1
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
2
|
Li G, Sng KS, Shu B, Wang YJ, Yao M, Cui XJ. Effects of tetramethylpyrazine treatment in a rat model of spinal cord injury: A systematic review and meta-analysis. Eur J Pharmacol 2023; 945:175524. [PMID: 36803629 DOI: 10.1016/j.ejphar.2023.175524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
Spinal cord injury (SCI) is a serious disabling condition that leads to the loss of motor, sensory, and excretory functions, seriously affecting the quality of life of patients and imposing a heavy burden on the patient's family and society. There is currently a lack of effective treatments for SCI. However, a large number of experimental studies have shown beneficial effects of tetramethylpyrazine (TMP). We performed a meta-analysis to systematically evaluate the effects of TMP on neurological and motor function recovery in rats with acute SCI. English (PubMed, Web of Science, and EMbase) and Chinese (CNKI, Wanfang, VIP, and CBM) databases were searched for literature related to TMP treatment in rats with SCI published until October 2022. Two researchers independently read the included studies, extracted the data, and evaluated their quality. A total of 29 studies were included, and a risk of bias assessment revealed that the methodological quality of the included studies was low. The results of the meta-analysis showed that the Basso, Beattie, and Bresnahan (BBB; n = 429, pooled mean difference [MD] = 3.44, 95% confidence interval [CI] = 2.67 to 4.22, p < 0.00001) and inclined plane test (n = 133, pooled MD = 5.60, 95% CI = 3.78 to 7.41, p < 0.00001) scores of rats treated with TMP were significantly higher than those in the control group at 14 days after SCI. TMP treatment also resulted in a significant reduction in malondialdehyde (MDA; n = 128, pooled MD = -2.03, 95% CI = -3.47 to -0.58, p < 0.00001) and increased superoxide dismutase (SOD; n = 128, pooled MD = 5.02, 95% CI = 2.39 to 7.65, p < 0.00001). Subgroup analysis indicated that different doses of TMP did not improve the BBB scale and inclined plane test angles. In conclusion, this review showed that TMP can improve SCI outcomes; however, in view of the limitations of the included studies, larger and high-quality studies are required for verification.
Collapse
Affiliation(s)
- Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Kim Sia Sng
- Department of Chinese Medicine, Centre for Complementary and Alternative Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Bing Shu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Effect of n-3 PUFA on extracellular matrix protein turnover in patients with psoriatic arthritis: a randomized, double-blind, placebo-controlled trial. Rheumatol Int 2021; 41:1065-1077. [PMID: 33885930 PMCID: PMC8079340 DOI: 10.1007/s00296-021-04861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/07/2021] [Indexed: 12/03/2022]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by involvement of skin, axial and peripheral skeleton. An altered balance between extracellular matrix (ECM) formation and breakdown is a key event in PsA, and changes in ECM protein metabolites may provide insight to tissue changes. Dietary fish oils (n-3 PUFA) might affect the inflammation driven tissue turnover. The aim was to evaluate ECM metabolites in patients with PsA compared to healthy individuals and investigate the effects of n-3 PUFA. The 24-week randomized, double-blind, placebo-controlled trial of PUFA included 142 patients with PsA. Fifty-seven healthy individuals were included for comparison. This study is a sub-study investigating biomarkers of tissue remodelling as secondary outcomes. Serum samples at baseline and 24 weeks and healthy individuals were obtained, while a panel of ECM metabolites reflecting bone and soft tissue turnover were measured by ELISAs: PRO-C1, PRO-C3, PRO-C4, C1M, C3M, C4M, CTX-I and Osteocalcin (OC). C1M, PRO-C3, PRO-C4 and C4M was found to be elevated in PsA patients compared to the healthy individuals (from 56 to 792%, all p < 0.0001), where no differences were found for OC, CTX-I, PRO-C1 and C3M. PRO-C3 was increased by 7% in patients receiving n-3 PUFA after 24 weeks compared to baseline levels (p = 0.002). None of the other biomarkers was changed with n-3 PUFA treatment. This indicates that tissue turnover is increased in PsA patients compared to healthy individuals, while n-3 PUFA treatment for 24 weeks did not have an effect on tissue turnover. Trial registration NCT01818804. Registered 27 March 2013–Completed 18 February 2016. https://clinicaltrials.gov/ct2/show/NCT01818804?term=NCT01818804&rank=1
Collapse
|
4
|
The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3642491. [PMID: 32676138 PMCID: PMC7336207 DOI: 10.1155/2019/3642491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Patients with spinal cord injury (SCI) face devastating health, social, and financial consequences, as well as their families and caregivers. Reducing the levels of reactive oxygen species (ROS) and oxidative stress are essential strategies for SCI treatment. Some compounds from traditional medicine could be useful to decrease ROS generated after SCI. This review is aimed at highlighting the importance of some natural compounds with antioxidant capacity used in traditional medicine to treat traumatic SCI. An electronic search of published articles describing animal models of SCI treated with natural compounds from traditional medicine was conducted using the following terms: Spinal Cord Injuries (MeSH terms) AND Models, Animal (MeSH terms) AND [Reactive Oxygen Species (MeSH terms) AND/OR Oxidative Stress (MeSH term)] AND Medicine, Traditional (MeSH terms). Articles reported from 2010 to 2018 were included. The results were further screened by title and abstract for studies performed in rats, mice, and nonhuman primates. The effects of these natural compounds are discussed, including their antioxidant, anti-inflammatory, and antiapoptotic properties. Moreover, the antioxidant properties of natural compounds were emphasized since oxidative stress has a fundamental role in the generation and progression of several pathologies of the nervous system. The use of these compounds diminishes toxic effects due to their high antioxidant capacity. These compounds have been tested in animal models with promising results; however, no clinical studies have been conducted in humans. Further research of these natural compounds is crucial to a better understanding of their effects in patients with SCI.
Collapse
|
5
|
Lucke-Wold BP, Logsdon AF, Nguyen L, Eltanahay A, Turner RC, Bonasso P, Knotts C, Moeck A, Maroon JC, Bailes JE, Rosen CL. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci 2018; 21:79-91. [PMID: 27705610 PMCID: PMC5491366 DOI: 10.1080/1028415x.2016.1236174] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies using traditional treatment strategies for mild traumatic brain injury (TBI) have produced limited clinical success. Interest in treatment for mild TBI is at an all time high due to its association with the development of chronic traumatic encephalopathy and other neurodegenerative diseases, yet therapeutic options remain limited. Traditional pharmaceutical interventions have failed to transition to the clinic for the treatment of mild TBI. As such, many pre-clinical studies are now implementing non-pharmaceutical therapies for TBI. These studies have demonstrated promise, particularly those that modulate secondary injury cascades activated after injury. Because no TBI therapy has been discovered for mild injury, researchers now look to pharmaceutical supplementation in an attempt to foster success in human clinical trials. Non-traditional therapies, such as acupuncture and even music therapy are being considered to combat the neuropsychiatric symptoms of TBI. In this review, we highlight alternative approaches that have been studied in clinical and pre-clinical studies of TBI, and other related forms of neural injury. The purpose of this review is to stimulate further investigation into novel and innovative approaches that can be used to treat the mechanisms and symptoms of mild TBI.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, USA
| | - Aric F. Logsdon
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, USA
| | - Linda Nguyen
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, USA
| | - Ahmed Eltanahay
- Department of Neurosurgery, Oregon Health Sciences University, Portland, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, USA
| | - Patrick Bonasso
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, USA
| | - Chelsea Knotts
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, USA
| | - Adam Moeck
- Department of Surgery, Matigan Army Medical Center, Tacoma, WA, USA
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, PA, USA
| | - Julian E. Bailes
- Department of Neurosurgery, Northshore Healthcare System, Evanston, IL, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
6
|
Kavakli HS, Alici O, Koca C, Ilhan A, Isik B. Caffeic Acid Phenethyl Ester Decreases Oxidative Stress Index in Blunt Spinal Cord Injury in Rats. HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490791001700308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective The aim of this study was to investigate the total oxidant status and total antioxidant status of caffeic acid phenethyl ester and methylprednisolone in blunt spinal cord injury in rats. Methods Twenty-four adult Wistar albino rats were randomised into three groups. Spinal cord injury was performed by the weight-drop model. Group 1 underwent laminectomy followed by spinal cord injury and received no medication (control group). Group 2 underwent laminectomy followed by spinal cord injury and received caffeic acid phenethyl ester (10 µmol/kg) by intraperitoneal injection. Group 3 underwent laminectomy followed by spinal cord injury and received methylprednisolone (30 mg/kg) by intraperitoneal injection. Twenty-four hours later, all rats were sacrified and after that total oxidant status, total antioxidant status and oxidative stress index levels were determined in spinal cord tissues and the obtained results were compared. Results The highest total antioxidant status level was observed in the caffeic acid phenethyl ester group and the highest total oxidant status level was observed in the control group. Oxidative stress index levels in the control group were statistically higher than the caffeic acid phenethyl ester and methylprednisolone groups (p<0.01). Conclusion Based on our results, it is concluded that caffeic acid phenethyl ester might be a promising neuroprotective agent after spinal cord injury via its antioxidant effects.
Collapse
Affiliation(s)
| | - O Alici
- Medical Park Hospital, Department of Infectious Diseases and Clinical Bacteriology, Istanbul, Turkey
| | - C Koca
- Fatih University, Department of Biochemistry, Faculty of Medicine, Ankara, Turkey
| | - A Ilhan
- Fatih University, Department of Neurology, Faculty of Medicine, Ankara, Turkey
| | - B Isik
- Fatih University, Department of Family Medicine, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Casazza K, Swanson E. Nutrition as Medicine to Improve Outcomes in Adolescents Sustaining a Sports-related Concussion. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-9. [DOI: 10.14218/erhm.2017.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv Nutr 2016; 7:905-16. [PMID: 27633106 PMCID: PMC5015035 DOI: 10.3945/an.116.012187] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; and Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
9
|
Decker MJ, Jones K, Keating GL, Damato EG, Darrah R. Maternal dietary supplementation with omega-3 polyunsaturated fatty acids confers neuroprotection to the newborn against hypoxia-induced dopamine dysfunction. Sleep Sci 2016; 9:94-9. [PMID: 27656273 PMCID: PMC5021959 DOI: 10.1016/j.slsci.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/27/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Up to 84% of prematurely born infants suffer hypoxic, anoxic, and ischemic insults. Those infants with subsequent behavioral, motor or cognitive dysfunction represent 8-11% of all live births. Yet, no interventions employed during pregnancy attenuate risk of morbidity in those at-risk infants. Dietary supplementation with omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been shown to reduce stroke-induced neuropathology in rat models emulating this adverse clinical event. To extend those studies we sought to determine whether maternal dietary supplementation with ω-3 PUFAs would confer neuroprotection against hypoxia-induced neurochemical dysfunction in newborn rat pups exposed to repetitive hypoxic insults. METHODS We provided pregnant rats with either a ω-3 PUFA enriched diet or else a standard rat chow diet. At postnatal day 7, pups were assigned randomly to either repetitive hypoxic insults or repetitive bursts of room air. On postnatal day 12, pups were sacrificed and brain dopamine levels characterized. RESULTS Baseline brain dopamine levels did not differ between rat pups born to dams who received ω-3 PUFA enriched versus standard rat chow diets. Rat pups born to dams maintained on normal diets, who were exposed to five days of repetitive hypoxic insults, experienced a 57% reduction in striatal dopamine levels accompanied by significant apoptosis. In contrast, ω-3 PUFA-enriched newborn pups experienced no loss in striatal dopamine levels, and only minimal apoptosis. CONCLUSIONS Our findings suggest that it may be feasible to confer neuroprotection against hypoxia-induced dopamine dysfunction to newborns likely to experience hypoxic insults. This could significantly improve the outcomes of those 8-11% of newborns who would otherwise experience hypoxia-induced behavioral, motor and cognitive dysfunction.
Collapse
Affiliation(s)
- Michael J. Decker
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Karra Jones
- University of California, Neuropathology, Department of Pathology, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, United States
| | - Glenda L. Keating
- Emory University, School of Medicine, Department of Neurology, Woodruff Memorial Research Building, 101 Woodruff Circle NE (Clifton RD NE), Atlanta, GA 30322, United States
| | - Elizabeth G. Damato
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Rebecca Darrah
- Case Western Reserve University, School of Nursing, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| |
Collapse
|
10
|
Blondeau N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2015; 120:49-55. [PMID: 26092420 DOI: 10.1016/j.biochi.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
Stroke is a worldwide major cause of mortality and morbidity. Preclinical studies have identified over 1000 molecules with brain-protective properties. More than 200 clinical trials have evaluated neuroprotective candidates for ischemic stroke yet, to date almost all failed, leading to a re-analysis of treatment strategies against stroke. An emerging view is to seek combinatory therapy, or discovering molecules able to stimulate multiple protective and regenerative mechanisms. A pertinent experimental approach to identify such candidates is the study of brain preconditioning, which refers to how the brain protects itself against ischemia and others stress-inducing stimuli. The recent discovery that nutrients like alpha-linolenic acid (ALA is an essential omega-3 polyunsaturated fatty acid required as part of our daily diet), may be an efficient brain preconditionner against stroke fosters the novel concept of brain preconditioning by nutraceuticals. This review stresses the underestimated role of nutrition in preventing and combating stroke. Although there is a consensus that increased consumption of salt, fatty foods and alcoholic beverages may promote pathologies like hypertension, obesity and alcoholism - all of which are well known risk factors of stroke - few risk factors are attributed to a deficiency in an essential nutrient in the diet. The ALA deficiency observed in the Western modern diets may itself constitute a risk factor. This review outlines how ALA supplementation by modification of the daily diet prevented mortality and cerebral damage in a rodent model of ischemic stroke. It also describes the pleiotropic ability of ALA to trigger responses that are multicellular, mechanistically diverse, resulting in neuronal protection, stimulation of neuroplasticity, and brain artery vasodilation. Overall, this review proposes a promising therapeutic opportunity by integrating a nutritional-based approach focusing on enriching the daily diet in ALA to prevent the devastating damage caused by stroke.
Collapse
Affiliation(s)
- Nicolas Blondeau
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
11
|
Marques CG, Santos VC, Levada-Pires AC, Jacintho TM, Gorjão R, Pithon-Curi TC, Cury-Boaventura MF. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise. Appl Physiol Nutr Metab 2015; 40:596-604. [DOI: 10.1139/apnm-2014-0140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of docosahexaenoic acid (DHA)-rich fish oil (FO) supplementation on the lipid profile, levels of plasma inflammatory mediators, markers of muscle damage, and neutrophil function in wheelchair basketball players before and after acute exercise. We evaluated 8 male basketball wheelchair athletes before and after acute exercise both prior to (S0) and following (S1) FO supplementation. The subjects were supplemented with 3 g of FO daily for 30 days. The following components were measured: the plasma lipid profile (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides), plasma inflammatory mediators (C-reactive protein, interleukin (IL)-1β, IL-1ra, IL-4, IL-6, IL-8, and tumor necrosis factor-α), markers of muscle damage (creatine kinase and lactate dehydrogenase (LDH)), and neutrophil function (cytokine production, phagocytic capacity, loss of membrane integrity, mitochondrial membrane potential, neutral lipid accumulation, phosphatidylserine externalization, DNA fragmentation, and production of reactive oxygen species (ROS)). Acute exercise increased the plasma levels of total cholesterol, LDH, IL1ra, and IL-6, led to the loss of membrane integrity, ROS production, and a high mitochondrial membrane potential in neutrophils, and reduced the phagocytic capacity and IL-6 production by the neutrophils (S0). However, supplementation prevented the increases in the plasma levels of LDH and IL-6, the loss of membrane integrity, and the alterations in ROS production and mitochondrial membrane potential in the neutrophils that were induced by exercise (S1). In conclusion, DHA-rich FO supplementation reduces the markers of muscle damage, inflammatory disturbances, and neutrophil death induced by acute exercise in wheelchair athletes.
Collapse
Affiliation(s)
- Camila Garcia Marques
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP 01506-000, São Paulo, SP, Brazil
| | - Vinicius Coneglian Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Adriana Cristina Levada-Pires
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP 01506-000, São Paulo, SP, Brazil
| | | | - Renata Gorjão
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP 01506-000, São Paulo, SP, Brazil
| | - Tânia Cristina Pithon-Curi
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP 01506-000, São Paulo, SP, Brazil
| | - Maria Fernanda Cury-Boaventura
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP 01506-000, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Layé S, Madore C, St-Amour I, Delpech JC, Joffre C, Nadjar A, Calon F. N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer’s disease. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/nua-150049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sophie Layé
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Charlotte Madore
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
| | - Isabelle St-Amour
- Faculté de Pharmacie, Université Laval; Centre de Recherche du CHU de Québec, Québec, Canada
| | - Jean-Christophe Delpech
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
| | - Corinne Joffre
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, Bordeaux Cedex, France
- University of Bordeaux, Bordeaux, France
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval; Centre de Recherche du CHU de Québec, Québec, Canada
- OptiNutriBrain International associated Laboratory (NutriNeuro France-INAF Canada)
| |
Collapse
|
13
|
Smith TJ, Barrett A, Anderson D, Wilson MA, Young AJ, Montain SJ. Absorption of omega-3 fats from carbohydrate and proteinaceous food matrices before and after storage. Food Sci Nutr 2015; 3:195-201. [PMID: 25987994 PMCID: PMC4431787 DOI: 10.1002/fsn3.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/02/2022] Open
Abstract
Development of n-3 fortified, shelf-stable foods is facilitated by encapsulated docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), since natural n-3 food sources cannot withstand high temperature and prolonged shelf life. Organoleptic stability of n-3 fortified, shelf-stable foods has been demonstrated, but chemical changes in the food matrix throughout storage could conceivably impact digestibility of the protein-based encapsulant thereby compromising n-3 bioavailability. We assessed the effect of prolonged high-temperature storage and variations in food matrix (proteinaceous or carbohydrate) on the time course and magnitude of blood fatty acids changes associated with ingestion of n-3 fortified foods. Low-protein (i.e., cake) and high-protein (i.e., meat sticks) items were supplemented with 600 mg encapsulated DHA+EPA, and frozen either immediately after production (FRESH) or after 6 months storage at 100°F (STORED). Fourteen volunteers consumed one item per week (randomized) for 4 weeks. Blood samples obtained at baseline, 2, 4, and 6 h post-consumption were analyzed for circulating long-chain omega 3 fatty acids (LCn3). There was no difference in LCn3 area under the curve between items. LCn3 in response to cakes peaked at 2-h (FRESH: 54.0 ± 16.8 μg/mL, +18%; STORED: 53.0 ± 13.2 μg/mL, +20%), while meats peaked at 4-h (FRESH: 51.9 ± 12.5 μg/mL, +22%; STORED: 53.2 ± 16.9 μg/mL, +18%). There were no appreciable differences in time course or magnitude of n-3 appearance in response to storage conditions for either food types. Thus, bioavailability of encapsulated DHA/EPA, within low- and high-protein food items, was not affected by high-temperature shelf-storage. A shelf-stable, low- or high-protein food item with encapsulated DHA/EPA is suitable for use in shelf-stable foods.
Collapse
Affiliation(s)
- Tracey J Smith
- Military Nutrition Division, U.S. Army Research Institute of Environmental MedicineKansas Street, Building 42, Natick, Massachusetts
| | - Ann Barrett
- Performance Optimization Research Team, Combat Feeding Directorate, Natick Soldier, Research and Engineering CenterKansas Street, Building 36, Natick, Massachusetts
| | - Danielle Anderson
- Performance Optimization Research Team, Combat Feeding Directorate, Natick Soldier, Research and Engineering CenterKansas Street, Building 36, Natick, Massachusetts
| | - Marques A Wilson
- Military Nutrition Division, U.S. Army Research Institute of Environmental MedicineKansas Street, Building 42, Natick, Massachusetts
| | - Andrew J Young
- Military Nutrition Division, U.S. Army Research Institute of Environmental MedicineKansas Street, Building 42, Natick, Massachusetts
| | - Scott J Montain
- Military Nutrition Division, U.S. Army Research Institute of Environmental MedicineKansas Street, Building 42, Natick, Massachusetts
| |
Collapse
|
14
|
Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic? BIOMED RESEARCH INTERNATIONAL 2015; 2015:519830. [PMID: 25789320 PMCID: PMC4350958 DOI: 10.1155/2015/519830] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/08/2014] [Indexed: 01/29/2023]
Abstract
Alpha-linolenic acid (ALA) is plant-based essential omega-3 polyunsaturated fatty acids that must be obtained through the diet. This could explain in part why the severe deficiency in omega-3 intake pointed by numerous epidemiologic studies may increase the brain's vulnerability representing an important risk factor in the development and/or deterioration of certain cardio- and neuropathologies. The roles of ALA in neurological disorders remain unclear, especially in stroke that is a leading cause of death. We and others have identified ALA as a potential nutraceutical to protect the brain from stroke, characterized by its pleiotropic effects in neuroprotection, vasodilation of brain arteries, and neuroplasticity. This review highlights how chronic administration of ALA protects against rodent models of hypoxic-ischemic injury and exerts an anti-depressant-like activity, effects that likely involve multiple mechanisms in brain, and may be applied in stroke prevention. One major effect may be through an increase in mature brain-derived neurotrophic factor (BDNF), a widely expressed protein in brain that plays critical roles in neuronal maintenance, and learning and memory. Understanding the precise roles of ALA in neurological disorders will provide the underpinnings for the development of new therapies for patients and families who could be devastated by these disorders.
Collapse
|
15
|
Yao M, Yang L, Wang J, Sun YL, Dun RL, Wang YJ, Cui XJ. Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review. J Neurotrauma 2015; 32:381-91. [PMID: 25141070 DOI: 10.1089/neu.2014.3520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting young, healthy individuals worldwide. Existing agents have inadequate therapeutic efficacy, and some are associated with side effects. Our objective is to summarize and critically assess the neurological recovery and antioxidant effects of curcumin for treatment of SCI in rat models. PubMed, Embase, and Chinese databases were searched from their inception date to February 2014. Two reviewers independently selected animal studies that evaluated neurological recovery and antioxidant effects of curcumin, compared to placebo, in rats with SCI, extracted data, and assessed the methodological quality. A pair-wise analysis and a network meta-analysis were performed. Eight studies with adequate randomization were selected and included in the systematic review. Two studies had a higher methodological quality. Overall, curcumin appears to significantly improve neurological function, as assessed using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale (four studies, n=132; pooled mean difference [MD]=3.09; 95% confidence interval [CI], 3.40-4.45; p=0.04), in a random-effects model and decrease malondialdehyde (MDA) using a fixed-effects model (four studies, n=56; pooled MD=-1.00; 95% CI=-1.59 to -0.42; p=0.00008). Effect size, assessed using the BBB scale, increased gradually with increasing curcumin dosage. The difference between low- and high-dose curcumin using the BBB scale was statistically significant. Neurological recovery and antioxidant effects of curcumin were observed in rats with SCI despite poor study methodological quality.
Collapse
Affiliation(s)
- Min Yao
- 1 Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Fatima G, Sharma VP, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord 2014; 53:3-6. [PMID: 25366528 DOI: 10.1038/sc.2014.178] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/08/2014] [Accepted: 09/28/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Oxygen-derived free radicals have been implicated in the pathogenesis of spinal cord injury (SCI) after trauma. OBJECTIVE In this review we will elucidate the importance of oxidative stress and antioxidants and its possible relationship with SCI. METHODS Literature analysis of oxidative stress, antioxidative parameters based on its implications in the pathogenesis along with devastating effect of oxidative stress parameters on SCI patients and its suggested proposed treatment by antioxidants have been performed. RESULTS SCI remains a major health problem despite advances in neurotechnology. Previous studies have reported oxidative stress in SCI patients, but the results were inconsistent. Furthermore, increased free radical levels are reported in SCI. Moreover, we have also mentioned in this review that oxidative stress is supposed to be increased in patients with SCI, which is related to the severity of SCI pain. CONCLUSION Oxidative stress was commonly seen in SCI patients, which may provide useful information to augment the understanding of pathophysiology of SCI patients. However, complete understanding of the biochemical events occurring at a cellular level that influence oxidative damage is required to guide future therapeutic advances. Furthermore, supplementation of antioxidants may also be considered in these patients.
Collapse
Affiliation(s)
- G Fatima
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - V P Sharma
- Department of Physical Medicine & Rehabilitation, King George's Medical University, Lucknow, India
| | - S K Das
- Department of Rheumatology, King George's Medical University, Lucknow, India
| | - A A Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
17
|
Wagner K, Vito S, Inceoglu B, Hammock BD. The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat 2014; 113-115:2-12. [PMID: 25240260 PMCID: PMC4254344 DOI: 10.1016/j.prostaglandins.2014.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
Lipid derived mediators contribute to inflammation and the sensing of pain. The contributions of omega-6 derived prostanoids in enhancing inflammation and pain sensation are well known. Less well explored are the opposing anti-inflammatory and analgesic effects of the omega-6 derived epoxyeicosatrienoic acids. Far less has been described about the epoxidized metabolites derived from omega-3 long chain fatty acids. The epoxide metabolites are turned over rapidly with enzymatic hydrolysis by the soluble epoxide hydrolase being the major elimination pathway. Despite this, the overall understanding of the role of lipid mediators in the pathology of chronic pain is growing. Here, we review the role of long chain fatty acids and their metabolites in alleviating both acute and chronic pain conditions. We focus specifically on the epoxidized metabolites of omega-6 and omega-3 long chain fatty acids as well as a novel strategy to modulate their activity in vivo.
Collapse
Affiliation(s)
- Karen Wagner
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Steve Vito
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bora Inceoglu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
18
|
Kumar PR, Essa MM, Al-Adawi S, Dradekh G, Memon MA, Akbar M, Manivasagam T. Omega-3 Fatty acids could alleviate the risks of traumatic brain injury - a mini review. J Tradit Complement Med 2014; 4:89-92. [PMID: 24860731 PMCID: PMC4003707 DOI: 10.4103/2225-4110.130374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) is an acquired brain trauma that occurs when any sudden trauma/injury causes damage to the brain. TBI is characterized by tissue damage and imbalance in the cerebral blood flow and metabolism. It has been established through laboratory experiments that the dietary supplementation of omega-3 fatty acids (FAs) could reduce the oxidative stress developed in brain due to TBI. The inclusion of omega-3 FA in diet could normalize the levels of brain-derived neurotrophic factor (BDNF), and thus, it could restore the survival of neuronal cells. BDNF improves the synaptic transmission by regulating synapsin 1 and cyclic adenosine monophosphate (cAMP) response element binding protein. The brain tissue analysis of TBI models supplemented with omega-3 polyunsaturated fatty acids (PUFAs) showed significantly reduced lipid peroxidation, nucleic acid and protein oxidation, thereby promoting neuronal and glial cell survival. Thus, omega-3 FA intake could be considered as a therapeutic option to reduce the secondary neuronal damages initiated by TBI.
Collapse
Affiliation(s)
- Parvathy R Kumar
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. ; Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. ; Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman
| | - Samir Al-Adawi
- Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman. ; College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman
| | - Ghazi Dradekh
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. ; Ageing and Dementia Research Group, Sultan Qaboos University, Sultanate of Oman
| | - Mushtaq A Memon
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Mohammed Akbar
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
19
|
Romero MDSC, Pliego-Rivero FB, Altamirano BM, Otero GA. Effect of postlactation iron deficiency on the composition of fatty acids of whole brain myelin. Nutr Neurosci 2013. [DOI: 10.1179/147683010x12611460764606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Karr JE, Alexander JE, Winningham RG. Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan: A review. Nutr Neurosci 2013; 14:216-25. [DOI: 10.1179/1476830511y.0000000012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Dacks PA, Shineman DW, Fillit HM. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J Nutr Health Aging 2013; 17:240-51. [PMID: 23459977 DOI: 10.1007/s12603-012-0431-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An NIH State of the Science Conference panel concluded in 2010 that insufficient evidence is available to recommend the use of any primary prevention therapy for Alzheimer's disease or cognitive decline with age. Despite the insufficient evidence, candidate therapies with varying levels of evidence for safety and efficacy are taken by the public and discussed in the media. One example is the long-chain n-3 (omega-3) polyunsaturated fatty acids (n-3 LC-PUFA), DHA and EPA, found in some fish and dietary supplements. With this report, we seek to provide a practical overview and rating of the level and type of available evidence that n-3 LC-PUFA supplements are safe and protective against cognitive aging and Alzheimer's disease, with additional discussion of the evidence for effects on quality of life, vascular aging, and the rate of aging. We discuss available sources, dose, bioavailability, and variables that may impact the response to n-3 LC-PUFA treatment such as baseline n-3 LC-PUFA status, APOE ε4 genotype, depression, and background diet. Lastly, we list ongoing clinical trials and propose next research steps to validate these fatty acids for primary prevention of cognitive aging and dementia. Of particular relevance, epidemiology indicates a higher risk of cognitive decline in people in the lower quartile of n-3 LC-PUFA intake or blood levels but these populations have not been specifically targeted by RCTs.
Collapse
Affiliation(s)
- P A Dacks
- Alzheimer's Drug Discovery Foundation, USA.
| | | | | |
Collapse
|
22
|
Lim SN, Huang W, Hall JC, Michael-Titus AT, Priestley JV. Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. Exp Neurol 2013; 239:13-27. [DOI: 10.1016/j.expneurol.2012.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
|
23
|
|
24
|
Stavrovskaya IG, Bird SS, Marur VR, Baranov SV, Greenberg HK, Porter CL, Kristal BS. Dietary Omega-3 Fatty Acids Do Not Change Resistance of Rat Brain or Liver Mitochondria to Ca(2+) and/or Prooxidants. J Lipids 2012; 2012:797105. [PMID: 22970378 PMCID: PMC3434410 DOI: 10.1155/2012/797105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.
Collapse
Affiliation(s)
- Irina G. Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Susan S. Bird
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Vasant R. Marur
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sergei V. Baranov
- Department of Neurological Surgery, Presbyterian Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Heather K. Greenberg
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Caryn L. Porter
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Central to the obstacles to be overcome in moving promising cell-based therapies from the laboratory to the clinic is that of determining which of the many cell types being examined are optimal for repairing particular lesions. RECENT FINDINGS Our studies on astrocyte replacement therapies demonstrate clearly that some cells are far better than others at promoting recovery in spinal cord injury and that, at least in some cases, transplanting undifferentiated precursor cells is far less useful than transplanting specific astrocytes derived from those precursor cells. But further comparison between different approaches is hindered by the difficulties in replicating results between laboratories, even for well defined pharmacological agents and bioactive proteins. These difficulties in replication appear most likely to be due to unrecognized nuances in lesion characteristics and in the details of delivery of therapies. SUMMARY We propose that the challenge of reproducibility provides a critical opportunity for refining cell-based therapies. If the utility of a particular approach is so restricted that even small changes in lesions or treatment protocols eliminate benefit, then the variability inherent in clinical injuries will frustrate translation. In contrast, rising to this challenge may enable discovery of refinements needed to confer the robustness needed for successful clinical trials.
Collapse
|
26
|
Collins MA, Neafsey EJ. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation. Neurotox Res 2011; 21:70-8. [PMID: 21927955 DOI: 10.1007/s12640-011-9276-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/21/2022]
Abstract
Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress and brain damage. Based on our experimental results as well as increased knowledge about the pro-neuroinflammatory potential of glial water channels, we propose that induction of aquaporin-4 can be a critical initiating factor in alcohol's neurotoxic effects, through the instigation of cellular edema-based neuroinflammatory cascades involving increased phospholipase A2 activities, polyunsaturated fatty acid release/membrane depletion, decreased prosurvival signaling, and oxidative stress. A testable scheme for this pathway is presented that incorporates recent findings in the alcohol-brain literature indicating a role for neuroimmune activation (upregulation of NF-kappaB, proinflammatory cytokines, and toll-like receptors). We present the argument that such neuroimmune activation could be associated with or even dependent on increased aquaporin-4 and glial swelling as well.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
27
|
Ozsoy O, Tanriover G, Derin N, Uysal N, Demir N, Gemici B, Kencebay C, Yargicoglu P, Agar A, Aslan M. The Effect of Docosahexaenoic Acid on Visual Evoked Potentials in a Mouse Model of Parkinson’s Disease: The Role of Cyclooxygenase-2 and Nuclear Factor Kappa-B. Neurotox Res 2011; 20:250-62. [DOI: 10.1007/s12640-011-9238-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 01/04/2023]
|
28
|
Wann AKT, Mistry J, Blain EJ, Michael-Titus AT, Knight MM. Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1β-mediated cartilage degradation. Arthritis Res Ther 2010; 12:R207. [PMID: 21059244 PMCID: PMC3046514 DOI: 10.1186/ar3183] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/19/2010] [Accepted: 11/08/2010] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION In inflammatory joint disease, such as osteoarthritis (OA), there is an increased level of proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines stimulate the production of matrix metalloproteinases (MMPs), which leads to the degradation of the cartilage extracellular matrix and the loss of key structural components such as sulphated glycosaminoglycan (sGAG) and collagen II. The aim of this study was to examine the therapeutic potential of n-3 polyunsaturated fatty acids (PUFAs) in an in vitro model of cartilage inflammation. METHODS Two specific n-3 compounds were tested, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), each at 0.1, 1 and 10 μM. Full thickness bovine cartilage explants, 5 mm in diameter, were cultured for 5 days with or without IL-1β and in the presence or absence of each n-3 compound. The media were replaced every 24 hours and assayed for sGAG content using the 1,9-dimethylmethylene blue (DMB) method. Chondrocyte viability was determined at the end of the culture period using fluorescence microscopy to visualise cells labelled with calcein AM and ethidium homodimer. RESULTS Treatment with IL-1β (10 ng.ml⁻¹) produced a large increase in sGAG release compared to untreated controls, but with no effect on cell viability, which was maintained above 80% for all treatments. In the absence of IL-1β, both n-3 compounds induced a mild catabolic response with increased loss of sGAG, particularly at 10 μM. By contrast, in the presence of IL-1β, both EPA and DHA at 0.1 and 1 μM significantly reduced IL-1β-mediated sGAG loss. The efficacy of the EPA treatment was maintained at approximately 75% throughout the 5-day period. However, at the same concentrations, the efficacy of DHA, although initially greater, reduced to approximately half that of EPA after 5 days. For both EPA and DHA, the highest dose of 10 μM was less effective. CONCLUSIONS The results support the hypothesis that n-3 compounds are anti-inflammatory through competitive inhibition of the arachidonic acid oxidation pathway. The efficacy of these compounds is likely to be even greater at more physiological levels of IL-1β. Thus we suggest that n-3 PUFAs, particularly EPA, have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory joint disease.
Collapse
Affiliation(s)
- Angus K T Wann
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | | | | | | | | |
Collapse
|
29
|
Berman DR, Liu YQ, Barks J, Mozurkewich E. Docosahexaenoic acid confers neuroprotection in a rat model of perinatal hypoxia-ischemia potentiated by Escherichia coli lipopolysaccharide-induced systemic inflammation. Am J Obstet Gynecol 2010; 202:469.e1-6. [PMID: 20356570 PMCID: PMC3535291 DOI: 10.1016/j.ajog.2010.01.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 01/19/2009] [Accepted: 01/25/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Lipopolysaccharide pretreatment potentiates hypoxic ischemic injury. We hypothesized that docosahexaenoic acid pretreatment would improve function and reduce brain volume loss in this rat model of perinatal brain injury and inflammation. STUDY DESIGN Seven-day-old rats were divided into 3 groups: intraperitoneal docosahexaenoic acid 1 mg/kg and lipopolysaccharide 0.1 mg/kg, 25% albumin and lipopolysaccharide, and normal saline. Injections were given 2.5 hours before carotid ligation, followed by 90 minutes 8% O2. Rats underwent sensorimotor function testing and brain volume loss assessment on postnatal day 14. RESULTS Docosahexaenoic acid pretreatment improved vibrissae forepaw placing scores compared with albumin/lipopolysaccharide (mean+/-standard deviation weighted score/20: 17.72+/-0.92 docosahexaenoic acid/lipopolysaccharide vs 13.83+/-0.82 albumin/lipopolysaccharide; P<.007). Albumin/lipopolysaccharide rats scores were worse than those of the normal saline/normal saline rats (13.83+/-0.82 vs 17.21+/-0.71; P=.076). No significant differences in brain volume loss were observed among groups. CONCLUSION Lipopolysaccharide inflammatory stimulation in conjunction with hypoxic ischemic resulted in poorer function than hypoxic ischemic alone. Docosahexaenoic acid pretreatment had significantly improved function in neonatal rats exposed to lipopolysaccharide and hypoxic ischemic.
Collapse
Affiliation(s)
- Deborah R Berman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI
| | | | | | | |
Collapse
|
30
|
Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F. Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1401-8. [PMID: 19632286 DOI: 10.1016/j.pnpbp.2009.07.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/29/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
While we recently reported the beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a mouse model of Parkinson's disease (PD), the mechanisms of action remain largely unknown. Here, we specifically investigated the contribution of the brain-derived neurotrophic factor (BDNF) to the neuroprotective effect of n-3 PUFA observed in a mouse model of PD generated by a subacute exposure to MPTP using a total of 7 doses of 20mg/kg over 5 days. The ten-month high n-3 PUFA treatment which preceded the MPTP exposure induced an increase of BDNF mRNA expression in the striatum, but not in the motor cortex of animals fed the high n-3 PUFA diet. In contrast, n-3 PUFA treatment increased BDNF protein levels in the motor cortex of MPTP-treated mice, an effect not observed in vehicle-treated mice. The mRNA expression of the high-affinity BDNF receptor tropomyosin-related kinase B (TrkB) was increased in the striatum of MPTP-treated mice fed the high n-3 PUFA diet compared to vehicle and MPTP-treated mice on the control diet and to vehicle mice on the high n-3 PUFA diet. These data suggest that the modulation of BDNF expression contributes, in part, to n-3 PUFA-induced neuroprotection in an animal model of PD.
Collapse
Affiliation(s)
- M Bousquet
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Berman DR, Mozurkewich E, Liu Y, Barks J. Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol 2009; 200:305.e1-6. [PMID: 19254588 PMCID: PMC2824338 DOI: 10.1016/j.ajog.2009.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/28/2008] [Accepted: 01/20/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We hypothesized that pretreatment with docosahexaenoic acid (DHA), a potentially neuroprotective polyunsaturated fatty acid, would improve function and reduce brain damage in a rat model of perinatal hypoxia-ischemia. STUDY DESIGN Seven-day-old rats were divided into 3 treatment groups that received intraperitoneal injections of DHA 1, 2.5, or 5 mg/kg as DHA-albumin complex and 3 controls that received 25% albumin, saline, or no injection. Subsequently, rats underwent right carotid ligation followed by 90 minutes of 8% oxygen. Rats underwent sensorimotor testing (vibrissae-stimulated forepaw placing) and morphometric assessment of right-sided tissue loss on postnatal day 14. RESULTS DHA pretreatment improved forepaw placing response to near-normal levels (9.5 +/- 0.9 treatment vs 7.1 +/- 2.2 controls; normal = 10; P < .0001). DHA attenuated hemisphere damage compared with controls (P = .0155), with particular benefit in the hippocampus with 1 mg/kg (38% protection vs albumin controls). CONCLUSION DHA pretreatment improves functional outcome and reduces volume loss after hypoxia-ischemia in neonatal rats.
Collapse
Affiliation(s)
- Deborah R Berman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
32
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|