signaling transduction pathway, and transcription factors such as bHLHs, bZIPs, MYBs, WRKYs, and NACs. These heat-responsive candidate genes and TFs could significantly regulate heat stress tolerance in C. tangshen. Overall, this study could provide new insights for understanding the underlying molecular mechanisms of thermotolerance in C. tangshen.
Collapse
|
17
|
Liu P, Wu X, Gong B, Lü G, Li J, Gao H. Review of the Mechanisms by Which Transcription Factors and Exogenous Substances Regulate ROS Metabolism under Abiotic Stress. Antioxidants (Basel) 2022; 11:2106. [PMID: 36358478 PMCID: PMC9686556 DOI: 10.3390/antiox11112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaolei Wu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Binbin Gong
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Guiyun Lü
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jingrui Li
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
18
|
Zhang Y, Tan Q, Wang N, Meng X, He H, Wen B, Xiao W, Chen X, Li D, Fu X, Li L. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. FRONTIERS IN PLANT SCIENCE 2022; 13:971482. [PMID: 36035719 PMCID: PMC9413399 DOI: 10.3389/fpls.2022.971482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy, which enables damage from cold temperatures to be avoided during winter and early spring, is an important adaptive mechanism of deciduous fruit trees to cope with seasonal environmental changes and temperate climates. Understanding the regulatory mechanism of bud break in fruit trees is highly important for the artificial control of bud break and the prevention of spring frost damage. However, the molecular mechanism underlying the involvement of MYB TFs during the bud break of peach is still unclear. In this study, we isolated and identified the PpMYB52 (Prupe.5G240000.1) gene from peach; this gene is downregulated in the process of bud break, upregulated in response to ABA and downregulated in response to GA. Overexpression of PpMYB52 suppresses the germination of transgenic tomato seeds. In addition, Y2H, Bimolecular fluorescence complementation (BiFC) assays verified that PpMYB52 interacts with a RING-type E3 ubiquitin ligase, PpMIEL1, which is upregulated during bud break may positively regulate peach bud break by ubiquitination-mediated degradation of PpMYB52. Our findings are the first to characterize the molecular mechanisms underlying the involvement of MYB TFs in peach bud break, increasing awareness of dormancy-related molecules to avoid bud damage in perennial deciduous fruit trees.
Collapse
Affiliation(s)
- Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
19
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Salix myrtillacea Female Cuttings Performed Better Than Males under Nitrogen Deposition on Leaves and Drought Conditions. FORESTS 2022. [DOI: 10.3390/f13060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Drought and nitrogen (N) deposition are major threats to global forests under climate change. However, investigation into how dioecious woody species acclimate to drought and N deposition and how this is influenced by gender has, so far, been unexplored. We examined the phenotypic and physiological changes in Salix myrtillacea females and males under 60 d drought, and wet N deposition on leaves’ treatments. Drought inhibited their growth by limiting water acquisition, photosynthesis, and increasing oxidative stress, especially in males. However, females exhibited greater drought resistance than males due to their better water acquisition ability and instantaneous water use efficiency (WUEleaf), higher foliar abscisic acid (ABA) and auxin (IAA) levels and greater antioxidase activities. N deposition increased foliar ABA, H2O2 accumulation, and reduced N distribution to the leaves, causing restricted photosynthesis and aerial growth in males. Interestingly, N deposition improved biomass accumulation in both the genders under drought, with greater positive effects on drought-stressed males by increasing their radial growth and causing greater N distribution to the leaves, increased foliar IAA and reduced oxidative stress. Regardless, S. myrtillacea females still showed better growth and drought resistance than males under both drought and N deposition. The females’ superior performance indicated that they are more appropriate for forestation, thus supporting the dominant gender’s selection in the afforestation of unisexual S. myrtillacea in drought and severe N deposition regions.
Collapse
|
21
|
Regulation of BcMYB44 on Anthocyanin Synthesis and Drought Tolerance in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis Makino). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to explore the regulation of BcMYB44 on anthocyanin synthesis and drought tolerance of non-heading Chinese cabbage. The BcMYB44 gene was cloned from the purple inbred line ‘NJZX1-3’ and its green mutant ‘NJZX1-0’. Sequence analysis confirmed that BcMYB44 belongs to the R2R3-MYB family and has the highest homology with BnMYB44. Subcellular localization revealed that BcMYB44 is a nuclear protein. Yeast two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) experiments showed that BcMYB44 interacts with BcPAP1 and BcEGL3. Pigment detection of BcPAP1 and BcMYB44 protein activity in N. benthamiana indicates that BcMYB44 plays a negative regulatory role by inhibiting the expression of key structural genes (F3H, DFR, etc.) in anthocyanin synthesis. Virus-induced gene silencing (VIGS) further confirmed this inhibition. Analysis of drought tolerance of non-heading Chinese cabbage based on VIGS showed that pTY-S plants are more resistant to drought than pTY-BcMYB44 plants. The results indicate that BcMYB44 has a positive regulatory role in drought stress, which most likely is achieved by inhibiting anthocyanin accumulation, regulating stomatal movement, and improving osmotic regulation and homeostasis of reactive oxygen species (ROS).
Collapse
|
22
|
Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? SUSTAINABILITY 2022. [DOI: 10.3390/su14063480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environmental constraints or stresses may cause losses in the global agricultural production. These obstacles may include abiotic and biotic stresses, which have already been studied in both individual and combined cases. However, there are very few studies on multiple stresses. On the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients) have become promising tools for agricultural sustainability. Nanofertilizers are also the proper solution to overcoming the environmental and health problems that can result from conventional fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses, which can include individual, combined, and multiple stresses. The stresses are most commonly the result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the expected damages of multiple stresses on plants?
Collapse
|
23
|
Teng L, Liu H, Chu X, Song X, Shi L. Effect of precipitation change on the photosynthetic performance of Phragmites australis under elevated temperature conditions. PeerJ 2022; 10:e13087. [PMID: 35291483 PMCID: PMC8918233 DOI: 10.7717/peerj.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for plant survival and growth but also plays an important role in global carbon fixation. However, photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by future climate change. Methods In this study, we examined the photosynthetic responses of Phragmites australis (P. australis) to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal regimes (ambient temperature and +4 °C) in environment-controlled chambers. Results Our results showed that the net CO2 assimilation rate (P n), maximal rate of Rubisco (V cmax), maximal rate of ribulose-bisphosphate (RuBP) regeneration (J max) and chlorophyll (Chl) content were enhanced under increased precipitation condition, but were declined drastically under the condition of water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content (p > 0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of drought. The combination of high temperature and water deficit had more detrimental effect on P. australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close relationship with P n (R2 = 0.86, p < 0.01). Under high temperature, P n was ralated to MDA content (R2 = 0.81, p < 0.01). High temperature disrupted the balance between V cmax and J max (the ratio of J max to V cmax decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis. Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII quantum yield (Φ PSII) under both changing precipitation and high temperature conditions. Conclusions Our results highlight the significant role of precipitation change in regulating the photosynthetic performance of P. australis under elevated temperature conditions, which may exacerbate the drought-induced primary productivity reduction of P. australis under future climate scenarios.
Collapse
Affiliation(s)
| | | | | | | | - Lianhui Shi
- Shandong Agricultural University, Taian, China
| |
Collapse
|
24
|
Jia Y, Niu Y, Zhao H, Wang Z, Gao C, Wang C, Chen S, Wang Y. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. HORTICULTURE RESEARCH 2022; 9:uhac040. [PMID: 35184174 PMCID: PMC9070641 DOI: 10.1093/hr/uhac040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/03/2022] [Accepted: 02/05/2022] [Indexed: 05/16/2023]
Abstract
Although many genes and biological processes involved in abiotic stress response have been identified, how they are regulated remains largely unclear. Here, to study the regulatory mechanism of birch (Betula platyphylla) responding to drought induced by polyethylene glycol (PEG) 6000 (20%, w/v), a partial correlation coefficient-based algorithm for constructing gene regulatory network (GRN) was proposed, and a three-layer hierarchical GRN was constructed, including 68 transcription factors (TFs), and 252 structural genes. Totally, 1448 predicted regulatory relationships are included, and most of them are novel. The reliability of GRN was verified by ChIP-PCR and qRT-PCR based on transient transformation. About 55% of genes in the bottom layer of GRN could confer drought tolerance. We selected the two TFs, BpMADS11 and BpNAC090, from the up layer and characterized their function in drought tolerance. Overexpression of BpMADS11 and BpNAC090 both reduces electrolyte leakage, ROS and MDA contents, displaying increased drought tolerance than wild-type birch. According to this GRN, the important biological processes involved in drought were identified, including "signaling hormone pathways", "water transport", "regulation of stomatal movement" and "response to oxidative stress". This work indicated that BpERF017, BpAGL61 and BpNAC090 are the key upstream regulators in birch drought tolerance. Our data clearly revealed the upstream regulators and TF-DNA interaction regulate different biological processes to adapt drought stress.
Collapse
Affiliation(s)
- Yaqi Jia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
25
|
Afzal I, Imran S, Javed T, Tahir A, Kamran M, Shakeel Q, Mehmood K, Ali HM, Siddiqui MH. Alleviation of temperature stress in maize by integration of foliar applied growth promoting substances and sowing dates. PLoS One 2022; 17:e0260916. [PMID: 35051214 PMCID: PMC8775190 DOI: 10.1371/journal.pone.0260916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Temperature is a key factor influencing plant growth and productivity, but its sudden rise can cause severe consequences on crop performances. Early sowing and application of growth promoting agents as a foliar spray can be a sustainable approach to cope with high temperature stress at grain filling stage of cereal crops. Therefore, a test was designed to explore the potential of different growth helping agents including sorghum water extract (SWE, 10 ml L-1), moringa leaf extract (MLE, 3%), hydrogen peroxide (H2O2, 2 μM), salicylic acid (SA, 50 mg L-1) and ascorbic acid (ASA, 50 mg L-1) as foliar agents at different sowing dates (early and optimum) to cope with temperature stress in maize. The results stated that foliar application of growth promoting substances successfully persuaded high temperature tolerance at reproductive phase of maize in early and optimum sowings when compared to control. However, SWE + ASA, MLE + H2O2 and SWE + ASA + SA + H2O2 were the best combinations for improving growth, development, and physiological variables under both sowing dates even under suboptimal temperature. All foliar applications significantly increased maize grain and biological yields while maximum was observed in SWE + ASA followed by SWE + ASA + SA + H2O2 or MLE + H2O2 that were statistically at par with ASA + SA + H2O2 but plants without spray or distilled water application did not improve grain and biological yields. Overall, the foliar applications of growth promoting substances enable the plant to enhance its growth, development, morphology, yield and biochemical variables.
Collapse
Affiliation(s)
- Irfan Afzal
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Shakeel Imran
- Department of Agronomy, University of Agriculture, Vehari, Pakistan
| | - Talha Javed
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ayesha Tahir
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kamran
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Qamar Shakeel
- Fodder Research Sub-Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Khalid Mehmood
- Rothamsted Research Institute, North Wyke, Oakhampton, Devonshire, England
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Anwar M, Chen L, Xiao Y, Wu J, Zeng L, Li H, Wu Q, Hu Z. Recent Advanced Metabolic and Genetic Engineering of Phenylpropanoid Biosynthetic Pathways. Int J Mol Sci 2021; 22:9544. [PMID: 34502463 PMCID: PMC8431357 DOI: 10.3390/ijms22179544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
The MYB transcription factors (TFs) are evolving as critical role in the regulation of the phenylpropanoid and tanshinones biosynthetic pathway. MYB TFs relate to a very important gene family, which are involved in the regulation of primary and secondary metabolisms, terpenoids, bioactive compounds, plant defense against various stresses and cell morphology. R2R3 MYB TFs contained a conserved N-terminal domain, but the domain at C-terminal sorts them different regarding their structures and functions. MYB TFs suppressors generally possess particular repressive motifs, such as pdLNLD/ELxiG/S and TLLLFR, which contribute to their suppression role through a diversity of complex regulatory mechanisms. A novel flower specific "NF/YWSV/MEDF/LW" conserved motif has a great potential to understand the mechanisms of flower development. In the current review, we summarize recent advanced progress of MYB TFs on transcription regulation, posttranscriptional, microRNA, conserved motif and propose directions to future prospective research. We further suggest there should be more focus on the investigation for the role of MYB TFs in microalgae, which has great potential for heterologous protein expression system for future perspectives.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibo Xiao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
| | - Qingyu Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (L.C.); (Y.X.); (H.L.); (Q.W.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|