1
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
2
|
Javed M, Reddy B, Sheoran N, Ganesan P, Kumar A. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction. Gene 2023; 886:147718. [PMID: 37595851 DOI: 10.1016/j.gene.2023.147718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The plant pathogen Magnaporthe oryzae poses a significant threat to global food security, and its management through the cultivation of resistant varieties and crop husbandry practices, including fungicidal sprays, has proven to be inadequate. To address this issue, we conducted small-RNA sequencing to identify the roles of miRNAs and their target genes in both resistant (PB1637) and susceptible (PB1) rice genotypes. We confirmed the expression of differentially expressed miRNAs using stem-loop qRT-PCR analysis and correlated them with rice patho-phenotypic and physio-biochemical responses. Our findings revealed several noteworthy differences between the resistant and susceptible genotypes. The resistant genotype exhibited reduced levels of total chlorophyll and carotenoids compared to the susceptible genotype. However, it showed increased levels of total protein, callose, H2O2, antioxidants, flavonoids, and total polyphenols. Additionally, among the defense-associated enzymes, guaiacol peroxidase and polyphenol oxidase responses were higher in the susceptible genotypes. In our comparative analysis, we identified 27 up-regulated and 43 down-regulated miRNAs in the resistant genotype, while the susceptible genotype exhibited 44 up-regulated and 62 down-regulated miRNAs. Furthermore, we discovered eight up-regulated and five down-regulated miRNAs shared between the resistant and susceptible genotypes. Notably, we also identified six novel miRNAs in the resistant genotype and eight novel miRNAs in the susceptible genotype. These novel miRNAs, namely Chr8_26996, Chr12_40110, and Chr12_41899, were found to negatively correlate with the expression of predicted target genes, including Cyt-P450 monooxygenase, serine carboxypeptidase, and zinc finger A20 domain-containing stress-associated protein, respectively. The results of our study on miRNA and transcriptional responses provide valuable insights for the development of future rice lines that are resistant to blast disease. By understanding the roles of specific miRNAs and their target genes in conferring resistance, we can enhance breeding strategies and improve crop management practices to ensure global food security.
Collapse
Affiliation(s)
- Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India.
| |
Collapse
|
3
|
Kumar D, Ramkumar MK, Dutta B, Kumar A, Pandey R, Jain PK, Gaikwad K, Mishra DC, Chaturvedi KK, Rai A, Solanke AU, Sevanthi AM. Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response. BMC Genomics 2023; 24:526. [PMID: 37674140 PMCID: PMC10481553 DOI: 10.1186/s12864-023-09609-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023] Open
Abstract
To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - Ajay Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rakesh Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep Kumar Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | | |
Collapse
|
4
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
5
|
Islam W, Idrees A, Waheed A, Zeng F. Plant responses to drought stress: microRNAs in action. ENVIRONMENTAL RESEARCH 2022; 215:114282. [PMID: 36122702 DOI: 10.1016/j.envres.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Genome-Wide Identification of Potential mRNAs in Drought Response in Wheat ( Triticum aestivum L.). Genes (Basel) 2022; 13:genes13101906. [PMID: 36292791 PMCID: PMC9601369 DOI: 10.3390/genes13101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Plant cell metabolism inevitably forms an important drought-responsive mechanism, which halts crop productivity. Globally, more than 30% of the total harvested area was affected by dehydration. RNA-seq technology has enabled biologists to identify stress-responsive genes in relatively quick times. However, one shortcoming of this technology is the inconsistent data generation compared to other parts of the world. So, we have tried, here, to generate a consensus by analyzing meta-transcriptomic data available in the public microarray database GEO NCBI. In this way, the aim was set, here, to identify stress genes commonly identified as differentially expressed (p < 0.05) then followed by downstream analyses. The search term “Drought in wheat” resulted in 233 microarray experiments from the GEO NCBI database. After discarding empty datasets containing no expression data, the large-scale meta-transcriptome analytics and one sample proportional test were carried out (Bonferroni adjusted p < 0.05) to reveal a set of 11 drought-responsive genes on a global scale. The annotation of these genes revealed that the transcription factor activity of RNA polymerase II and sequence-specific DNA-binding mechanism had a significant role during the drought response in wheat. Similarly, the primary root differentiation zone annotations, controlled by TraesCS5A02G456300 and TraesCS7B02G243600 genes, were found as top-enriched terms (p < 0.05 and Q < 0.05). The resultant standard drought genes, glycosyltransferase; Arabidopsis thaliana KNOTTED-like; bHLH family protein; Probable helicase MAGATAMA 3; SBP family protein; Cytochrome c oxidase subunit 2; Trihelix family protein; Mic1 domain-containing protein; ERF family protein; HD-ZIP I protein; and ERF family protein, are important in terms of their worldwide proved link with stress. From a future perspective, this study could be important in a breeding program contributing to increased crop yield. Moreover, the wheat varieties could be identified as drought-resistant/sensitive based on the nature of gene expression levels.
Collapse
|
7
|
Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed HI, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 2022; 49:10975-10993. [PMID: 36057876 DOI: 10.1007/s11033-022-07871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Ehab A R Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Muhammad Sajid
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| |
Collapse
|
8
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
9
|
Drought tolerance improvement in Solanum lycopersicum: an insight into "OMICS" approaches and genome editing. 3 Biotech 2022; 12:63. [PMID: 35186660 PMCID: PMC8825918 DOI: 10.1007/s13205-022-03132-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Solanum lycopersicum (tomato) is an internationally acclaimed vegetable crop that is grown worldwide. However, drought stress is one of the most critical challenges for tomato production, and it is a crucial task for agricultural biotechnology to produce drought-resistant cultivars. Although breeders have done a lot of work on the tomato to boost quality and quantity of production and enhance resistance to biotic and abiotic stresses, conventional tomato breeding approaches have been limited to improving drought tolerance because of the intricacy of drought traits. Many efforts have been made to better understand the mechanisms involved in adaptation and tolerance to drought stress in tomatoes throughout the years. "Omics" techniques, such as genomics, transcriptomics, proteomics, and metabolomics in combination with modern sequencing technologies, have tremendously aided the discovery of drought-responsive genes. In addition, the availability of biotechnological tools, such as plant transformation and the recently developed genome editing system for tomatoes, has opened up wider opportunities for validating the function of drought-responsive genes and the generation of drought-tolerant varieties. This review highlighted the recent progresses for tomatoes improvement against drought stress through "omics" and "multi-omics" technologies including genetic engineering. We have also discussed the roles of non-coding RNAs and genome editing techniques for drought stress tolerance improvement in tomatoes.
Collapse
|
10
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
11
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|