1
|
Mohole M, Naglekar A, Sengupta D, Chattopadhyay A. Probing the energy landscape of the lipid interactions of the serotonin 1A receptor. Biophys Chem 2024; 313:107289. [PMID: 39002247 DOI: 10.1016/j.bpc.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Kotipalli A, Koulgi S, Jani V, Sonavane U, Joshi R. Early Events in β 2AR Dimer Dynamics Mediated by Activation-Related Microswitches. J Membr Biol 2024:10.1007/s00232-024-00324-1. [PMID: 39240374 DOI: 10.1007/s00232-024-00324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
G-Protein-Coupled Receptors (GPCRs) make up around 3-4% of the human genome and are the targets of one-third of FDA-approved drugs. GPCRs typically exist as monomers but also aggregate to form higher-order oligomers, including dimers. β2AR, a pharmacologically relevant GPCR, is known to be targeted for the treatment of asthma and cardiovascular diseases. The activation of β2AR at the dimer level remains under-explored. In the current study, molecular dynamics (MD) simulations have been performed to understand activation-related structural changes in β2AR at the dimer level. The transition from inactive to active and vice versa has been studied by starting the simulations in the apo, agonist-bound, and inverse agonist-bound β2AR dimers for PDB ID: 2RH1 and PDB ID: 3P0G, respectively. A cumulative total of around 21-μs simulations were performed. Residue-based distances, RMSD, and PCA calculations suggested that either of the one monomer attained activation-related features for the apo and agonist-bound β2AR dimers. The TM5 and TM6 helices within the two monomers were observed to be in significant variation in all the simulations. TM5 bulge and proximity of TM2 and TM7 helices may be contributing to one of the early events in activation. The dimeric interface between TM1 and helix 8 were observed to be well maintained in the apo and agonist-bound simulations. The presence of inverse agonists favored inactive features in both the monomers. These key features of activation known for monomers were observed to have an impact on β2AR dimers, thereby providing an insight into the oligomerization mechanism of GPCRs.
Collapse
Affiliation(s)
- Aneesh Kotipalli
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, India, 411008
| | - Shruti Koulgi
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, India, 411008
| | - Vinod Jani
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, India, 411008
| | - Uddhavesh Sonavane
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, India, 411008
| | - Rajendra Joshi
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, India, 411008.
| |
Collapse
|
4
|
Harikumar KG, Zhao P, Cary BP, Xu X, Desai AJ, Dong M, Mobbs JI, Toufaily C, Furness SGB, Christopoulos A, Belousoff MJ, Wootten D, Sexton PM, Miller LJ. Cholesterol-dependent dynamic changes in the conformation of the type 1 cholecystokinin receptor affect ligand binding and G protein coupling. PLoS Biol 2024; 22:e3002673. [PMID: 39083706 PMCID: PMC11290853 DOI: 10.1371/journal.pbio.3002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 08/02/2024] Open
Abstract
Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian P. Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Chirine Toufaily
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- School of Biomedical Sciences, University Queensland, Queensland, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| |
Collapse
|
5
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Isu UH, Badiee SA, Polasa A, Tabari SH, Derakhshani-Molayousefi M, Moradi M. Cholesterol Dependence of the Conformational Changes in Metabotropic Glutamate Receptor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589854. [PMID: 38659864 PMCID: PMC11042357 DOI: 10.1101/2024.04.17.589854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that function as obligate dimers in regulating neurotransmission and synaptic plasticity in the central nervous system. The mGluR1 subtype has been shown to be modulated by the membrane lipid environment, particularly cholesterol, though the molecular mechanisms remain elusive. In this study, we employed all-atom molecular dynamics simulations to investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-transmembrane (7TM) domain in an inactive state model. Simulations were performed with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol induces conformational changes in the mGluR1 dimer more significantly than in the individual protomers. Notably, cholesterol modulates the dynamics and conformations of the TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol concentration of 10% elicits more pronounced conformational changes compared to both cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic interaction unique to the 10% cholesterol system further corroborate these conformational differences. Given the high sequence conservation of the 7TM domains across mGluR subtypes, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other members of this receptor family. Our findings provide atomistic insights into how cholesterol modulates the conformational landscape of mGluRs, which could impact their function and signaling mechanisms.
Collapse
|
7
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. J Biol Chem 2024; 300:105649. [PMID: 38237683 PMCID: PMC10874734 DOI: 10.1016/j.jbc.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/30/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
8
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.24.568580. [PMID: 38045315 PMCID: PMC10690279 DOI: 10.1101/2023.11.24.568580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Naglekar A, Chattopadhyay A, Sengupta D. Palmitoylation of the Glucagon-like Peptide-1 Receptor Modulates Cholesterol Interactions at the Receptor-Lipid Microenvironment. J Phys Chem B 2023; 127:11000-11010. [PMID: 38111968 DOI: 10.1021/acs.jpcb.3c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The G protein-coupled receptor (GPCR) superfamily of cell surface receptors has been shown to be functionally modulated by post-translational modifications. The glucagon-like peptide receptor-1 (GLP-1R), which is a drug target in diabetes and obesity, undergoes agonist-dependent palmitoyl tail conjugation. The palmitoylation in the C-terminal domain of GLP-1R has been suggested to modulate the receptor-lipid microenvironment. In this work, we have performed coarse-grain molecular dynamics simulations of palmitoylated and nonpalmitoylated GLP-1R to analyze the differential receptor-lipid interactions. Interestingly, the placement and dynamics of the C-terminal domain of GLP-1R are found to be directly dependent on the palmitoyl tail. We observe that both cholesterol and phospholipids interact with the receptor but display differential interactions in the presence and absence of the palmitoyl tail. We characterize important cholesterol-binding sites and validate sites that have been previously reported in experimentally resolved structures of the receptor. We show that the receptor acts like a conduit for cholesterol flip-flop by stabilizing cholesterol in the membrane core. Taken together, our work represents an important step in understanding the molecular effects of lipid modifications in GPCRs.
Collapse
Affiliation(s)
- Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Sarkar P, Chattopadhyay A. Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin. ACS Chem Neurosci 2023; 14:3855-3868. [PMID: 37804226 DOI: 10.1021/acschemneuro.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
Abstract
Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
12
|
Sidhu SK, Mishra S. A cholesterol-centric outlook on steroidogenesis. VITAMINS AND HORMONES 2023; 124:405-428. [PMID: 38408806 DOI: 10.1016/bs.vh.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cholesterol, an essential and versatile lipid, is the precursor substrate for the biosynthesis of steroid hormones, and a key structural and functional component of organelle membranes in eukaryotic cells. Consequently, the framework of steroidogenesis across main steroidogenic cell types is built around cholesterol, including its cellular uptake, mobilization from intracellular storage, and finally, its transport to the mitochondria where steroidogenesis begins. This setup, which is controlled by different trophic hormones in their respective target tissues, allows steroidogenic cells to meet their steroidogenic need of cholesterol effectively without impinging on the basic need for organelle membranes and their functions. However, our understanding of the basal steroidogenesis (i.e., independent of trophic hormone stimulation), which is a cell-intrinsic trait, remains poor. Particularly, the role that cholesterol itself plays in the regulation of steroidogenic factors and events in steroid hormone-producing cells remains largely unexplored. This is likely because of challenges in selectively targeting the steroidogenic intracellular cholesterol pool in studies. New evidence suggests that cholesterol plays a role in steroidogenesis. These new findings have created new opportunities to advance our understanding in this field. In this book chapter, we will provide a cholesterol-centric view on steroidogenesis and emphasize the importance of the interplay between cholesterol and the mitochondria in steroidogenic cells. Moreover, we will discuss a novel mitochondrial player, prohibitin-1, in this context. The overall goal is to provide a stimulating perspective on cholesterol as an important regulator of steroidogenesis (i.e., more than just a substrate for steroid hormones) and present the mitochondria as a potential cell-intrinsic factor in regulating steroidogenic cholesterol homeostasis.
Collapse
Affiliation(s)
- Simarjit Kaur Sidhu
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suresh Mishra
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
14
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
15
|
Muir R, Khan R, Shmygol A, Quenby S, Elmes M. The impact of maternal obesity on in vivo uterine contractile activity during parturition in the rat. Physiol Rep 2023; 11:e15610. [PMID: 36863718 PMCID: PMC9981334 DOI: 10.14814/phy2.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 03/04/2023] Open
Abstract
Maternal obesity is associated with increased risk of prolonged and dysfunctional labor and emergency caesarean section. To elucidate the mechanisms behind the associated uterine dystocia, a translational animal model is required. Our previous work identified that exposure to a high-fat, high-cholesterol (HFHC) diet to induce obesity down-regulates uterine contractile associated protein expression and causes asynchronous contractions ex vivo. This study aims to investigate the impact of maternal obesity on uterine contractile function in vivo using intrauterine telemetry surgery. Virgin female Wistar rats were fed either a control (CON, n = 6) or HFHC (n = 6) diet for 6 weeks prior to conception, and throughout pregnancy. On Day 9 of gestation, a pressure-sensitive catheter was surgically implanted aseptically within the gravid uterus. Following 5 days recovery, intrauterine pressure (IUP) was recorded continuously until delivery of the 5th pup (Day 22). HFHC induced obesity led to a significant 1.5-fold increase in IUP (p = 0.026) and fivefold increase in frequency of contractions (p = 0.013) relative to CON. Determination of the time of labor onset identified that HFHC rats IUP (p = 0.046) increased significantly 8 h prior to 5th pup delivery, which contrasts to CON with no significant increase. Myometrial contractile frequency in HFHC rats significantly increased 12 h prior to delivery of the 5th pup (p = 0.023) compared to only 3 h in CON, providing evidence that labor in HFHC rats was prolonged by 9 h. In conclusion, we have established a translational rat model that will allow us to unravel the mechanism behind uterine dystocia associated with maternal obesity.
Collapse
Affiliation(s)
- Ronan Muir
- Division of Food Nutrition and Dietetics, School of BioscienceUniversity of Nottingham, Sutton Bonington CampusLoughboroughEnglandUK
| | - Raheela Khan
- Graduate School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyEnglandUK
| | - Anatoly Shmygol
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Siobhan Quenby
- Biomedical Research Unit in Reproductive HealthUniversity Hospital Coventry and WarwickshireCoventryUK
| | - Matthew Elmes
- Division of Food Nutrition and Dietetics, School of BioscienceUniversity of Nottingham, Sutton Bonington CampusLoughboroughEnglandUK
| |
Collapse
|
16
|
Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z. Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 2023; 14:1137604. [PMID: 36875468 PMCID: PMC9978769 DOI: 10.3389/fendo.2023.1137604] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of transmembrane proteins, regulate a wide array of physiological processes in response to extracellular signals. Although these receptors have proven to be the most successful class of drug targets, their complicated signal transduction pathways (including different effector G proteins and β-arrestins) and mediation by orthosteric ligands often cause difficulties for drug development, such as on- or off-target effects. Interestingly, identification of ligands that engage allosteric binding sites, which are different from classic orthosteric sites, can promote pathway-specific effects in cooperation with orthosteric ligands. Such pharmacological properties of allosteric modulators offer new strategies to design safer GPCR-targeted therapeutics for various diseases. Here, we explore recent structural studies of GPCRs bound to allosteric modulators. Our inspection of all GPCR families reveals recognition mechanisms of allosteric regulation. More importantly, this review highlights the diversity of allosteric sites and presents how allosteric modulators control specific GPCR pathways to provide opportunities for the development of new valuable agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Nchourupouo KWT, Nde J, Ngouongo YJW, Zekeng SS, Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers' Interfaces. Molecules 2023; 28:1838. [PMID: 36838825 PMCID: PMC9966702 DOI: 10.3390/molecules28041838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
A growing body of evidence suggests that only a few amino acids ("hot-spots") at the interface contribute most of the binding energy in transient protein-protein interactions. However, experimental protocols to identify these hot-spots are highly labor-intensive and expensive. Computational methods, including evolutionary couplings, have been proposed to predict the hot-spots, but they generally fail to provide details of the interacting amino acids. Here we showed that unbiased evolutionary methods followed by biased molecular dynamic simulations could achieve this goal and reveal critical elements of protein complexes. We applied the methodology to selected G-protein coupled receptors (GPCRs), known for their therapeutic properties. We used the structure-prior-assisted direct coupling analysis (SP-DCA) to predict the binding interfaces of A2aR/D2R, CB1R/D2R, A2aR/CB1R, 5HT2AR/D2R, and 5-HT2AR/mGluR2 receptor heterodimers, which all agreed with published data. In order to highlight details of the interactions, we performed molecular dynamic (MD) simulations using the newly developed AWSEM energy model. We found that these receptors interact primarily through critical residues at the C and N terminal domains and the third intracellular loop (ICL3). The MD simulations showed that these residues are energetically necessary for dimerization and revealed their native conformational state. We subsequently applied the methodology to the 5-HT2AR/5-HTR4R heterodimer, given its implication in drug addiction and neurodegenerative pathologies such as Alzheimer's disease (AD). Further, the SP-DCA analysis showed that 5-HT2AR and 5-HTR4R heterodimerize through the C-terminal domain of 5-HT2AR and ICL3 of 5-HT4R. However, elucidating the details of GPCR interactions would accelerate the discovery of druggable sites and improve our knowledge of the etiology of common diseases, including AD.
Collapse
Affiliation(s)
- Karim Widad Temgbet Nchourupouo
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Jules Nde
- Department of Physics, University of Washington Seattle, Seattle, WA 98105, USA
| | - Yannick Joel Wadop Ngouongo
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Serge Sylvain Zekeng
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
19
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
20
|
Jha P, Chaturvedi S, Bhat R, Jain N, Mishra AK. Insights of ligand binding in modeled h5-HT 1A receptor: homology modeling, docking, MM-GBSA, screening and molecular dynamics. J Biomol Struct Dyn 2022; 40:11625-11637. [PMID: 34387135 DOI: 10.1080/07391102.2021.1961865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pharmacologically characterized receptor subtype of the serotonin family, the 5HT1A receptor is implicated in the pathophysiology and treatment of depression and anxiety-related disorders. Being the most extensively targeted receptor for developing novel antidepressants and anxiolytics, a near-ideal theoretical model can aid in high-throughput screening of promising drug candidates. However, the design of potential drug candidates suffers owing to a lack of complete structural information. In this work, homology models of 5-HT1A receptor are generated using two distinct alignments (CW and PSTA) and model building methods (KB and EB). The developed models are validated for virtual screening using a ligand dataset of agonists and antagonists. The best-suited model was efficient in discriminating agonist/antagonist binding. Correlation plots between pKi and docking (R2agonist≥ 0.6, R2antagonist≥ 0.7) and MM-GBSA dG bind values (R2agonist≥ 0.5, R2antagonist≥ 0.7) revealed optimum corroboration between in vitro and in silico outcomes, which further suggested the usefulness of the developed model for the design of high-affinity probes for the neurological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Immunology, Genetics and Pathology, Medical Radiation Science, Rudbeck Laboratory, Uppsala, Sweden.,Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.,SCFBio, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
21
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
22
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
23
|
Schneider EH, Fitzgerald AC, Ponnapula SS, Dopico AM, Bukiya AN. Differential distribution of cholesterol pools across arteries under high-cholesterol diet. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159235. [PMID: 36113825 DOI: 10.1016/j.bbalip.2022.159235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake.
Collapse
Affiliation(s)
- Elizabeth H Schneider
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Amanda C Fitzgerald
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Supriya Suzy Ponnapula
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
24
|
Miszta P, Pasznik P, Niewieczerzał S, Młynarczyk K, Filipek S. COGRIMEN: Coarse-Grained Method for Modeling of Membrane Proteins in Implicit Environments. J Chem Theory Comput 2022; 18:5145-5156. [PMID: 35998323 PMCID: PMC9476660 DOI: 10.1021/acs.jctc.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The presented methodology is based on coarse-grained
representation
of biomolecules in implicit environments and is designed for the molecular
dynamics simulations of membrane proteins and their complexes. The
membrane proteins are not only found in the cell membrane but also
in all membranous compartments of the cell: Golgi apparatus, mitochondria,
endosomes and lysosomes, and they usually form large complexes. To
investigate such systems the methodology is proposed based on two
independent approaches combining the coarse-grained MARTINI model
for proteins and the effective energy function to mimic the water/membrane
environments. The latter is based on the implicit environment developed
for all-atom simulations in the IMM1 method. The force field solvation
parameters for COGRIMEN were initially calculated from IMM1 all-atom
parameters and then optimized using Genetic Algorithms. The new methodology
was tested on membrane proteins, their complexes and oligomers. COGRIMEN
method is implemented as a patch for NAMD program and can be useful
for fast and brief studies of large membrane protein complexes.
Collapse
Affiliation(s)
- Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Krzysztof Młynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| |
Collapse
|
25
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
27
|
Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, Tao X. Inflammation and fibrosis in the coal dust-exposed lung described by confocal Raman spectroscopy. PeerJ 2022; 10:e13632. [PMID: 35765591 PMCID: PMC9233900 DOI: 10.7717/peerj.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| |
Collapse
|
28
|
Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front Oncol 2022; 12:906670. [PMID: 35719918 PMCID: PMC9204587 DOI: 10.3389/fonc.2022.906670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Pietro Arina
- University College London (UCL), Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Chiara Riganti
- Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Serdiuk T, Manna M, Zhang C, Mari SA, Kulig W, Pluhackova K, Kobilka BK, Vattulainen I, Müller DJ. A cholesterol analog stabilizes the human β 2-adrenergic receptor nonlinearly with temperature. Sci Signal 2022; 15:eabi7031. [PMID: 35671340 PMCID: PMC10754352 DOI: 10.1126/scisignal.abi7031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human β2-adrenergic receptor (β2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of β2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused β2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, gujarat, india
| | - Cheng Zhang
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Cluster of Excellence SimTech, Stuttgart Center for Simulation Science, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Brian K. Kobilka
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
30
|
Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure 2022; 30:1208-1217.e2. [PMID: 35660161 PMCID: PMC9356978 DOI: 10.1016/j.str.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022]
Abstract
Class A (rhodopsin-like) G protein-coupled receptors (GPCRs) are constitutive phospholipid scramblases as evinced after their reconstitution into liposomes. Yet phospholipid scrambling is not detectable in the resting plasma membrane of mammalian cells that is replete with GPCRs. We considered whether cholesterol, a prominent component of the plasma membrane, limits the ability of GPCRs to scramble lipids. Our previous Markov State Model (MSM) analysis of molecular dynamics simulations of membrane-embedded opsin indicated that phospholipid headgroups traverse a dynamically revealed hydrophilic groove between transmembrane helices (TM) 6 and 7 while their tails remain in the bilayer. Here, we present comparative MSM analyses of 150-μs simulations of opsin in cholesterol-free and cholesterol-rich membranes. Our analyses reveal that cholesterol inhibits phospholipid scrambling by occupying the TM6/7 interface and stabilizing the closed groove conformation while itself undergoing flip-flop. This mechanism may explain the inability of GPCRs to scramble lipids at the plasma membrane.
Collapse
|
31
|
Dutta A, Sarkar P, Shrivastava S, Chattopadhyay A. Effect of Hypoxia on the Function of the Human Serotonin 1A Receptor. ACS Chem Neurosci 2022; 13:1456-1466. [PMID: 35467841 DOI: 10.1021/acschemneuro.2c00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellular hypoxia causes numerous pathophysiological conditions associated with the disruption of oxygen homeostasis. Under oxygen-deficient conditions, cells adapt by controlling the cellular functions to facilitate the judicious use of available oxygen, such as cessation of cell growth and proliferation. In higher eukaryotes, the process of cholesterol biosynthesis is intimately coupled to the availability of oxygen, where the synthesis of one molecule of cholesterol requires 11 molecules of O2. Cholesterol is an essential component of higher eukaryotic membranes and is crucial for the physiological functions of several membrane proteins and receptors. The serotonin1A receptor, an important neurotransmitter G protein-coupled receptor associated with cognition and memory, has previously been shown to depend on cholesterol for its signaling and function. In this work, in order to explore the interdependence of oxygen levels, cholesterol biosynthesis, and the function of the serotonin1A receptor, we developed a cellular hypoxia model to explore the function of the human serotonin1A receptor heterologously expressed in Chinese hamster ovary cells. We observed cell cycle arrest at G1/S phase and the accumulation of lanosterol in cell membranes under hypoxic conditions, thereby validating our cellular model. Interestingly, we observed a significant reduction in ligand binding and disruption of downstream cAMP signaling of the serotonin1A receptor under hypoxic conditions. To the best of our knowledge, our results represent the first report linking the function of the serotonin1A receptor with hypoxia. From a broader perspective, these results contribute to our overall understanding of the molecular basis underlying neurological conditions often associated with hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Aritri Dutta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
32
|
Abstract
Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; .,Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA;
| |
Collapse
|
33
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
34
|
Chattopadhyay A, Biswas SC, Rukmini R, Saha S, Samanta A. Lack of Environmental Sensitivity of a Naturally Occurring Fluorescent Analog of Cholesterol. J Fluoresc 2021; 31:1401-1407. [PMID: 34224042 DOI: 10.1007/s10895-021-02767-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Dehydroergosterol (DHE, Δ5,7,9(11),22-ergostatetraen-3β-ol) is a naturally occurring fluorescent analog of cholesterol found in yeast. Since DHE has been shown to faithfully mimic cholesterol in a large number of biophysical, biochemical, and cell biological studies, it is widely used to explore cholesterol organization, dynamics and trafficking in model and biological membranes. In this work, we show that DHE, in spite of its localization at the membrane interface, does not exhibit red edge excitation shift (REES) in model membranes, irrespective of the membrane phase. These results are reinforced by semi-empirical quantum chemical calculations of dipole moment changes of DHE in ground and excited states, which show a very small change in the dipole moment of DHE upon excitation. We conclude that DHE fluorescence exhibits lack of environmental sensitivity, despite its usefulness in monitoring cholesterol organization, dynamics and traffic in model and biological membranes.
Collapse
Affiliation(s)
| | - Samares C Biswas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Raju Rukmini
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Satyen Saha
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
- Department of Chemistry, Banaras Hindu University, Varanasi, 221 005, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
35
|
Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int J Mol Sci 2021; 22:ijms22169026. [PMID: 34445730 PMCID: PMC8396450 DOI: 10.3390/ijms22169026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins exist within the highly hydrophobic membranes surrounding cells and organelles, playing key roles in cellular function. It is becoming increasingly clear that the membrane does not just act as an appropriate environment for these proteins, but that the lipids that make up these membranes are essential for membrane protein structure and function. Recent technological advances in cryogenic electron microscopy and in advanced mass spectrometry methods, as well as the development of alternative membrane mimetic systems, have allowed experimental study of membrane protein–lipid complexes. These have been complemented by computational approaches, exploiting the ability of Molecular Dynamics simulations to allow exploration of membrane protein conformational changes in membranes with a defined lipid content. These studies have revealed the importance of lipids in stabilising the oligomeric forms of membrane proteins, mediating protein–protein interactions, maintaining a specific conformational state of a membrane protein and activity. Here we review some of the key recent advances in the field of membrane protein–lipid studies, with major emphasis on respiratory complexes, transporters, channels and G-protein coupled receptors.
Collapse
|
36
|
Cholesterol in GPCR Structures: Prevalence and Relevance. J Membr Biol 2021; 255:99-106. [PMID: 34365520 DOI: 10.1007/s00232-021-00197-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Bound cholesterol molecules are emerging as important hallmarks of GPCR structures. In this commentary, we analyze their statistical prevalence and biological relevance.
Collapse
|
37
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
38
|
Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A. A molecular sensor for cholesterol in the human serotonin 1A receptor. SCIENCE ADVANCES 2021; 7:7/30/eabh2922. [PMID: 34301606 PMCID: PMC8302130 DOI: 10.1126/sciadv.abh2922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 05/10/2023]
Abstract
The function of several G protein-coupled receptors (GPCRs) exhibits cholesterol sensitivity. Cholesterol sensitivity of GPCRs could be attributed to specific sequence and structural features, such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif, that facilitate their cholesterol-receptor interaction. In this work, we explored the molecular basis of cholesterol sensitivity exhibited by the serotonin1A receptor, the most studied GPCR in the context of cholesterol sensitivity, by generating mutants of key residues in CRAC motifs in transmembrane helix 2 (TM2) and TM5 of the receptor. Our results show that a lysine residue (K101) in one of the CRAC motifs is crucial for sensing altered membrane cholesterol levels. Insights from all-atom molecular dynamics simulations showed that cholesterol-sensitive functional states of the serotonin1A receptor are associated with reduced conformational dynamics of extracellular loops of the receptor. These results constitute one of the first reports on the molecular mechanism underlying cholesterol sensitivity of GPCRs.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | | |
Collapse
|
39
|
Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, Pezet M, Rébeillé F, Jouhet J, Mouillac B, Domene C, Chini B, Cherezov V, Moreau CJ. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res 2021; 62:100059. [PMID: 33647276 PMCID: PMC8050779 DOI: 10.1016/j.jlr.2021.100059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a major component of mammalian plasma membranes that not only affects the physical properties of the lipid bilayer but also is the function of many membrane proteins including G protein-coupled receptors. The oxytocin receptor (OXTR) is involved in parturition and lactation of mammals and in their emotional and social behaviors. Cholesterol acts on OXTR as an allosteric modulator inducing a high-affinity state for orthosteric ligands through a molecular mechanism that has yet to be determined. Using the ion channel-coupled receptor technology, we developed a functional assay of cholesterol modulation of G protein-coupled receptors that is independent of intracellular signaling pathways and operational in living cells. Using this assay, we discovered a stable binding of cholesterol molecules to the receptor when it adopts an orthosteric ligand-bound state. This stable interaction preserves the cholesterol-dependent activity of the receptor in cholesterol-depleted membranes. This mechanism was confirmed using time-resolved FRET experiments on WT OXTR expressed in CHO cells. Consequently, a positive cross-regulation sequentially occurs in OXTR between cholesterol and orthosteric ligands.
Collapse
Affiliation(s)
- Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Leonardo Darré
- Functional Genomics Laboratory and Biomolecular Simulations Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marta Busnelli
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Mylène Pezet
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Carmen Domene
- Department of Chemistry, University of Bath, Bath, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Bice Chini
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
40
|
Cholesterol as a modulator of cannabinoid receptor CB 2 signaling. Sci Rep 2021; 11:3706. [PMID: 33580091 PMCID: PMC7881127 DOI: 10.1038/s41598-021-83245-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Signaling through integral membrane G protein-coupled receptors (GPCRs) is influenced by lipid composition of cell membranes. By using novel high affinity ligands of human cannabinoid receptor CB2, we demonstrate that cholesterol increases basal activation levels of the receptor and alters the pharmacological categorization of these ligands. Our results revealed that (2-(6-chloro-2-((2,2,3,3-tetramethylcyclopropane-1-carbonyl)imino)benzo[d]thiazol-3(2H)-yl)ethyl acetate ligand (MRI-2646) acts as a partial agonist of CB2 in membranes devoid of cholesterol and as a neutral antagonist or a partial inverse agonist in cholesterol-containing membranes. The differential effects of a specific ligand on activation of CB2 in different types of membranes may have implications for screening of drug candidates in a search of modulators of GPCR activity. MD simulation suggests that cholesterol exerts an allosteric effect on the intracellular regions of the receptor that interact with the G-protein complex thereby altering the recruitment of G protein.
Collapse
|
41
|
Leutner M, Matzhold C, Kautzky A, Kaleta M, Thurner S, Klimek P, Kautzky-Willer A. Major Depressive Disorder (MDD) and Antidepressant Medication Are Overrepresented in High-Dose Statin Treatment. Front Med (Lausanne) 2021; 8:608083. [PMID: 33644093 PMCID: PMC7904887 DOI: 10.3389/fmed.2021.608083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/12/2021] [Indexed: 01/24/2023] Open
Abstract
Objective: To examine the dose-dependent relationship of different types of statins with the occurrence of major depressive disorder (MDD) and prescription of antidepressant medication. Methods: This cross-sectional study used medical claims data for the general Austrian population (n = 7,481,168) to identify all statin-treated patients. We analyzed all patients with MDD undergoing statin treatment and calculated the average defined daily dose for six different types of statins. In a sub-analysis conducted independently of inpatient care, we investigated all patients on antidepressant medication (statin-treated patients: n = 98,913; non-statin-treated patients: n = 789,683). Multivariate logistic regression analyses were conducted to calculate the risk of diagnosed MDD and prescription of antidepressant medication in patients treated with different types of statins and dosages compared to non-statin-treated patients. Results: In this study, there was an overrepresentation of MDD in statin-treated patients when compared to non-statin-treated patients (OR: 1.22, 95% CI: 1.20–1.25). However, there was a dose dependent relationship between statins and diagnosis of MDD. Compared to controls, the ORs of MDD were lower for low-dose statin-treated patients (simvastatin>0– < =10 mg:OR: 0.59, 95% CI: 0.54–0.64; atorvastatin>0– < =10 mg:OR:0.65, 95%CI: 0.59–0.70; rosuvastatin>0– < =10 mg:OR: 0.68, 95% CI: 0.53–0.85). In higher statin dosages there was an overrepresentation of MDD (simvastatin>40– < =60 mg:OR: 2.42, 95% CI: 2.18–2.70, >60–80 mg:OR: 5.27, 95% CI: 4.21–6.60; atorvastatin>40– < =60 mg:OR: 2.71, 95% CI: 1.98–3.72, >60– < =80 mg:OR: 3.73, 95% CI: 2.22–6.28; rosuvastatin>20– < =40 mg:OR: 2.09, 95% CI: 1.31–3.34). The results were confirmed in a sex-specific analysis and in a cohort of patients taking antidepressants, prescribed independently of inpatient care. Conclusions: This study shows that it is important to carefully re-investigate the relationship between statins and MDD. High-dose statin treatment was related to an overrepresentation, low-dose statin treatment to an underrepresentation of MDD.
Collapse
Affiliation(s)
- Michael Leutner
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michaela Kaleta
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria.,Santa Fe Institute, Santa Fe, NM, United States.,Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Gender Institute, Gars am Kamp, Austria
| |
Collapse
|
42
|
Kułak-Bejda A, Bejda G, Lech M, Waszkiewicz N. Are Lipids Possible Markers of Suicide Behaviors? J Clin Med 2021; 10:jcm10020333. [PMID: 33477435 PMCID: PMC7830691 DOI: 10.3390/jcm10020333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
Suicides and suicidal behaviors are very important causes of mortality and morbidity and have become a serious global problem. More than 800,000 people die from suicide every year. Previous researches have established that lipids play an important role in the pathogenesis of suicide. Moreover, lipid levels might be a biological marker of suicide. A lot of researchers have tried to identify biological markers that might be related to depressive disorder, bipolar disorder or schizophrenia and suicidal behavior. It was also important to consider the usefulness of an additional tool for prevention actions. Metabolic deregulation, particularly low total cholesterol and low-density lipoproteins-cholesterol levels may cause higher suicide risk in patients with these psychiatric disorders.
Collapse
Affiliation(s)
- Agnieszka Kułak-Bejda
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
- Correspondence:
| | - Grzegorz Bejda
- Faculty of General Medicine, School of Medical Science in Bialystok, 15-875 Bialystok, Poland;
| | - Magdalena Lech
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
| |
Collapse
|
43
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
44
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
45
|
Bukiya AN, Leo MD, Jaggar JH, Dopico AM. Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. J Biol Chem 2021; 296:100381. [PMID: 33556372 PMCID: PMC7950327 DOI: 10.1016/j.jbc.2021.100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (β1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 μM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - M Dennis Leo
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
46
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
47
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
48
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
49
|
Structural Stringency and Optimal Nature of Cholesterol Requirement in the Function of the Serotonin1A Receptor. J Membr Biol 2020; 253:445-457. [DOI: 10.1007/s00232-020-00138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
50
|
Sarkar P, Rao BD, Chattopadhyay A. Cell Cycle Dependent Modulation of Membrane Dipole Potential and Neurotransmitter Receptor Activity: Role of Membrane Cholesterol. ACS Chem Neurosci 2020; 11:2890-2899. [PMID: 32786305 DOI: 10.1021/acschemneuro.0c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a sequential multistep process essential for growth and proliferation of cells that make up multicellular organisms. A number of nuclear and cytoplasmic proteins are known to modulate the cell cycle. Yet, the role of lipids, membrane organization, and physical properties in cell cycle progression remains largely elusive. Membrane dipole potential is an important physicochemical property and originates due to the electrostatic potential difference within the membrane because of nonrandom arrangement of amphiphile dipoles and water molecules at the membrane interface. In this work, we explored the modulation of membrane dipole potential in various stages of the cell cycle in CHO-K1 cells. Our results show that membrane dipole potential is highest in the G1 phase relative to S and G2/M phases. This was accompanied by regulation of membrane cholesterol content in the cell cycle. The highest cholesterol content was found in the G1 phase with a considerable reduction in cholesterol in S and G2/M phases. Interestingly, we noted a similarity in the dependence of membrane dipole potential and cholesterol with progress of the cell cycle. In addition, we observed an increase in neutral lipid (which contains esterified cholesterol) content as cells progressed from the G1 to G2/M phase via the S phase of the cell cycle. Importantly, we further observed a cell cycle dependent reduction in ligand binding activity of serotonin1A receptors expressed in CHO-K1 cells. To the best of our knowledge, these results constitute the first report of cell cycle dependent modulation of membrane dipole potential and activity of a neurotransmitter receptor belonging to the G protein-coupled receptor family. We envision that understanding the basis of cell cycle events from a biophysical perspective would result in a deeper appreciation of the cell cycle and its regulation in relation to cellular function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|