1
|
Hong HR, Prince CR, Wu L, Lin IN, Feaga HA. YebC2 resolves ribosome stalling at polyprolines independent of EF-P and the ABCF ATPase YfmR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618948. [PMID: 39463947 PMCID: PMC11507958 DOI: 10.1101/2024.10.18.618948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in B. subtilis that resolves ribosome stalling at polyprolines. We demonstrate that YebC2, EF-P and YfmR act independently to support cellular fitness. Moreover, we show that YebC2 interacts directly with the 70S ribosome, supporting a direct role for YebC2 in translation. Finally, we assess the evolutionary relationship between YebC2 and other characterized YebC family proteins, and present evidence that transcription and translation factors within the YebC family have evolved separately. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at prolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
2
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. SCIENCE ADVANCES 2024; 10:eadq0791. [PMID: 39423260 PMCID: PMC11488536 DOI: 10.1126/sciadv.adq0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587046. [PMID: 38903092 PMCID: PMC11188070 DOI: 10.1101/2024.03.27.587046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Support Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2024; 121:e2400584121. [PMID: 38502707 PMCID: PMC10990147 DOI: 10.1073/pnas.2400584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Anna P. Brogan
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | |
Collapse
|
5
|
Delerue T, Chareyre S, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial cell surface nanoenvironment requires a specialized chaperone to activate a peptidoglycan biosynthetic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561273. [PMID: 37986874 PMCID: PMC10659427 DOI: 10.1101/2023.10.06.561273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a dedicated chaperone from a distinct higher-order clade of AAA+ ATPases that activates the peptidoglycan glycosyltransferase MurG during sporulation, even though MurG does not normally require activation by a chaperone during vegetative growth. MurG redeploys to the spore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment necessitates a specific chaperone for proper MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly inactivates SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes other dedicated chaperones involved in secretion, cell-envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael C. Gilmore
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Danevčič T, Spacapan M, Dragoš A, Kovács ÁT, Mandic-Mulec I. DegQ is an important policing link between quorum sensing and regulated adaptative traits in Bacillus subtilis. Microbiol Spectr 2023; 11:e0090823. [PMID: 37676037 PMCID: PMC10581247 DOI: 10.1128/spectrum.00908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
Quorum sensing (QS) is a widespread bacterial communication system that controls important adaptive traits in a cell density-dependent manner. However, mechanisms by which QS-regulated traits are linked within the cell and mechanisms by which these links affect adaptation are not well understood. In this study, Bacillus subtilis was used as a model bacterium to investigate the link between the ComQXPA QS system, DegQ, surfactin and protease production in planktonic and biofilm cultures. The work tests two alternative hypotheses predicting that hypersensitivity of the QS signal-deficient mutant (comQ::kan) to exogenously added ComX, resulting in increased surfactin production, is linked to an additional genetic locus, or alternatively, to overexpression of the ComX receptor ComP. Results are in agreement with the first hypothesis and show that the P srfAA hypersensitivity of the comQ::kan mutant is linked to a 168 strain-specific mutation in the P degQ region. Hence, the markerless ΔcomQ mutant lacking this mutation is not overresponsive to ComX. Such hyper-responsiveness is specific for the P srfAA and not detected in another ComX-regulated promoter, the P aprE , which is under the positive control by DegQ. Our results suggest that DegQ by exerting differential effect on P srfAA and P aprE acts as a policing mechanism and the intracellular link, which guards the cell from an overinvestment into surfactin production. IMPORTANCE DegQ levels are known to regulate surfactin synthesis and extracellular protease production, and DegQ is under the control of the ComX-dependent QS. DegQ also serves as an important policing link between these QS-regulated processes, preventing overinvestment in these costly processes. This work highlights the importance of DegQ, which acts as the intracellular link between ComX production and the response by regulating extracellular degradative enzyme synthesis and surfactin production.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Mihael Spacapan
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Ákos T. Kovács
- Department of Biotechnology and Biomedicine, Bacterial Interactions and Evolution Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ines Mandic-Mulec
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
7
|
Chareyre S, Li X, Anjuwon-Foster BR, Clifford S, Brogan A, Su Y, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during bacterial differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552768. [PMID: 37790399 PMCID: PMC10542145 DOI: 10.1101/2023.08.10.552768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that a unique feature of the sporulation septum, defined by the cell division machinery, drives the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Brogan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
9
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
10
|
Chu PTB, Phan TTP, Nguyen TTT, Truong TTT, Schumann W, Nguyen HD. Potent IPTG-inducible integrative expression vectors for production of recombinant proteins in Bacillus subtilis. World J Microbiol Biotechnol 2023; 39:143. [PMID: 37004690 DOI: 10.1007/s11274-023-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The β-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.
Collapse
Affiliation(s)
- Phuong Thi Bich Chu
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
| | - Tam Thi Thanh Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
12
|
Podnar E, Erega A, Danevčič T, Kovačec E, Lories B, Steenackers H, Mandic-Mulec I. Nutrient Availability and Biofilm Polysaccharide Shape the Bacillaene-Dependent Antagonism of Bacillus subtilis against Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0183622. [PMID: 36342318 PMCID: PMC9769773 DOI: 10.1128/spectrum.01836-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica is one of the most common foodborne pathogens and, due to the spread of antibiotic resistance, new antimicrobial strategies are urgently needed to control it. In this study, we explored the probiotic potential of Bacillus subtilis PS-216 and elucidated the mechanisms that underlie the interactions between this soil isolate and the model pathogenic strain S. Typhimurium SL1344. The results reveal that B. subtilis PS-216 inhibits the growth and biofilm formation of S. Typhimurium through the production of the pks cluster-dependent polyketide bacillaene. The presence of S. Typhimurium enhanced the activity of the PpksC promoter that controls bacillaene production, suggesting that B. subtilis senses and responds to Salmonella. The level of Salmonella inhibition, overall PpksC activity, and PpksC induction by Salmonella were all higher in nutrient-rich conditions than in nutrient-depleted conditions. Although eliminating the extracellular polysaccharide production of B. subtilis via deletion of the epsA-O operon had no significant effect on inhibitory activity against Salmonella in nutrient-rich conditions, this deletion mutant showed an enhanced antagonism against Salmonella in nutrient-depleted conditions, revealing an intricate relationship between exopolysaccharide production, nutrient availability, and bacillaene synthesis. Overall, this work provides evidence on the regulatory role of nutrient availability, sensing of the competitor, and EpsA-O polysaccharide in the social outcome of bacillaene-dependent competition between B. subtilis and S. Typhimurium. IMPORTANCE Probiotic bacteria represent an alternative for controlling foodborne disease caused by Salmonella enterica, which constitutes a serious concern during food production due to its antibiotic resistance and resilience to environmental stress. Bacillus subtilis is gaining popularity as a probiotic, but its behavior in biofilms with pathogens such as Salmonella remains to be elucidated. Here, we show that the antagonism of B. subtilis is mediated by the polyketide bacillaene and that the production of bacillaene is a highly dynamic trait which depends on environmental factors such as nutrient availability and the presence of competitors. Moreover, the production of extracellular polysaccharides by B. subtilis further alters the influence of these factors. Hence, this work highlights the inhibitory effect of B. subtilis, which is condition-dependent, and the importance of evaluating probiotic strains under conditions relevant to the intended use.
Collapse
Affiliation(s)
- Eli Podnar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andi Erega
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kovačec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Ines Mandic-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology (COMPETE), University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
14
|
Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat Commun 2021; 12:3457. [PMID: 34103505 PMCID: PMC8187645 DOI: 10.1038/s41467-021-23685-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.
Collapse
|
15
|
Špacapan M, Danevčič T, Štefanic P, Porter M, Stanley-Wall NR, Mandic-Mulec I. The ComX Quorum Sensing Peptide of Bacillus subtilis Affects Biofilm Formation Negatively and Sporulation Positively. Microorganisms 2020; 8:E1131. [PMID: 32727033 PMCID: PMC7463575 DOI: 10.3390/microorganisms8081131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is often required for the formation of bacterial biofilms and is a popular target of biofilm control strategies. Previous studies implicate the ComQXPA quorum sensing system of Bacillus subtilis as a promoter of biofilm formation. Here, we report that ComX signaling peptide deficient mutants form thicker and more robust pellicle biofilms that contain chains of cells. We confirm that ComX positively affects the transcriptional activity of the PepsA promoter, which controls the synthesis of the major matrix polysaccharide. In contrast, ComX negatively controls the PtapA promoter, which drives the production of TasA, a fibrous matrix protein. Overall, the biomass of the mutant biofilm lacking ComX accumulates more monosaccharide and protein content than the wild type. We conclude that this QS phenotype might be due to extended investment into growth rather than spore development. Consistent with this, the ComX deficient mutant shows a delayed activation of the pre-spore specific promoter, PspoIIQ, and a delayed, more synchronous commitment to sporulation. We conclude that ComX mediated early commitment to sporulation of the wild type slows down biofilm formation and modulates the coexistence of multiple biological states during the early stages of biofilm development.
Collapse
Affiliation(s)
- Mihael Špacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Polonca Štefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Michael Porter
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| |
Collapse
|
16
|
Lytvynenko I, Paternoga H, Thrun A, Balke A, Müller TA, Chiang CH, Nagler K, Tsaprailis G, Anders S, Bischofs I, Maupin-Furlow JA, Spahn CMT, Joazeiro CAP. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell 2019; 178:76-90.e22. [PMID: 31155236 DOI: 10.1016/j.cell.2019.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.
Collapse
Affiliation(s)
- Iryna Lytvynenko
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Helge Paternoga
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annika Balke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Tina A Müller
- Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Christina H Chiang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Katja Nagler
- BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Ilka Bischofs
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
17
|
Rasetto NB, Lavatelli A, Martin N, Mansilla MC. Unravelling the lipoyl-relay of exogenous lipoate utilization in Bacillus subtilis. Mol Microbiol 2019; 112:302-316. [PMID: 31066113 DOI: 10.1111/mmi.14271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 11/29/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative and one-carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging. The former requires octanoylation of GcvH, insertion of sulfur atoms and amidotransfer of the lipoate to E2s, catalyzed by LipL. Lipoate scavenging is mediated by a lipoyl protein ligase (LplJ) that catalyzes a classical two-step ATP-dependent reaction. Although these pathways were thought to be redundant, a ∆lipL mutant, in which the endogenous lipoylation pathway of E2 subunits is blocked, showed growth defects in minimal media even when supplemented with lipoate and despite the presence of a functional LplJ. In this study, we demonstrate that LipL is essential to modify E2 subunits of branched chain ketoacid and pyruvate dehydrogenases during lipoate scavenging. The crucial role of LipL during lipoate utilization relies on the strict substrate specificity of LplJ, determined by charge complementarity between the ligase and the lipoylable subunits. This new lipoyl-relay required for lipoate scavenging highlights the relevance of the amidotransferase as a valid target for the design of new antimicrobial agents among Gram-positive pathogens.
Collapse
Affiliation(s)
- Natalí B Rasetto
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| | - Antonela Lavatelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| | - Natalia Martin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, USA
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET, Rosario, S2000FHQ, Argentina
| |
Collapse
|
18
|
Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA. Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment. mBio 2018; 9:e00341-18. [PMID: 29588402 PMCID: PMC5874923 DOI: 10.1128/mbio.00341-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/04/2022] Open
Abstract
There is a growing appreciation for the impact that bacteria have on higher organisms. Plant roots often harbor beneficial microbes, such as the Gram-positive rhizobacterium Bacillus subtilis, that influence their growth and susceptibility to disease. The ability to form surface-attached microbial communities called biofilms is crucial for the ability of B. subtilis to adhere to and protect plant roots. In this study, strains harboring deletions of the B. subtilis genes known to synthesize and degrade the second messenger cyclic di-adenylate monophosphate (c-di-AMP) were examined for their involvement in biofilm formation and plant attachment. We found that intracellular production of c-di-AMP impacts colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis We also show that B. subtilis secretes c-di-AMP and that putative c-di-AMP transporters impact biofilm formation and plant root colonization. Taken together, our data describe a new role for c-di-AMP as a chemical signal that affects important cellular processes in the environmentally and agriculturally important soil bacterium B. subtilis These results suggest that the "intracellular" signaling molecule c-di-AMP may also play a previously unappreciated role in interbacterial cell-cell communication within plant microbiomes.IMPORTANCE Plants harbor bacterial communities on their roots that can significantly impact their growth and pathogen resistance. In most cases, however, the signals that mediate host-microbe and microbe-microbe interactions within these communities are unknown. A detailed understanding of these interaction mechanisms could facilitate the manipulation of these communities for agricultural or environmental purposes. Bacillus subtilis is a plant-growth-promoting bacterium that adheres to roots by forming biofilms. We therefore began by exploring signals that might impact its biofilm formation. We found that B. subtilis secretes c-di-AMP and that the ability to produce, degrade, or transport cyclic di-adenylate monophosphate (c-di-AMP; a common bacterial second messenger) affects B. subtilis biofilm gene expression and plant attachment. To our knowledge, this is the first demonstration of c-di-AMP impacting a mutualist host-microbe association and suggests that c-di-AMP may function as a previously unappreciated extracellular signal able to mediate interactions within plant microbiomes.
Collapse
Affiliation(s)
- Loni Townsley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah M Yannarell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tuanh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. Molecular Time Sharing through Dynamic Pulsing in Single Cells. Cell Syst 2018; 6:216-229.e15. [PMID: 29454936 PMCID: PMC6070344 DOI: 10.1016/j.cels.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.
Collapse
Affiliation(s)
- Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Department of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, 08222 Terrassa, Spain; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Yihan Lin
- Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Sofia Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - James C W Locke
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Microsoft Research, Cambridge, UK.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Mutlu A, Trauth S, Ziesack M, Nagler K, Bergeest JP, Rohr K, Becker N, Höfer T, Bischofs IB. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun 2018; 9:69. [PMID: 29302032 PMCID: PMC5754360 DOI: 10.1038/s41467-017-02477-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Some bacteria, such as Bacillus subtilis, withstand starvation by forming dormant spores that revive when nutrients become available. Although sporulation and spore revival jointly determine survival in fluctuating environments, the relationship between them has been unclear. Here we show that these two processes are linked by a phenotypic “memory” that arises from a carry-over of molecules from the vegetative cell into the spore. By imaging life histories of individual B. subtilis cells using fluorescent reporters, we demonstrate that sporulation timing controls nutrient-induced spore revival. Alanine dehydrogenase contributes to spore memory and controls alanine-induced outgrowth, thereby coupling a spore’s revival capacity to the gene expression and growth history of its progenitors. A theoretical analysis, and experiments with signaling mutants exhibiting altered sporulation timing, support the hypothesis that such an intrinsically generated memory leads to a tradeoff between spore quantity and spore quality, which could drive the emergence of complex microbial traits. Bacillus subtilis withstands starvation by forming dormant spores that revive when nutrients become available. Here, Mutlu et al. show that sporulation timing controls spore revival through a phenotypic ‘memory’ that arises from the carry-over of a metabolic enzyme from the vegetative cell into the spore.
Collapse
Affiliation(s)
- Alper Mutlu
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marika Ziesack
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Katja Nagler
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Jan-Philip Bergeest
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Thomas Höfer
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Jeong DE, So Y, Park SY, Park SH, Choi SK. Random knock-in expression system for high yield production of heterologous protein in Bacillus subtilis. J Biotechnol 2017; 266:50-58. [PMID: 29229542 DOI: 10.1016/j.jbiotec.2017.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Chromosome-integrated recombinant protein expression in bacteria has advantages for the stable maintenance of genes without any use of antibiotics during large-scale fermentation. Even though different levels of gene expression were reported, depending upon their chromosomal position in bacterial species, only a limited number of integration sites have been used in B. subtilis. In this study, we randomly integrated the GFP and AprE expression cassettes into the B. subtilis genome to determine integration sites that can produce a high yield of heterologous protein expression. Our mariner transposon-based expression cassette integration system was able to find integration sites, which can produce up to 2.9-fold and 1.5-fold increased expression of intracellular GFP and extracellular AprE, respectively, compared to the common integration site amyE. By analyzing the location of integration sites, we observed an adjacent promoter effect, gene dosage effect, and gene knock-out effect all complexly contributing to the increased level of integrated gene expression. Besides obtaining a high yield of heterologous protein expression, our system can also provide a wide-range of expression to expand the systematic application for steady-state metabolic protein production.
Collapse
Affiliation(s)
- Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younju So
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo-Young Park
- Genofocus Inc., 65 Techno 1-ro, Yuseong-gu, Daejeon 34014, Republic of Korea
| | - Seung-Hwan Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Abstract
Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium Bacillus subtilis depend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.
Collapse
|
23
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
24
|
Narula J, Kuchina A, Zhang F, Fujita M, Süel GM, Igoshin OA. Slowdown of growth controls cellular differentiation. Mol Syst Biol 2016; 12:871. [PMID: 27216630 PMCID: PMC5289222 DOI: 10.15252/msb.20156691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anna Kuchina
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Fang Zhang
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Gürol M Süel
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
25
|
Zhang F, Kwan A, Xu A, Süel GM. A Synthetic Quorum Sensing System Reveals a Potential Private Benefit for Public Good Production in a Biofilm. PLoS One 2015. [PMID: 26196509 PMCID: PMC4510612 DOI: 10.1371/journal.pone.0132948] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria predominantly reside in microbial communities known as biofilms, where cells are encapsulated and protected by the extracellular matrix (ECM). While all biofilm cells benefit from the ECM, only a subgroup of cells carries the burden of producing this public good. This dilemma provokes the question of how these cells balance the cost of ECM production. Here we show that ECM producing cells have a higher gene expression response to quorum sensing (QS) signals, which can lead to a private benefit. Specifically, we constructed a synthetic quorum-sensing system with designated “Sender” and “Receiver” cells in Bacillus subtilis. This synthetic QS system allowed us to uncouple and independently investigate ECM production and QS in both biofilms and single cells. Results revealed that ECM production directly enhances the response to QS signals, which may offset the cost of ECM production.
Collapse
Affiliation(s)
- Fang Zhang
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, United States of America
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anna Kwan
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, United States of America
| | - Amy Xu
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, United States of America
| | - Gürol M. Süel
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II. Appl Environ Microbiol 2015; 81:5335-43. [PMID: 26025904 DOI: 10.1128/aem.01368-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism.
Collapse
|
27
|
Daszczuk A, Dessalegne Y, Drenth I, Hendriks E, Jo E, van Lente T, Oldebesten A, Parrish J, Poljakova W, Purwanto AA, van Raaphorst R, Boonstra M, van Heel A, Herber M, van der Meulen S, Siebring J, Sorg RA, Heinemann M, Kuipers OP, Veening JW. Bacillus subtilis biosensor engineered to assess meat spoilage. ACS Synth Biol 2014; 3:999-1002. [PMID: 25524109 DOI: 10.1021/sb5000252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage.
Collapse
Affiliation(s)
- Alicja Daszczuk
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yonathan Dessalegne
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Ismaêl Drenth
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Elbrich Hendriks
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Emeraldo Jo
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Tom van Lente
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Arjan Oldebesten
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jonathon Parrish
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wlada Poljakova
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Annisa A. Purwanto
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Renske van Raaphorst
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Mirjam Boonstra
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Auke van Heel
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Martijn Herber
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sjoerd van der Meulen
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeroen Siebring
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Robin A. Sorg
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Matthias Heinemann
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jan-Willem Veening
- iGEM Teaching Program, Team 2012, ‡Molecular Genetics
Group, and §Molecular Systems Biology, Groningen
Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic
Biology, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol 2014; 99:681-91. [PMID: 25398283 PMCID: PMC4306738 DOI: 10.1007/s00253-014-6199-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023]
Abstract
The heterologous expression of genes or gene clusters in microbial hosts, followed by metabolic engineering of biosynthetic pathways, is key to access industrially and pharmaceutically relevant compounds in an economically affordable and sustainable manner. Therefore, platforms need to be developed, which provide tools for the controlled synthesis of bioactive compounds. The Gram-positive bacterium Bacillus subtilis is a promising candidate for such applications, as it is generally regarded as a safe production host, its physiology is well investigated and a variety of tools is available for its genetic manipulation. Furthermore, this industrially relevant bacterium provides a high secretory potential not only for enzymes but also for primary and secondary metabolites. In this study, we present the first heterologous expression of an eukaryotic non-ribosomal peptide synthetase gene (esyn) coding for the biosynthesis of the small molecule enniatin in B. subtilis. Enniatin is a pharmaceutically used cyclodepsipeptide for treatment of topical bacterial and fungal infections. We generated various enniatin-producing B. subtilis strains, allowing for either single chromosomal or plasmid-based multi-copy expression of the esyn cluster under the control of an acetoin-inducible promoter system. Optimization of cultivation conditions, combined with modifications of the genetic background and multi-copy plasmid-based esyn expression, resulted in a secretory production of enniatin B. This work presents B. subtilis as a suitable host for the expression of heterologous eukaryotic non-ribosomal peptide synthetases (NRPS) clusters.
Collapse
Affiliation(s)
- Sophia Zobel
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Jana Kumpfmüller
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Thomas Schweder
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| |
Collapse
|
29
|
Belitsky BR. Role of PdxR in the activation of vitamin B6 biosynthesis in Listeria monocytogenes. Mol Microbiol 2014; 92:1113-28. [PMID: 24730374 DOI: 10.1111/mmi.12618] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes PdxR is a member of the poorly characterized but widespread group of MocR/GabR-type chimeric bacterial proteins that have DNA-binding and aminotransferase-like domains. Using mutational analysis, real-time RT-PCR, transcriptional fusions, gel-shift assays, DNase I footprinting, and in vitro transcription, it was shown that PdxR is a direct activator of the pdxST operon, transcribed divergently from pdxR and responsible for the de novo synthesis of pyridoxal 5'-phosphate (PLP), the major active form of vitamin B6 . PLP acts as an anti-activator of PdxR and is the only effector required to reduce the activity of PdxR. PdxR is also a negative autoregulator, and its ability to repress is increased by PLP. A dyad-symmetry sequence, which overlaps the -35 region of the pdxS promoter and lies downstream of the pdxR transcription start point, serves as an important element of the PdxR binding site. Unexpectedly, some mutations in this activator binding site, disrupting the dyad-symmetry element, caused constitutive, B6 -independent expression from the pdxS promoter. The data suggest that PdxR-like proteins, for which PLP plays just a signalling role, form a separate functional group among the MocR/GabR-type proteins.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
30
|
Shank EA. Using coculture to detect chemically mediated interspecies interactions. J Vis Exp 2013:e50863. [PMID: 24300024 DOI: 10.3791/50863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Collapse
|
31
|
Gene conservation among endospore-forming bacteria reveals additional sporulation genes in Bacillus subtilis. J Bacteriol 2012; 195:253-60. [PMID: 23123912 DOI: 10.1128/jb.01778-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to form endospores is unique to certain members of the low-G+C group of Gram-positive bacteria (Firmicutes) and requires signature sporulation genes that are highly conserved across members of distantly related genera, such as Clostridium and Bacillus. Using gene conservation among endospore-forming bacteria, we identified eight previously uncharacterized genes that are enriched among endospore-forming species. The expression of five of these genes was dependent on sporulation-specific transcription factors. Mutants of none of the genes exhibited a conspicuous defect in sporulation, but mutants of two, ylxY and ylyA, were outcompeted by a wild-type strain under sporulation-inducing conditions, but not during growth. In contrast, a ylmC mutant displayed a slight competitive advantage over the wild type specific to sporulation-inducing conditions. The phenotype of a ylyA mutant was ascribed to a defect in spore germination efficiency. This work demonstrates the power of combining phylogenetic profiling with reverse genetics and gene-regulatory studies to identify unrecognized genes that contribute to a conserved developmental process.
Collapse
|
32
|
Temporal competition between differentiation programs determines cell fate choice. Mol Syst Biol 2011; 7:557. [PMID: 22146301 PMCID: PMC3737729 DOI: 10.1038/msb.2011.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/19/2011] [Indexed: 01/25/2023] Open
Abstract
Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue, we simultaneously measured activities of the competing sporulation and competence programs in single Bacillus subtilis cells. This approach revealed that these competing differentiation programs progress independently without cross-regulation before the decision point. Cells seem to arrive at a fate choice through differences in the relative timing between the two programs. To test this proposed dynamic mechanism, we altered the relative timing by engineering artificial cross-regulation between the sporulation and competence circuits. Results suggest a simple model that does not require a checkpoint or intricate cross-regulation before cellular decision-making. Rather, cell fate choice appears to be the outcome of a 'molecular race' between differentiation programs that compete in time, providing a simple dynamic mechanism for decision-making.
Collapse
|
33
|
The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. J Bacteriol 2011; 193:6215-22. [PMID: 21856855 DOI: 10.1128/jb.05467-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.
Collapse
|
34
|
Yomantas YA, Abalakina EG, Golubeva LI, Gorbacheva LY, Mashko SV. Overproduction of Bacillus amyloliquefaciens extracellular glutamyl-endopeptidase as a result of ectopic multi-copy insertion of an efficiently-expressed mpr gene into the Bacillus subtilis chromosome. Microb Cell Fact 2011; 10:64. [PMID: 21819557 PMCID: PMC3166918 DOI: 10.1186/1475-2859-10-64] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/05/2011] [Indexed: 11/16/2022] Open
Abstract
Background Plasmid-less, engineered Bacillus strains have several advantages over plasmid-carrier variants. Specifically, their stability and potential ecological safety make them of use in industrial applications. As a rule, however, it is necessary to incorporate many copies of a key gene into a chromosome to achieve strain performance that is comparable to that of cells carrying multiple copies of a recombinant plasmid. Results A plasmid-less B. subtilis JE852-based strain secreting glutamyl-specific protease (GSP-the protein product of the mpr gene from B. amyloliquefaciens) was constructed that exhibits decreased levels of other extracellular proteases. Ten copies of an mprB.amy cassette in which the GSP gene was placed between the promoter of the B. amyloliquefaciens rplU-rpmA genes and the Rho-independent transcription terminator were ectopically inserted into designated (3 copies) and random (7 copies) points in the recipient chromosome. The resulting strain produced approximately 0.5 g/L of secreted GSP after bacterial cultivation in flasks with starch-containing media, and its performance was comparable to an analogous strain in which the mprB.amy cassette was carried on a multi-copy plasmid. Conclusion A novel strategy for ectopically integrating a cassette into multiple random locations in the B. subtilis chromosome was developed. This new method is based on the construction of DNA fragments in which the desired gene, marked by antibiotic resistance, is sandwiched between "front" and "back" portions of random chromosomal DNA restriction fragments. These fragments were subsequently inserted into the targeted sites of the chromosome using double-cross recombination. The construction of a marker-free strain was achieved by gene conversion between the integrated marked gene and a marker-less variant carried by plasmid DNA, which was later removed from the cells.
Collapse
Affiliation(s)
- Yurgis Av Yomantas
- Ajinomoto-Genetika Research Institute, 117545 Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
35
|
YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J Bacteriol 2011; 193:4821-31. [PMID: 21742882 DOI: 10.1128/jb.00223-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During biofilm formation by Bacillus subtilis, two extracellular matrix components are synthesized, namely, the TasA amyloid fibers and an exopolysaccharide. In addition, a small protein called YuaB has been shown to allow the biofilm to form. The regulatory protein DegU is known to initiate biofilm formation. In this report we show that the main role of DegU during biofilm formation is to indirectly drive the activation of transcription from the yuaB promoter. The N terminus of YuaB constitutes a signal peptide for the Sec transport system. Here we show that the presence of the signal peptide is required for YuaB function. In addition we demonstrate that upon export of YuaB from the cytoplasm, it localizes to the cell wall. We continue with evidence that increased production of TasA and the exopolysaccharide is not sufficient to overcome the effects of a mutation in yuaB, demonstrating the unique involvement of YuaB in forming a biofilm. In line with this, YuaB is not involved in correct synthesis, export, or polymerization of either the TasA amyloid fibers or the exopolysaccharide. Taken together, these findings identify YuaB as a protein that plays a novel role during biofilm formation. We hypothesize that YuaB functions synergistically with the known components of the biofilm matrix to facilitate the assembly of the biofilm matrix.
Collapse
|
36
|
Suite of novel vectors for ectopic insertion of GFP, CFP and IYFP transcriptional fusions in single copy at the amyE and bglS loci in Bacillus subtilis. Plasmid 2010; 64:143-9. [DOI: 10.1016/j.plasmid.2010.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/26/2010] [Accepted: 06/15/2010] [Indexed: 11/24/2022]
|
37
|
A small protein required for the switch from {sigma}F to {sigma}G during sporulation in Bacillus subtilis. J Bacteriol 2010; 193:116-24. [PMID: 21037003 DOI: 10.1128/jb.00949-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cascade of alternative sigma factors governs the program of developmental gene expression during sporulation in Bacillus subtilis. Little is known, however, about how the early-acting sigma factors are inactivated and replaced by the later-acting factors. Here we identify a small protein, Fin (formerly known as YabK), that is required for efficient switching from σ(F)- to σ(G)-directed gene expression in the forespore compartment of the developing sporangium. The fin gene, which is conserved among Bacillus species and species of related genera, is transcribed in the forespore under the control of both σ(F) and σ(G). Cells mutant for fin are unable to fully deactivate σ(F) and, conversely, are unable to fully activate σ(G). Consistent with their deficiency in σ(G)-directed gene expression, fin cells are arrested in large numbers following the engulfment stage of sporulation, ultimately forming 50-fold fewer heat-resistant spores than the wild type. Based in part on the similarity of Fin to the anti-σ(G) factor CsfB (also called Gin), we speculate that Fin is an anti-σ(F) factor which, by disabling σ(F), promotes the switch to late developmental gene expression in the forespore.
Collapse
|
38
|
Bernard R, Marquis KA, Rudner DZ. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol Microbiol 2010; 78:866-82. [PMID: 20807205 DOI: 10.1111/j.1365-2958.2010.07369.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How bacteria respond to chromosome replication stress has been traditionally studied using temperature-sensitive mutants and chemical inhibitors. These methods inevitably arrest all replication and lead to induction of transcriptional responses and inhibition of cell division. Here, we used repressor proteins bound to operator arrays to generate a single stalled replication fork. These replication roadblocks impeded replisome progression on one arm, leaving replication of the other arm and re-initiation unaffected. Remarkably, despite robust generation of RecA-GFP filaments and a strong block to cell division during the roadblock, patterns of gene expression were not significantly altered. Consistent with these findings, division inhibition was not mediated by the SOS-induced regulator YneA nor by RecA-independent repression of ftsL. In support of the idea that nucleoid occlusion prevents inappropriate cell division during fork arrest, immature FtsZ-rings formed adjacent to the DNA mass but rarely on top of it. Furthermore, mild alterations in chromosome compaction resulted in cell division that guillotined the DNA. Strikingly, the nucleoid occlusion protein Noc had no discernable role in division inhibition. Our data indicate that Noc-independent nucleoid occlusion prevents inappropriate cell division during replication fork arrest. They further suggest that Bacillus subtilis normally manages replication stress rather than inducing a stress response.
Collapse
Affiliation(s)
- Remi Bernard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Development of a Bacillus subtilis-based rotavirus vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1647-55. [PMID: 20810679 DOI: 10.1128/cvi.00135-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis vaccine strains engineered to express either group A bovine or murine rotavirus VP6 were tested in adult mice for their ability to induce immune responses and provide protection against rotavirus challenge. Mice were inoculated intranasally with spores or vegetative cells of the recombinant strains of B. subtilis. To enhance mucosal immunity, whole cholera toxin (CT) or a mutant form (R192G) of Escherichia coli heat-labile toxin (mLT) were included as adjuvants. To evaluate vaccine efficacy, the immunized mice were challenged orally with EDIM EW murine rotavirus and monitored daily for 7 days for virus shedding in feces. Mice immunized with either VP6 spore or VP6 vegetative cell vaccines raised serum anti-VP6 IgG enzyme-linked immunosorbent assay (ELISA) titers, whereas only the VP6 spore vaccines generated fecal anti-VP6 IgA ELISA titers. Mice in groups that were immunized with VP6 spore vaccines plus CT or mLT showed significant reductions in virus shedding, whereas the groups of mice immunized with VP6 vegetative cell vaccines showed no difference in virus shedding compared with mice immunized with control spores or cells. These results demonstrate that intranasal inoculation with B. subtilis spore-based rotavirus vaccines is effective in generating protective immunity against rotavirus challenge in mice.
Collapse
|
40
|
Lee S, Belitsky BR, Brown DW, Brinker JP, Kerstein KO, Herrmann JE, Keusch GT, Sonenshein AL, Tzipori S. Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C. Vaccine 2010; 28:6658-65. [PMID: 20709005 DOI: 10.1016/j.vaccine.2010.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/07/2010] [Accepted: 08/02/2010] [Indexed: 11/16/2022]
Abstract
Bacillus subtilis strains expressing tetanus toxin fragment C (TTFC) were tested as vaccine candidates against tetanus in adult mice. Mice received three intranasal (IN) exposures to 10(9) spores or 10(8) vegetative cells of B. subtilis expressing recombinant TTFC. Immunized mice generated protective systemic and mucosal antibodies and survived challenge with 2× LD(100) of tetanus toxin. Isotype analysis of serum antibody indicated a balanced Th1/Th2 response. Lyophilized vaccines stored at 45° C for ≥ 12 months, remained effective. Immunized conventional and SCID mice remained well, and no histological changes in brain or respiratory tract were detected. Lyophilized/reconstituted B. subtilis tetanus vaccines administered IN to mice appear safe, heat-stable, and protective against lethal tetanus challenge.
Collapse
Affiliation(s)
- Sangun Lee
- Division of Infectious Diseases, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Using an oligonucleotide microarray, we searched for previously unrecognized transcription units in intergenic regions in the genome of Bacillus subtilis, with an emphasis on identifying small genes activated during spore formation. Nineteen transcription units were identified, 11 of which were shown to depend on one or more sporulation-regulatory proteins for their expression. A high proportion of the transcription units contained small, functional open reading frames (ORFs). One such newly identified ORF is a member of a family of six structurally similar genes that are transcribed under the control of sporulation transcription factor σ(E) or σ(K). A multiple mutant lacking all six genes was found to sporulate with slightly higher efficiency than the wild type, suggesting that under standard laboratory conditions the expression of these genes imposes a small cost on the production of heat-resistant spores. Finally, three of the transcription units specified small, noncoding RNAs; one of these was under the control of the sporulation transcription factor σ(E), and another was under the control of the motility sigma factor σ(D).
Collapse
|
42
|
Pagliai FA, Gardner CL, Pande SG, Lorca GL. LVIS553 transcriptional regulator specifically recognizes novobiocin as an effector molecule. J Biol Chem 2010; 285:16921-30. [PMID: 20308066 DOI: 10.1074/jbc.m110.111138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we aimed to identify small molecules with high affinity involved in the allosteric regulation of LVIS553, a MarR member from Lactobacillus brevis ATCC367. Using high throughput screening, novobiocin was found to specifically bind LVIS553 with a K(D) = 33.8 +/- 2.9 microM consistent with a biologically relevant ligand. Structure guided site-directed mutagenesis identified Lys(9) as a key residue in novobiocin recognition. The results found in vitro were correlated in vivo. An increased tolerance to the antibiotic was observed when LVIS553 and the downstream putative transport protein LVIS552 were either expressed in a low copy plasmid in L. brevis or as a single copy chromosomal insertion in Bacillus subtilis. We provide evidence that LVIS553 is involved in the specific regulation of a new mechanism of tolerance to novobiocin.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32610-3610, USA
| | | | | | | |
Collapse
|
43
|
Smits WK, Goranov AI, Grossman AD. Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 2009; 75:452-61. [PMID: 19968790 DOI: 10.1111/j.1365-2958.2009.06999.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature-sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI-mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
44
|
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol 2009; 191:6822-32. [PMID: 19767430 DOI: 10.1128/jb.00618-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A characteristic feature of biofilm formation is the production of a protective extracellular polymeric matrix. In the gram-positive bacterium Bacillus subtilis, the biofilm matrix is synthesized by the products of the epsABCDEFGHIJKLMNO operon (hereafter called the eps operon) and yqxM-sipW-tasA loci. Transcription from these operons is repressed by two key regulators, AbrB and SinR. Relief of inhibition is necessary to allow biofilm formation to proceed. Here we present data indicating that Abh, a sequence and structural homologue of AbrB, regulates biofilm architecture by B. subtilis when colony morphology and pellicle formation are assessed. Data indicating that abh expression is dependent on the environmental signals that stimulate the activity of the extracytoplasmic function sigma-factor sigma(X) are shown. We demonstrate that expression of slrR, the proposed activator of yqxM transcription, is positively controlled by Abh. Furthermore, Abh is shown to activate transcription from the promoter of the eps operon through its control of SlrR. These findings add to the increasingly complex transcriptional network that controls biofilm formation by B. subtilis.
Collapse
|
45
|
Engineering of Bacillus subtilis 168 for increased nisin resistance. Appl Environ Microbiol 2009; 75:6688-95. [PMID: 19749059 DOI: 10.1128/aem.00943-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin is a natural bacteriocin produced commercially by Lactococcus lactis and widely used in the food industry as a preservative because of its broad host spectrum. Despite the low productivity and troublesome fermentation of L. lactis, no alternative cost-effective host has yet been found. Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied transcriptome and proteome analyses of B. subtilis and identified eight genes upregulated in the presence of nisin. We demonstrated that the overexpression of some of these genes boosts the natural defenses of B. subtilis, which allows it to sustain higher levels of nisin in the medium. We also attempted to overcome the nisin sensitivity of B. subtilis by introducing the nisin resistance genes nisFEG and nisI from L. lactis under the control of a synthetic promoter library.
Collapse
|
46
|
Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009; 11:262-73. [DOI: 10.1016/j.ymben.2009.05.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
47
|
DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 2008; 191:100-8. [PMID: 18978066 DOI: 10.1128/jb.01236-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is an example of a multicellular process which depends on cooperative behavior and differentiation within a bacterial population. Our findings indicate that there is a complex feedback loop that maintains the stoichiometry of the extracellular matrix and other proteins required for complex colony development by Bacillus subtilis. Analysis of the transcriptional regulation of two DegU-activated genes that are required for complex colony development by B. subtilis revealed additional involvement of global regulators that are central to controlling biofilm formation. Activation of transcription from both the yvcA and yuaB promoters requires DegU approximately phosphate, but transcription is inhibited by direct AbrB binding to the promoter regions. Inhibition of transcription by AbrB is relieved when Spo0A approximately phosphate is generated due to its known role in inhibiting abrB expression. Deletion of SinR, a key coordinator of motility and biofilm formation, enhanced transcription from both loci; however, no evidence of a direct interaction with SinR for either the yvcA or yuaB promoter regions was observed. The enhanced transcription in the sinR mutant background was subsequently demonstrated to be dependent on biosynthesis of the polysaccharide component that forms the major constituent of the B. subtilis biofilm matrix. Together, these findings indicate that a genetic network dependent on activation of both DegU and Spo0A controls complex colony development by B. subtilis.
Collapse
|
48
|
Chastanet A, Losick R. Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol Microbiol 2007; 64:139-52. [PMID: 17376078 DOI: 10.1111/j.1365-2958.2007.05652.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conversion of a growing cell into an endospore in Bacillus subtilis involves a phagocytic-like process in which the developing spore (the forespore) is wholly engulfed by the adjacent mother cell. A prerequisite for engulfment is the removal of peptidoglycan from the septum that separates the forespore from the mother cell, a process that depends on the autolysin SpoIID and two proteins of unknown function, SpoIIM and SpoIIP. Here we present evidence that SpoIIP is also an autolysin, that it acts in tandem with SpoIID, and that all three proteins are in a complex with each other. We further show that the members of the complex exhibit a hierarchical relationship in which SpoIIM is responsible for localization to the septal membrane, SpoIIP localizes to the septal membrane by interacting with SpoIIM, and SpoIID, in turn, localizes by interacting with SpoIIP. Finally, we show that localization of SpoIIM depends on a fourth protein SpoIIB, raising the possibility that the complex contains an additional component and creating an overall hierarchy of the form: SpoIIB-->SpoIIM-->SpoIIP-->SpoIID.
Collapse
Affiliation(s)
- Arnaud Chastanet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
49
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
50
|
Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Sims J, Larsen RA, Pogliano J. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J 2006; 25:5919-31. [PMID: 17139259 PMCID: PMC1698890 DOI: 10.1038/sj.emboj.7601443] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/23/2006] [Indexed: 11/09/2022] Open
Abstract
We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.
Collapse
Affiliation(s)
- Eric Becker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nick C Herrera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Felizza Q Gunderson
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan I Derman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amber L Dance
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jennifer Sims
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rachel A Larsen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA. Tel.: +1 858 822 4074; Fax: +1 858 822 1431; E-mail:
| |
Collapse
|