1
|
Liu XY, Tong JF, Li MY, Li LF, Cai WW, Li JQ, Wang LH, Sun MJ. Progress in application of cyclic single-stranded nucleic acids. J Biotechnol 2024; 393:140-148. [PMID: 39067578 DOI: 10.1016/j.jbiotec.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5' and 3' termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.
Collapse
Affiliation(s)
- Xin-Yang Liu
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jian-Fei Tong
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Ming-Yang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Lian-Fang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Wen-Wei Cai
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Liang-Hua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| | - Ming-Juan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| |
Collapse
|
2
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
3
|
Chen Q, Guo Y, Zhang J, Zheng N, Wang J, Liu Y, Lu J, Zhen S, Du X, Li L, Fu J, Wang G, Gu R, Wang J, Liu Y. RNA polymerase common subunit ZmRPABC5b is transcriptionally activated by Opaque2 and essential for endosperm development in maize. Nucleic Acids Res 2023; 51:7832-7850. [PMID: 37403778 PMCID: PMC10450181 DOI: 10.1093/nar/gkad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiawen Lu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Nitipan S, Saithong P. Characterization and sequencing analysis of pLP2.5-11 and pLP3.0-4 novel cryptic plasmids from Lactiplantibacillus plantarum WP72/27. 3 Biotech 2023; 13:263. [PMID: 37408733 PMCID: PMC10317920 DOI: 10.1007/s13205-023-03684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
We sequenced and described two cryptic plasmids from Lactiplantibacillus plantarum strain WP72/27, termed pLP2.5-11 (OP831909) and pLP3.0-4 (OP831910). Nucleotide sequencing gave the sizes of pLP2.5-11 and pLP3.0-4 as 2754 and 3197 base pairs, with G + C contents 38.89% and 40.88% and predicted two and eight putative open reading frames, respectively. The RepA protein of pLP2.5-11 shared a 99% identity with pC30il, pLP1 and pC30il, whereas the RepB protein of pLP3.0-4 shared a 98% identity with pXY3, a member of the rolling-circle replication (RCR) pC194 family. The origin of plasmid replication was predicted to consist of inverted and directed repeat sequences upstream of the Rep genes. Sequence analysis predicted that both pLP2.5-11 and pLP3.0-4 plasmids replicate via a rolling-circle process. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03684-y.
Collapse
Affiliation(s)
- Supachai Nitipan
- Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung, 93210 Thailand
- Microbial Technology for Agriculture, Food and Environment Research Center, Thaksin University, Phatthalung Campus, Phatthalung, 93210 Thailand
| | - Pramuan Saithong
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
5
|
Heo S, Oh SE, Lee G, Lee J, Ha NC, Jeon CO, Jeong K, Lee JH, Jeong DW. Staphylococcus equorum plasmid pKS1030-3 encodes auxiliary biofilm formation and trans-acting gene mobilization systems. Sci Rep 2023; 13:11108. [PMID: 37429971 DOI: 10.1038/s41598-023-38274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
The foodborne bacterium Staphylococcus equorum strain KS1030 harbours plasmid pSELNU1, which encodes a lincomycin resistance gene. pSELNU1 undergoes horizontal transfer between bacterial strains, thus spreading antibiotic resistance. However, the genes required for horizontal plasmid transfer are not encoded in pSELNU1. Interestingly, a relaxase gene, a type of gene related to horizontal plasmid transfer, is encoded in another plasmid of S. equorum KS1030, pKS1030-3. The complete genome of pKS1030-3 is 13,583 bp long and encodes genes for plasmid replication, biofilm formation (the ica operon), and horizontal gene transfer. The replication system of pKS1030-3 possesses the replication protein-encoding gene repB, a double-stranded origin of replication, and two single-stranded origins of replication. The ica operon, relaxase gene, and a mobilization protein-encoding gene were detected in pKS1030-3 strain-specifically. When expressed in S. aureus RN4220, the ica operon and relaxase operon of pKS1030-3 conferred biofilm formation ability and horizontal gene transfer ability, respectively. The results of our analyses show that the horizontal transfer of pSELNU1 of S. equorum strain KS1030 depends on the relaxase encoded by pKS1030-3, which is therefore trans-acting. Genes encoded in pKS1030-3 contribute to important strain-specific properties of S. equorum KS1030. These results could contribute to preventing the horizontal transfer of antibiotic resistance genes in food.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Jinwook Lee
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam-Chul Ha
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keuncheol Jeong
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea.
| |
Collapse
|
6
|
LeGault KN, Barth ZK, DePaola P, Seed KD. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res 2022; 50:8401-8417. [PMID: 35066583 PMCID: PMC9410903 DOI: 10.1093/nar/gkac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
PLEs (phage-inducible chromosomal island-like elements) are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism, PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1's genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1's genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro nuclease activity specifically for sites in ICP1's genome and we identify a motif that is necessary for NixI-mediated cleavage. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production, representing the most inhibitory PLE-encoded mechanism revealed to date. We identify distant NixI homologs in an expanded family of putative phage parasites in vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts' genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Peter DePaola
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
8
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
9
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Valdelvira R, Bordanaba-Ruiseco L, Martín-Huestamendía C, Ruiz-Masó JA, Del Solar G. Acidic pH Decreases the Endonuclease Activity of Initiator RepB and Increases the Stability of the Covalent RepB-DNA Intermediate while Has Only a Limited Effect on the Replication of Plasmid pMV158 in Lactococcus lactis. Front Mol Biosci 2021; 8:634461. [PMID: 33889596 PMCID: PMC8056398 DOI: 10.3389/fmolb.2021.634461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/28/2022] Open
Abstract
Plasmid vectors constitute a valuable tool for homologous and heterologous gene expression, for characterization of promoter and regulatory regions, and for genetic manipulation and labeling of bacteria. During the last years, a series of vectors based on promiscuous replicons of the pMV158 family have been developed for their employment in a variety of Gram-positive bacteria and proved to be useful for all above applications in lactic acid bacteria. A proper use of the plasmid vectors requires detailed knowledge of their main replicative features under the changing growth conditions of the studied bacteria, such as the acidification of the culture medium by lactic acid production. Initiation of pMV158 rolling-circle replication is catalyzed by the plasmid-encoded RepB protein, which performs a sequence-specific cleavage on one of the parental DNA strands and, as demonstrated in this work, establishes a covalent bond with the 5′-P end generated in the DNA. This covalent adduct must last until the leading-strand termination stage, where a new cleavage on the regenerated nick site and a subsequent strand-transfer reaction result in rejoining of the ends of the cleaved parental strand, whereas hydrolysis of the newly-generated adduct would release the protein from a nicked double-stranded DNA plasmid form. We have analyzed here the effect of pH on the different in vitro reactions catalyzed by RepB and on the in vivo replication ability of plasmid pMV158. We show that acidic pH greatly impairs the catalytic activity of the protein and reduces hydrolysis of the covalent RepB-DNA adduct, as expected for the nucleophilic nature of these reactions. Conversely, the ability of pMV158 to replicate in vivo, as monitored by the copy number and segregational stability of the plasmid in Lactococcus lactis, remains almost intact at extracellular pHs ranging from 7.0 to 5.0, and a significant reduction (by ∼50%) in the plasmid copy number per chromosome equivalent is only observed at pH 4.5. Moreover, the RepB to pMV158 molar ratio is increased at pH 4.5, suggesting the existence of compensatory mechanisms that operate in vivo to allow pMV158 replication at pH values that severely disturb the catalytic activity of the initiator protein.
Collapse
Affiliation(s)
- Rafael Valdelvira
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lorena Bordanaba-Ruiseco
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Martín-Huestamendía
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Angel Ruiz-Masó
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gloria Del Solar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
11
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
12
|
Abstract
The ancestral strain of Bacillus subtilis NCIB3610 (3610) bears a large, low-copy-number plasmid, called pBS32, that was lost during the domestication of laboratory strain derivatives. Selection against pBS32 may have been because it encodes a potent inhibitor of natural genetic competence (ComI), as laboratory strains were selected for high-frequency transformation. Previous studies have shown that pBS32 and its sibling, pLS32 in Bacillus subtilis subsp. natto, encode a replication initiation protein (RepN), a plasmid partitioning system (AlfAB), a biofilm inhibitor (RapP), and an alternative sigma factor (SigN) that can induce plasmid-mediated cell death in response to DNA damage. Here, we review the literature on pBS32/pLS32, the genes found on it, and their associated phenotypes.
Collapse
|
13
|
Hao M, Wang Z, Qiao H, Yin P, Qiao J, Qi H. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli. Cells 2020; 9:E467. [PMID: 32085579 PMCID: PMC7072734 DOI: 10.3390/cells9020467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
As a key element of genome editing, donor DNA introduces the desired exogenous sequence while working with other crucial machinery such as CRISPR-Cas or recombinases. However, current methods for the delivery of donor DNA into cells are both inefficient and complicated. Here, we developed a new methodology that utilizes rolling circle replication and Cas9 mediated (RC-Cas-mediated) in vivo single strand DNA (ssDNA) synthesis. A single-gene rolling circle DNA replication system from Gram-negative bacteria was engineered to produce circular ssDNA from a Gram-positive parent plasmid at a designed sequence in Escherichia coli. Furthermore, it was demonstrated that the desired linear ssDNA fragment could be cut out using CRISPR-associated protein 9 (CRISPR-Cas9) nuclease and combined with lambda Red recombinase as donor for precise genome engineering. Various donor ssDNA fragments from hundreds to thousands of nucleotides in length were synthesized in E. coli cells, allowing successive genome editing in growing cells. We hope that this RC-Cas-mediated in vivo ssDNA on-site synthesis system will be widely adopted as a useful new tool for dynamic genome editing.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Yao F, Xu X, Du X, Cao K, Pan Q. Detection and characterization of a theta-replicating plasmid pLP60 from Lactobacillus plantarum PC518 by inverse PCR. Heliyon 2019; 5:e02164. [PMID: 31414068 PMCID: PMC6687099 DOI: 10.1016/j.heliyon.2019.e02164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 10/27/2022] Open
Abstract
Plasmid DNA of Lactobacillus plantarum PC518 was isolated by an improved method which contained a washing step for removing lysozyme. Three plasmid DNA libraries were constructed. A pair of outward primers was designed at both ends of the novel plasmid fragment obtained from plasmid DNA libraries, and the remainder of the circle plasmid was amplified by inverse PCR (iPCR). The whole sequence of plasmid was analyzed by the basic local alignment search tool, Tandem Repeats Finder, DNAMAN V6.0, DNASTAR and MEGA X software. The copy number was measured using quantitative real-time PCR. Plasmid extract showed 7 bands on agarose gel, indicating that L. plantarum PC518 contains multiple plasmids. The complete sequence of plasmid pLP60 was obtained by plasmid DNA libraries and iPCR. pLP60 is 6006 bp in length with a G + C content of 41.19 %, which encodes 8 open reading frames (ORFs). The ori site like theta-type could be located upstream of repB, which contains a short tandem repeats (sTR) and a long tandem repeats (lTR). RepB of pLP60 only had low similarity with Rep protein of known theta-type plasmids, but phylogenetic tree analysis showed that plasmids whose Rep proteins are similar to pLP60 have lTR at ori, and the conservativeness of lTR is consistent with similarity of Rep proteins, suggesting that RepB of pLP60 is a theta-replicating protein. So pLP60 was classified as class A of theta replication. The copy number of pLP60 was measured as 5 copies per cell by qPCR.
Collapse
Affiliation(s)
- Fang Yao
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - XiaoYu Xu
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Xin Du
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Kang Cao
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Qu Pan
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun 2019; 10:3425. [PMID: 31366885 PMCID: PMC6668415 DOI: 10.1038/s41467-019-11433-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occasions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. Most single-stranded DNA viruses have small genomes replicated by rolling circle mechanism which is initiated by the Rep protein. Here, using sequence similarity network and phylogenetic analyses, Kazlauskas et al. show that viral Reps evolved from Reps of bacterial and archaeal plasmids on multiple independent occasions.
Collapse
|
16
|
Lee JH, Heo S, Jeong M, Jeong DW. Transfer of a mobile Staphylococcus saprophyticus plasmid isolated from fermented seafood that confers tetracycline resistance. PLoS One 2019; 14:e0213289. [PMID: 30818356 PMCID: PMC6395029 DOI: 10.1371/journal.pone.0213289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/18/2019] [Indexed: 01/25/2023] Open
Abstract
The complete nucleotide sequence of a tetracycline-resistance gene (tetK)-carrying plasmid from a Staphylococcus saprophyticus isolate from jeotgal, a Korean high-salt-fermented seafood, was determined. The plasmid, designated pSSTET1, was 4439 bp in length and encoded typical elements found in plasmids that replicate via a rolling-circle mechanism, including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and a counter-transcribed RNA sequence. Additionally, the plasmid recombination enzyme gene (pre), which may be involved in inter-plasmid recombination and conjugation, was found. Each gene exhibited >94% sequence identity with those harbored in other Staphylococcus species. pSSTET1 was conditionally transferred to Staphylococcus species in a host-dependent manner and transferred to an Enterococcus faecalis strain in vitro. Antibiotic susceptibility of the transconjugants was host-dependent and transconjugants maintained a tetracycline-resistant phenotype in the absence of selective pressure over 100 generations.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Miran Jeong
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Esyunina D, Pupov D, Kulbachinskiy A. Dual role of the σ factor in primer RNA synthesis by bacterial RNA polymerase. FEBS Lett 2018; 593:361-368. [PMID: 30536890 DOI: 10.1002/1873-3468.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Bacterial RNA polymerase (RNAP) serves as a primase during replication of single-stranded plasmids and filamentous phages. Primer RNA (prRNA) synthesis from the origin regions of these replicons depends on the σ factor that normally participates in promoter recognition. However, it was proposed that σ may not be required for origin recognition but is rather involved in RNA extension by RNAP. Here, by analyzing the natural replication origin of bacteriophage M13 and synthetic ssDNA templates, we show that interactions of σ with promoter-like motifs stabilize priming complexes and can control prRNA synthesis by trapping RNAP on the template. Thus, the σ factor is involved in both DNA recognition and RNA priming, unifying its functions in transcription initiation from double- and single-stranded templates.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
18
|
Moran RA, Hall RM. pBuzz: A cryptic rolling-circle plasmid from a commensal Escherichia coli has two inversely oriented oriTs and is mobilised by a B/O plasmid. Plasmid 2018; 101:10-19. [PMID: 30468749 DOI: 10.1016/j.plasmid.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
Ampicillin, streptomycin and sulphamethoxazole resistant commensal E. coli 838-3B contains five plasmids that range in size from >90 kb to <2 kb. The resistance genes blaTEM (ampicillin), strA (streptomycin) and sul2 (sulphamethoxazole) transferred along with a B/O plasmid named p838B-R. However, three plasmids smaller than 7 kb were also found in transconjugants, suggesting that they could be mobilised by the B/O plasmid. The complete sequences of p838B-R and pBuzz, a small plasmid mobilised by p838B-R with 70% efficiency, were determined. p838B-R is 94,803 bp and contains an 8400 bp resistance island that includes the three antibiotic resistance genes. The p838B-R backbone contains a complete conjugative transfer region, including an oriT site upstream of nikAB that resembles the experimentally-defined oriT of R64. The 1982 bp pBuzz contains a rep gene and sites associated with replication that resemble those of pC194/pUB110 family rolling-circle plasmids. It also contains two, inversely oriented copies of an 84 bp sequence that differs from the oriT region in p838B-R at just 6 positions. These oriT-like sites likely explain the ability of pBuzz to co-transfer with the B/O plasmid using the NikB relaxase and NikA accessory protein encoded by p838B-R, i.e. pBuzz utilises relaxase-in trans mobilisation. Several rolling-circle plasmids related to pBuzz were found in the GenBank non-redundant nucleotide database. They contain diverse potential oriTs, including sequences similar to known oriTs found in conjugative plasmids of I-complex (I1, B/O, K, Z and I2), L or M types.
Collapse
Affiliation(s)
- Robert A Moran
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
19
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1209] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Pluta R, Espinosa M. Antisense and yet sensitive: Copy number control of rolling circle-replicating plasmids by small RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1500. [PMID: 30074293 DOI: 10.1002/wrna.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
Bacterial plasmids constitute a wealth of shared DNA amounting to about 20% of the total prokaryotic pangenome. Plasmids replicate autonomously and control their replication by maintaining a fairly constant number of copies within a given host. Plasmids should acquire a good fitness to their hosts so that they do not constitute a genetic load. Here we review some basic concepts in plasmid biology, pertaining to the control of replication and distribution of plasmid copies among daughter cells. A particular class of plasmids is constituted by those that replicate by the rolling circle mode (rolling circle-replicating [RCR]-plasmids). They are small double-stranded DNA molecules, with a rather high number of copies in the original host. RCR-plasmids control their replication by means of a small short-lived antisense RNA, alone or in combination with a plasmid-encoded transcriptional repressor protein. Two plasmid prototypes have been studied in depth, namely the staphylococcal plasmid pT181 and the streptococcal plasmid pMV158, each corresponding to the two types of replication control circuits, respectively. We further discuss possible applications of the plasmid-encoded antisense RNAs and address some future directions that, in our opinion, should be pursued in the study of these small molecules. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
21
|
Agúndez L, Zárate-Pérez F, Meier AF, Bardelli M, Llosa M, Escalante CR, Linden RM, Henckaerts E. Exchange of functional domains between a bacterial conjugative relaxase and the integrase of the human adeno-associated virus. PLoS One 2018; 13:e0200841. [PMID: 30016371 PMCID: PMC6049929 DOI: 10.1371/journal.pone.0200841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Endonucleases of the HUH family are specialized in processing single-stranded DNA in a variety of evolutionarily highly conserved biological processes related to mobile genetic elements. They share a structurally defined catalytic domain for site-specific nicking and strand-transfer reactions, which is often linked to the activities of additional functional domains, contributing to their overall versatility. To assess if these HUH domains could be interchanged, we created a chimeric protein from two distantly related HUH endonucleases, containing the N-terminal HUH domain of the bacterial conjugative relaxase TrwC and the C-terminal DNA helicase domain of the human adeno-associated virus (AAV) replicase and site-specific integrase. The purified chimeric protein retained oligomerization properties and DNA helicase activities similar to Rep68, while its DNA binding specificity and cleaving-joining activity at oriT was similar to TrwC. Interestingly, the chimeric protein could catalyse site-specific integration in bacteria with an efficiency comparable to that of TrwC, while the HUH domain of TrwC alone was unable to catalyze this reaction, implying that the Rep68 C-terminal helicase domain is complementing the TrwC HUH domain to achieve site-specific integration into TrwC targets in bacteria. Our results illustrate how HUH domains could have acquired through evolution other domains in order to attain new roles, contributing to the functional flexibility observed in this protein superfamily.
Collapse
Affiliation(s)
- Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Francisco Zárate-Pérez
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Anita F. Meier
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
- * E-mail: (EH); (ML)
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - R. Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- * E-mail: (EH); (ML)
| |
Collapse
|
22
|
Hua M, Guo J, Li M, Chen C, Zhang Y, Song C, Jiang D, Du P, Zeng H. A Dual-Replicon Shuttle Vector System for Heterologous Gene Expression in a Broad Range of Gram-Positive and Gram-Negative Bacteria. Curr Microbiol 2018; 75:1391-1400. [PMID: 29987521 DOI: 10.1007/s00284-018-1535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Origin of replication (ori in theta-replicating plasmids or dso in rolling circle replicating plasmids) initiates plasmid replication in a broad range of bacteria. These two kinds of plasmids were both identified in Streptococcus, a genus composed of both human commensal bacteria and pathogens with the ability to cause severe community-acquired infections, including meningitides, septicemia, and respiratory tract diseases. Given the important roles of Streptococcus in the exchange of genetic elements with other symbiotic microbes, the genotypes and phenotypes of both Streptococcus spp. and other symbiotic species could be changed during colonization of the host. Therefore, an improved plasmid system is required to study the functional, complicated, and changeable genomes of Streptococcus. In this study, a dual-replicon shuttle vector system named pDRE was constructed to achieve heterologous gene expression. The vector system contained theta replicon for Escherichia coli. The origin of rolling circle replicon was synthesized according to pMV158 in Gram-positive bacteria. By measuring the products of inserted genes at multiple cloning sites, the ability of this vector system in the replication and expression of heterologous genes was assessed in four Streptococcus and three other Gram-positive bacteria: Bacillus subtilis, Lactococcus lactis, and Staphylococcus aureus. The results showed that the newly constructed vector could simultaneously replicate and express heterologous genes in a broad range of Gram-positive and Gram-negative bacteria, thus providing a potentially powerful genetic tool for further functional analysis.
Collapse
Affiliation(s)
- Mingxi Hua
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Jingjing Guo
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Min Li
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chen Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Dong Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China.
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China.
| |
Collapse
|
23
|
Carr CE, Marky LA. Increased Flexibility between Stems of Intramolecular Three-Way Junctions by the Insertion of Bulges. Biophys J 2018; 114:2764-2774. [PMID: 29925014 PMCID: PMC6026347 DOI: 10.1016/j.bpj.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Intramolecular junctions are a ubiquitous structure within DNA and RNA; three-way junctions in particular have high strain around the junction because of the lack of flexibility, preventing the junctions from adopting conformations that would allow for optimal folding. In this work, we used a combination of calorimetric and spectroscopic techniques to study the unfolding of four intramolecular three-way junctions. The control three-way junction, 3H, has the sequence d(GAAATTGCGCT5GCGCGTGCT5GCACAATTTC), which has three arms of different sequences. We studied three other three-way junctions in which one (2HS1H), two (HS12HS1), and three (HS1HS1HS1) cytosine bulges were placed at the junction to allow the arms to adopt a wider range of conformations that may potentially relieve strain. Through calorimetric studies, it was concluded that bulges produce only minor effects on the enthalpic and thermal stability at physiological salt concentrations for 2HS1H and HS1HS1HS1. HS12HS1 displays the strongest effect, with the GTGC stem lacking a defined transition. In addition to unfolding thermodynamics, the differential binding of counterions, water, and protons was determined. It was found that with each bulge, there was a large increase in the binding of counterions; this correlated with a decrease in the immobilization of structural water molecules. The increase in counterion uptake upon folding likely displaces binding of structural water, which is measured by the osmotic stress method, in favor of electrostricted waters. The cytosine bulges do not affect the binding of protons; this finding indicates that the bulges are not forming base-triplet stacks. These results indicate that bulges in junctions do not affect the unfolding profile or the enthalpy of oligonucleotides but do affect the number and amount of molecules immobilized by the junction.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
24
|
Characterization of a Cryptic Rolling-Circle Replication Plasmid pMK8 from Enterococcus durans 1-8. Curr Microbiol 2018; 75:1198-1205. [PMID: 29777339 DOI: 10.1007/s00284-018-1509-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
A novel cryptic plasmid from Enterococcus durans 1-8, designated as pMK8, was sequenced and analyzed in this study. It consists of 3337 bp with a G + C content of 33.11%. Sequence analysis of pMK8 revealed three putative open reading frames (ORFs). Based on homology, two of them were identified as genes encoding replication initiation (RepC) and mobilization (Mob) protein, respectively. Sequence analysis revealed a pT181 family double-strand origin (dso) and a putative single-strand origin (sso) located upstream of the repC gene. Sequence homology analysis indicated that the sso belongs to the ssoW family. Southern hybridization confirmed the presence of single-strand DNA (ssDNA) intermediates, suggesting that pMK8 replicates via the RCR mechanism. Furthermore, the relative copy number of pMK8 was estimated by real-time PCR to be 175 ± 14 copies in each cell.
Collapse
|
25
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
26
|
Lorenzo-Díaz F, Fernández-López C, Guillén-Guío B, Bravo A, Espinosa M. Relaxase MobM Induces a Molecular Switch at Its Cognate Origin of Transfer. Front Mol Biosci 2018; 5:17. [PMID: 29600250 PMCID: PMC5863519 DOI: 10.3389/fmolb.2018.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
The MOBV1 family of relaxases is broadly distributed in plasmids and other mobile genetic elements isolated from staphylococci, enterococci, and streptococci. The prototype of this family is protein MobM encoded by the streptococcal promiscuous plasmid pMV158. MobM cleaves the phosphodiester bond of a specific dinucleotide within the origin of transfer (oriT) to initiate conjugative transfer. Differently from other relaxases, MobM and probably other members of the family, cleaves its target single-stranded DNA through a histidine residue rather than the commonly used tyrosine. The oriT of the MOBV1 family differs from other well-known conjugative systems since it has sequences with three inverted repeats, which were predicted to generate three mutually-exclusive hairpins on supercoiled DNA. In this work, such hypothesis was evaluated through footprinting experiments on supercoiled plasmid DNA. We have found a change in hairpin extrusion mediated by protein MobM. This conformational change involves a shift from the main hairpin generated on “naked” DNA to a different hairpin in which the nick site is positioned in a single-stranded configuration. Our results indicate that the oriTpMV158 acts as a molecular switch in which, depending on the inverted repeat recognized by MobM, pMV158 mobilization could be turned “on” or “off.”
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Guillén-Guío
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
27
|
Wang Y, Chen B, Cao M, Sima L, Prangishvili D, Chen X, Krupovic M. Rolling-circle replication initiation protein of haloarchaeal sphaerolipovirus SNJ1 is homologous to bacterial transposases of the IS91 family insertion sequences. J Gen Virol 2018; 99:416-421. [DOI: 10.1099/jgv.0.001009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Beibei Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Mengzhuo Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Linshan Sima
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Xiangdong Chen
- China Center for Type Culture Collection, Wuhan, PR China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| |
Collapse
|
28
|
Carr CE, Marky LA. Effect of GCAA stabilizing loops on three- and four-way intramolecular junctions. Phys Chem Chem Phys 2018; 20:5046-5056. [PMID: 29388988 DOI: 10.1039/c7cp08329g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tetraloops are a common way of changing the melting behavior of a DNA or RNA structure without changing the sequence of the stem. Because of the ubiquitous nature of tetraloops, our goal is to understand the effect a GCAA tetraloop, which belongs to the GNRA family of tetraloops, has on the unfolding thermodynamics of intramolecular junctions. Specifically, we have described the melting behavior of intramolecular three-way and four-way junctions where a T5 loop has been replaced with a GCAA tetraloops in different positions. Their thermodynamic profiles, including ΔnNa+ and ΔnW, were analyzed based on the position of the tetraloop. We obtained between -16.7 and -27.5 kcal mol-1 for all junctions studied. The experimental data indicates the influence of the GCAA tetraloop is primarily dictated by the native unfolding of the junction; if the tetraloop is placed on a stem that unfolds as a single domain when the tetraloop is not present, it will unfold as a single domain when the tetraloop is present but with a higher thermal stability. Conversely, if the tetraloop is placed on a stem which unfolds cooperatively with other stems when the tetraloop is not present, the tetraloop will increase the thermal stability of all the stems in the melting domain. The oligonucleotide structure and not the tetraloop itself affects ion uptake; three-way junctions do not gain an increase in ion uptake, but four-way junctions do. This is not the case for water immobilization, where the position of the tetraloop dictates the amount of water immobilized.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
29
|
Toleikis A, Webb MR, Molloy JE. oriD structure controls RepD initiation during rolling-circle replication. Sci Rep 2018; 8:1206. [PMID: 29352198 PMCID: PMC5775427 DOI: 10.1038/s41598-017-18817-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial antibiotic resistance is often carried by circular DNA plasmids that are copied separately from the genomic DNA and can be passed to other bacteria, spreading the resistance. The chloramphenicol-resistance plasmid pC221 from Staphylococcus aureus is duplicated by a process called asymmetric rolling circle replication. It is not fully understood how the replication process is regulated but its initiation requires a plasmid-encoded protein called RepD that nicks one strand of the parent plasmid at the double-stranded origin of replication (oriD). Using magnetic tweezers to control the DNA linking number we found RepD nicking occurred only when DNA was negatively supercoiled and that binding of a non-nicking mutant (RepDY188F) stabilized secondary structure formation at oriD. Quenched-flow experiments showed the inverted complementary repeat sequence, ICRII, within oriD was most important for rapid nicking of intact plasmids. Our results show that cruciform formation at oriD is an important control for initiation of plasmid replication.
Collapse
Affiliation(s)
- Algirdas Toleikis
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- WMS - Cell and Development Biology, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin R Webb
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Justin E Molloy
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
30
|
Carr CE, Marky LA. Melting Behavior of a DNA Four-Way Junction Using Spectroscopic and Calorimetric Techniques. J Am Chem Soc 2017; 139:14443-14455. [DOI: 10.1021/jacs.7b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolyn E. Carr
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
31
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
32
|
Carr CE, Marky LA. Investigation of the Melting Behavior of DNA Three-Way Junctions in the Closed and Open States. Biophys J 2017; 113:529-539. [PMID: 28793208 DOI: 10.1016/j.bpj.2017.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022] Open
Abstract
Intramolecular three-way junctions are commonly found in both DNA and RNA. These structures are functionally relevant in ribozymes, riboswitches, rRNA, and during replication. In this work, we present a thermodynamic description of the unfolding of DNA intramolecular three-way junctions. We used a combination of spectroscopic and calorimetric techniques to investigate the folding/unfolding thermodynamics of two three-way junctions with a closed (Closed-J) or open (Open-J) junction and their appropriate control stem-loop motifs (GAAATT-Hp, CTATC-Hp, and Dumbbell). The overall results show that both junctions are stable over a wide range of salt concentrations. However, Open-J is more stable due to a higher enthalpy contribution from the formation of a higher number of basepair stacks whereas Closed-J has a defined structure and retains the basepair stacking of all three stems. The comparison of the experimental results of Closed-J and Open-J with those of their component stem-loop motifs allowed us to be more specific about their cooperative unfolding. For instance, Closed-J sacrifices thermal stability of the Dumbbell structure to maintain an overall folded state. At higher salt concentration, the simultaneous unfolding of the above domains is lost, resulting in the unfolding of the three separate stems. In contrast, the junction of Open-J in low salt retains the thermal and enthalpic stability of the Dumbbell structure although sacrificing stability of the CTATC stem. The relative stability of Dumbbell is the primary reason for the higher ΔG°(5), or free energy, value seen for Open-J at low salt. Higher salt not only maintains thermal stability of the Dumbbell structure in Open-J but causes the CTATC stem to fully fold.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
33
|
Characterization of Four Novel Plasmids from Lactobacillus plantarum BM4. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Challacombe JF, Pillai S, Kuske CR. Shared features of cryptic plasmids from environmental and pathogenic Francisella species. PLoS One 2017; 12:e0183554. [PMID: 28837612 PMCID: PMC5570271 DOI: 10.1371/journal.pone.0183554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We have identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. Genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.
Collapse
Affiliation(s)
- Jean F. Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Segaran Pillai
- Office of Laboratory Science and Safety, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Cheryl R. Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
35
|
Wassenaar TM, Cabal A. The mobile dso-gene-sso element in rolling-circle plasmids of staphylococci reflects the evolutionary history of its resistance gene. Lett Appl Microbiol 2017. [PMID: 28631335 DOI: 10.1111/lam.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The qacC and lnuA genes of Staphylococcus species were recently proposed to comprise a mobile element when residing on rolling-circle plasmids. Here we present other examples of resistance genes on staphylococcal rolling-circle plasmids, including fosB producing resistance to fosfomycin, cat resulting in resistance to chloramphenicol and cadB for resistance to the toxic heavy metal cadmium. For three of these genes (qacC, lnuA and fosB), evidence was obtained that the genes have spread between different plasmid backgrounds. The lack of mutations in qacC suggests that the spread occurred relatively recently, while the build up of mutations in lnuA and fosB suggests their mobilization occurred in the more distant past. These observations can be explained by the use of the respective antibiotics over time. However, the cat and cadB genes sequences analysed had not collected any mutations, an observation that is not completely understood but possible explanations are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY We have analysed five resistance genes in Staphylococcus aureus that are positioned between the replication elements of rolling-circle plasmids. For three of these genes, evidence was obtained indicative of recent mobilization. The historical use of the antibiotics to which the genes produce resistance could be related to the number of mutations collected in these genes. However, two other resistance genes have not collected any mutations over time, and the reasons for this are discussed. The analyses presented provide insights into the spread and evolution of antibiotic resistance genes.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - A Cabal
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| |
Collapse
|
36
|
Wright LD, Grossman AD. Autonomous Replication of the Conjugative Transposon Tn916. J Bacteriol 2016; 198:3355-3366. [PMID: 27698087 PMCID: PMC5116939 DOI: 10.1128/jb.00639-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are self-transferable elements that are widely distributed among bacterial phyla and are important drivers of horizontal gene transfer. Many ICEs carry genes that confer antibiotic resistances to their host cells and are involved in the dissemination of these resistance genes. ICEs reside in host chromosomes but under certain conditions can excise to form a plasmid that is typically the substrate for transfer. A few ICEs are known to undergo autonomous replication following activation. However, it is not clear if autonomous replication is a general property of many ICEs. We found that Tn916, the first conjugative transposon identified, replicates autonomously via a rolling-circle mechanism. Replication of Tn916 was dependent on the relaxase encoded by orf20 of Tn916 The origin of transfer of Tn916, oriT(916), also functioned as an origin of replication. Using immunoprecipitation and mass spectrometry, we found that the relaxase (Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916 likely interact in a complex and that the Tn916 relaxase contains a previously unidentified conserved helix-turn-helix domain in its N-terminal region that is required for relaxase function and replication. Lastly, we identified a functional single-strand origin of replication (sso) in Tn916 that we predict primes second-strand synthesis during rolling-circle replication. Together these results add to the emerging data that show that several ICEs replicate via a conserved, rolling-circle mechanism. IMPORTANCE Integrative and conjugative elements (ICEs) drive horizontal gene transfer and the spread of antibiotic resistances in bacteria. ICEs reside integrated in a host genome but can excise to create a plasmid that is the substrate for transfer to other cells. Here we show that Tn916, an ICE with broad host range, undergoes autonomous rolling-circle replication when in the plasmid form. We found that the origin of transfer functions as a double-stranded origin of replication and identified a single-stranded origin of replication. It was long thought that ICEs do not undergo autonomous replication. Our work adds to the evidence that ICEs replicate autonomously as part of their normal life cycle and indicates that diverse ICEs use the same replicative mechanism.
Collapse
Affiliation(s)
- Laurel D Wright
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL. Generation of a Stable Plasmid for In Vitro and In Vivo Studies of Staphylococcus Species. Appl Environ Microbiol 2016; 82:6859-6869. [PMID: 27637878 PMCID: PMC5103085 DOI: 10.1128/aem.02370-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022] Open
Abstract
A major shortcoming to plasmid-based genetic tools is the necessity of using antibiotics to ensure plasmid maintenance. While selectable markers are very powerful, their use is not always practical, such as during in vivo models of bacterial infection. During previous studies, it was noted that the uncharacterized LAC-p01 plasmid in Staphylococcus aureus USA300 isolates was stable in the absence of a known selection and therefore could serve as a platform for new genetic tools for Staphylococcus species. LAC-p01 was genetically manipulated into an Escherichia coli-S. aureus shuttle vector that remained stable for at least 100 generations without antibiotic selection. The double- and single-stranded (dso and sso) origins were identified and found to be essential for plasmid replication and maintenance, respectively. In contrast, deletion analyses revealed that none of the four LAC-p01 predicted open reading frames were necessary for stability. Subsequent to this, the shuttle vector was used as a platform to generate two plasmids. The first plasmid, pKK22, contains all genes native to the plasmid for use in S. aureus USA300 strains, while the second, pKK30, lacks the four predicted open reading frames for use in non-USA300 isolates. pKK30 was also determined to be stable in Staphylococcus epidermidis Moreover, pKK22 was maintained for 7 days postinoculation during a murine model of S. aureus systemic infection and successfully complemented an hla mutant in a dermonecrosis model. These plasmids that eliminate the need for antibiotics during both in vitro and in vivo experiments are powerful new tools for studies of StaphylococcusIMPORTANCE Plasmid stability has been problematic in bacterial studies, and historically antibiotics have been used to ensure plasmid maintenance. This has been a major limitation during in vivo studies, where providing antibiotics for plasmid maintenance is difficult and has confounding effects. Here, we have utilized the naturally occurring plasmid LAC-p01 from an S. aureus USA300 strain to construct stable plasmids that obviate antibiotic usage. These newly modified plasmids retain stability over a multitude of generations in vitro and in vivo without antibiotic selection. With these plasmids, studies requiring genetic complementation, protein expression, or genetic reporter systems would not only overcome the burden of antibiotic usage but also eliminate the side effects of these antibiotics. Thus, our plasmids can be used as a powerful genetic tool for studies of Staphylococcus species.
Collapse
Affiliation(s)
- Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kelsey L Krausz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jason A Joyner
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Srijana Pokhrel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
38
|
Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature. Metab Eng Commun 2016; 3:30-38. [PMID: 29468112 PMCID: PMC5779722 DOI: 10.1016/j.meteno.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Clostridium thermocellum is a leading candidate for the consolidated bioprocessing of lignocellulosic biomass for the production of fuels and chemicals. A limitation to the engineering of this strain is the availability of stable replicating plasmid vectors for homologous and heterologous expression of genes that provide improved and/or novel pathways for fuel production. Current vectors relay on replicons from mesophilic bacteria and are not stable at the optimum growth temperature of C. thermocellum. To develop more thermostable genetic tools for C. thermocellum, we constructed vectors based on the hyperthermophilic Caldicellulosiruptor bescii replicon pBAS2. Autonomously replicating shuttle vectors based on pBAS2 reproducibly transformed C. thermocellum at 60 °C and were maintained in multiple copy. Promoters, selectable markers and plasmid replication proteins from C. bescii were functional in C. thermocellum. Phylogenetic analyses of the proteins contained on pBAS2 revealed that the replication initiation protein RepL is unique among thermophiles. These results suggest that pBAS2 may be a broadly useful replicon for other thermophilic Firmicutes.
Collapse
Affiliation(s)
- Joseph Groom
- Department of Genetics, University of Georgia, Athens, GA, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daehwan Chung
- Department of Genetics, University of Georgia, Athens, GA, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA
| | - Daniel G. Olson
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
| | - Lee R. Lynd
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
| | - Adam M. Guss
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Janet Westpheling
- Department of Genetics, University of Georgia, Athens, GA, USA
- The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
39
|
Xiong W, Dooner HK, Du C. Rolling-circle amplification of centromeric Helitrons in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:1038-1045. [PMID: 27553634 DOI: 10.1111/tpj.13314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling-circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present-day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5' ends, but a single 3' end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Hugo K Dooner
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08801, USA
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
40
|
Hon S, Lanahan AA, Tian L, Giannone RJ, Hettich RL, Olson DG, Lynd LR. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases ( adhEs). Metab Eng Commun 2016; 3:120-129. [PMID: 29142822 PMCID: PMC5678826 DOI: 10.1016/j.meteno.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/15/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Anthony A. Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Richard J. Giannone
- BioEnergy Science Center, Oak Ridge, TN, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L. Hettich
- BioEnergy Science Center, Oak Ridge, TN, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- BioEnergy Science Center, Oak Ridge, TN, USA
| |
Collapse
|
41
|
Wassenaar TM, Ussery DW, Ingmer H. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism. Front Microbiol 2016; 7:1528. [PMID: 27729906 PMCID: PMC5037232 DOI: 10.3389/fmicb.2016.01528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Resistance of Staphylococcus species to quaternary ammonium compounds, frequently used as disinfectants and biocides, can be attributed to qac genes. Most qac gene products belong to the Small Multidrug Resistant (SMR) protein family, and are often encoded by rolling-circle (RC) replicating plasmids. Four classes of SMR-type qac gene families have been described in Staphylococcus species: qacC, qacG, qacJ, and qacH. Within their class, these genes are highly conserved, but qacC genes are extremely conserved, although they are found in variable plasmid backgrounds. The lower degree of sequence identity of these plasmids compared to the strict nucleotide conservation of their qacC means that this gene has recently spread. In the absence of insertion sequences or other genetic elements explaining the mobility, we sought for an explanation of mobilization by sequence comparison. Publically available sequences of qac genes, their flanking genes and the replication gene that is invariably present in RC-plasmids were compared to reconstruct the evolutionary history of these plasmids and to explain the recent spread of qacC. Here we propose a new model that explains how qacC is mobilized and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO) and the Single-Strand replication Origin (SSO). The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance). The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations.
Collapse
Affiliation(s)
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
42
|
Ruiz-Masó JA, Bordanaba-Ruiseco L, Sanz M, Menéndez M, Del Solar G. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB. Front Mol Biosci 2016; 3:56. [PMID: 27709114 PMCID: PMC5030251 DOI: 10.3389/fmolb.2016.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 02/02/2023] Open
Abstract
Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site(s), missing in the separate catalytic domain, that must also be saturated for maximal activity. The molecular bases of the thermostabilizing effect of Mn2+ on the N-terminal domain of the protein as well as the potential location of additional metal binding sites in the entire RepB are discussed.
Collapse
Affiliation(s)
- José A Ruiz-Masó
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Lorena Bordanaba-Ruiseco
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Marta Sanz
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Margarita Menéndez
- Biological Physical Chemistry, Protein Structure and Thermodynamics, Instituto de Química-Física Rocasolano (Consejo Superior de Investigaciones Científicas)Madrid, Spain; CIBER of Respiratory DiseasesMadrid, Spain
| | - Gloria Del Solar
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| |
Collapse
|
43
|
Characterization of a Rolling-Circle Replication Plasmid pM411 from Lactobacillus plantarum 1-3. Curr Microbiol 2016; 73:820-826. [PMID: 27592105 DOI: 10.1007/s00284-016-1124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
A cryptic plasmid pM411 isolated from Lactobacillus plantarum 1-3 consisted of a 2303-bp circular molecule with a G + C content 32.96 %. Sequence analysis of pM411 revealed four putative open reading frames (ORFs). ORF1 shared 99 and 94 % similarities, respectively, with the Rep proteins of plasmids pLC2 and pYC2, which belong to the rolling-circle replication pMV158 family. A typical pMV158 family double-strand origin (dso) and a putative single-strand origin (sso) located upstream of the rep gene. Southern hybridization confirmed the presence of single-strand DNA (ssDNA) intermediates, suggesting that pM411 belongs to the RCR pMV158 family. Sequence homology analysis indicated that the sso belongs to the ssoW family. Furthermore, the relative copy number of pM411 was about 88 copies in each cell by real-time PCR.
Collapse
|
44
|
Pastrana CL, Carrasco C, Akhtar P, Leuba SH, Khan SA, Moreno-Herrero F. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules. Nucleic Acids Res 2016; 44:8885-8896. [PMID: 27488190 PMCID: PMC5062986 DOI: 10.1093/nar/gkw689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate.
Collapse
Affiliation(s)
- Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Parvez Akhtar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Sanford H Leuba
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Saleem A Khan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
45
|
Sagredo S, de la Cruz F, Moncalián G. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures. PLoS One 2016; 11:e0152666. [PMID: 27027740 PMCID: PMC4814116 DOI: 10.1371/journal.pone.0152666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/17/2016] [Indexed: 11/28/2022] Open
Abstract
During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.
Collapse
Affiliation(s)
- Sandra Sagredo
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN, C/ Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN, C/ Albert Einstein 22, 39011, Santander, Spain
- * E-mail: (FC); (GM)
| | - Gabriel Moncalián
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN, C/ Albert Einstein 22, 39011, Santander, Spain
- * E-mail: (FC); (GM)
| |
Collapse
|
46
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
47
|
Barth A, Kobbe D, Focke M. DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures. Nucleic Acids Res 2016; 44:1502-13. [PMID: 26773051 PMCID: PMC4770242 DOI: 10.1093/nar/gkw014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology.
Collapse
Affiliation(s)
- Anna Barth
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Manfred Focke
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
48
|
Sequence analysis and minimal replicon determination of a new haloarchaeal plasmid pHF2 isolated from Haloferax sp. strain Q22. Plasmid 2016; 83:1-7. [DOI: 10.1016/j.plasmid.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 11/21/2022]
|
49
|
Abstract
Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; ,
| | | |
Collapse
|
50
|
Lee JH, Jeong DW. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance. PLoS One 2015; 10:e0140190. [PMID: 26448648 PMCID: PMC4598088 DOI: 10.1371/journal.pone.0140190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 443–760, Republic of Korea
| | - Do-Won Jeong
- Department of Food Science and Biotechnology, Shinansan University, Ansan, 425–792, Republic of Korea
- * E-mail:
| |
Collapse
|