1
|
Luo X, Liu Y, Balck A, Klein C, Fleming RMT. Identification of metabolites reproducibly associated with Parkinson's Disease via meta-analysis and computational modelling. NPJ Parkinsons Dis 2024; 10:126. [PMID: 38951523 PMCID: PMC11217404 DOI: 10.1038/s41531-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Many studies have reported metabolomic analysis of different bio-specimens from Parkinson's disease (PD) patients. However, inconsistencies in reported metabolite concentration changes make it difficult to draw conclusions as to the role of metabolism in the occurrence or development of Parkinson's disease. We reviewed the literature on metabolomic analysis of PD patients. From 74 studies that passed quality control metrics, 928 metabolites were identified with significant changes in PD patients, but only 190 were replicated with the same changes in more than one study. Of these metabolites, 60 exclusively increased, such as 3-methoxytyrosine and glycine, 54 exclusively decreased, such as pantothenic acid and caffeine, and 76 inconsistently changed in concentration in PD versus control subjects, such as ornithine and tyrosine. A genome-scale metabolic model of PD and corresponding metabolic map linking most of the replicated metabolites enabled a better understanding of the dysfunctional pathways of PD and the prediction of additional potential metabolic markers from pathways with consistent metabolite changes to target in future studies.
Collapse
Affiliation(s)
- Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Yanjun Liu
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Alexander Balck
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Ronan M T Fleming
- School of Medicine, University of Galway, University Rd, Galway, Ireland.
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.
| |
Collapse
|
2
|
Scheinberg T, Lin HM, Fitzpatrick M, Azad AA, Bonnitcha P, Davies A, Heller G, Huynh K, Mak B, Mahon K, Sullivan D, Meikle PJ, Horvath LG. PCPro: a clinically accessible, circulating lipid biomarker signature for poor-prognosis metastatic prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:136-143. [PMID: 37147359 PMCID: PMC10876475 DOI: 10.1038/s41391-023-00666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Using comprehensive plasma lipidomic profiling from men with metastatic castration-resistant prostate cancer (mCRPC), we have previously identified a poor-prognostic lipid profile associated with shorter overall survival (OS). In order to translate this biomarker into the clinic, these men must be identifiable via a clinically accessible, regulatory-compliant assay. METHODS A single regulatory-compliant liquid chromatography-mass spectrometry assay of candidate lipids was developed and tested on a mCRPC Discovery cohort of 105 men. Various risk-score Cox regression prognostic models of OS were built using the Discovery cohort. The model with the highest concordance index (PCPro) was chosen for validation and tested on an independent Validation cohort of 183 men. RESULTS PCPro, the lipid biomarker, contains Cer(d18:1/18:0), Cer(d18:1/24:0), Cer(d18:1/24:1), triglycerides and total cholesterol. Within the Discovery and Validation cohorts, men who were PCPro positive had significantly shorter OS compared to those who were PCPro negative (Discovery: median OS 12.0 months vs 24.2 months, hazard ratio (HR) 3.75 [95% confidence interval (CI) 2.29-6.15], p < 0.001, Validation: median OS 13.0 months vs 25.7 months, HR = 2.13 [95% CI 1.46-3.12], p < 0.001). CONCLUSIONS We have developed PCPro, a lipid biomarker assay capable of prospectively identifying men with mCRPC with a poor prognosis. Prospective clinical trials are required to determine if men who are PCPro positive will benefit from therapeutic agents targeting lipid metabolism.
Collapse
Affiliation(s)
- Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Hui-Ming Lin
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Fitzpatrick
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul Bonnitcha
- University of Sydney, Camperdown, NSW, Australia
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Amy Davies
- Department of Medical Oncology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | | | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiovascular Research Translation and implementation, La Trobe University, Melbourne, VIC, Australia
| | - Blossom Mak
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Kate Mahon
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - David Sullivan
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiovascular Research Translation and implementation, La Trobe University, Melbourne, VIC, Australia
| | - Lisa G Horvath
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- University of Sydney, Camperdown, NSW, Australia.
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Willet AH, Wos M, Igarashi MG, Ren L, Turner LA, Gould KL. Elevated levels of sphingolipid MIPC in the plasma membrane disrupt the coordination of cell growth with cell wall formation in fission yeast. PLoS Genet 2023; 19:e1010987. [PMID: 37792890 PMCID: PMC10578601 DOI: 10.1371/journal.pgen.1010987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| |
Collapse
|
5
|
Zhu XM, Li L, Bao JD, Wang JY, Liang S, Zhao LL, Huang CL, Yan JY, Cai YY, Wu XY, Dong B, Liu XH, Klionsky DJ, Lin FC. MoVast2 combined with MoVast1 regulates lipid homeostasis and autophagy in Magnaporthe oryzae. Autophagy 2023; 19:2353-2371. [PMID: 36803211 PMCID: PMC10351449 DOI: 10.1080/15548627.2023.2181739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li-Li Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chang-Li Huang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiong-Yi Yan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Ying Cai
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi-Yu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Wang H, Zhang Y, Wang J, Chen Y, Hou T, Zhao Y, Ma Z. The sphinganine C4-hydroxylase FgSur2 regulates sensitivity to azole antifungal agents and virulence of Fusarium graminearum. Microbiol Res 2023; 271:127347. [PMID: 36907072 DOI: 10.1016/j.micres.2023.127347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Lipid rafts consisting of ergosterol and sphingolipids in the lipid membrane of cells play important roles in various cellular processes. However, the functions of sphingolipids and their synthetic genes in phytopathogenic fungi have not been well understood yet. In this study, we conducted genome-wide searches and carried out systematic gene deletion analysis of the sphingolipid synthesis pathway in Fusarium graminearum, a causal agent of Fusarium head blight of wheat and other cereal crops worldwide. Mycelial growth assays showed that deletion of FgBAR1, FgLAC1, FgSUR2 or FgSCS7 resulted in markedly reduced hyphal growth. Fungicide sensitivity tests showed that the sphinganine C4-hydroxylase gene FgSUR2 deletion mutant (ΔFgSUR2) exhibited significantly increased susceptibility to azole fungicides. In addition, this mutant displayed a remarkable increase in cell membrane permeability. Importantly, ΔFgSUR2 was defective in deoxynivalenol (DON) toxisome formation, leading to dramatically decreased DON biosynthesis. Moreover, the deletion of FgSUR2 resulted in dramatically decreased virulence of the pathogen on host plants. Taken together, these results indicate that FgSUR2 plays an important role in regulating the susceptibility to azoles and virulence of F. graminearum.
Collapse
Affiliation(s)
- Haixia Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Zhang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youfu Zhao
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Hwang J, Peterson BG, Knupp J, Baldridge RD. The ERAD system is restricted by elevated ceramides. SCIENCE ADVANCES 2023; 9:eadd8579. [PMID: 36638172 PMCID: PMC9839339 DOI: 10.1126/sciadv.add8579] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are removed through a process known as ER-associated degradation (ERAD). ERAD occurs through an integral membrane protein quality control system that recognizes substrates, retrotranslocates the substrates across the membrane, and ubiquitinates and extracts the substrates from the membrane for degradation at the cytosolic proteasome. While ERAD systems are known to regulate lipid biosynthetic enzymes, the regulation of ERAD systems by the lipid composition of cellular membranes remains unexplored. Here, we report that the ER membrane composition influences ERAD function by incapacitating substrate extraction. Unbiased lipidomic profiling revealed that elevation of specific very-long-chain ceramides leads to a marked increase in the level of ubiquitinated substrates in the ER membrane and concomitantly reduces extracted substrates in the cytoplasm. This work reveals a previously unrecognized mechanism in which ER membrane lipid remodeling changes the activity of ERAD.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Brian G. Peterson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Mahendrarajan V, Bari VK. A critical role of farnesol in the modulation of Amphotericin B and Aureobasidin A antifungal drug susceptibility. Mycology 2022; 13:305-317. [DOI: 10.1080/21501203.2022.2138599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
10
|
Revie NM, Iyer KR, Maxson ME, Zhang J, Yan S, Fernandes CM, Meyer KJ, Chen X, Skulska I, Fogal M, Sanchez H, Hossain S, Li S, Yashiroda Y, Hirano H, Yoshida M, Osada H, Boone C, Shapiro RS, Andes DR, Wright GD, Nodwell JR, Del Poeta M, Burke MD, Whitesell L, Robbins N, Cowen LE. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun 2022; 13:3634. [PMID: 35752611 PMCID: PMC9233667 DOI: 10.1038/s41467-022-31308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.
Collapse
Affiliation(s)
- Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiabao Zhang
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Su Yan
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caroline M Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kirsten J Meyer
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena Li
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Veteran Administration Medical Center, Northport, NY, USA
| | - Martin D Burke
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Alessenko AV, Shupik MA, Gutner UA, Zateyshchikov DA, Minushkina LO, Rogozhina AA, Lebedev AT, Maloshitskaya OA, Sokolov SA, Kurochkin IN. Prospects for Using Chromatography–Mass Spectrometry for the Determination of Lipids in Clinical Cardiolipidology. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lone MA, Bourquin F, Hornemann T. Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:47-56. [DOI: 10.1007/978-981-19-0394-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Phillips GR, Saville JT, Hancock SE, Brown SHJ, Jenner AM, McLean C, Fuller M, Newell KA, Mitchell TW. The long and the short of Huntington’s disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun 2021; 4:fcab303. [PMID: 35169703 PMCID: PMC8833324 DOI: 10.1093/braincomms/fcab303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington’s mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington’s disease (control n = 13, Huntington’s n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington’s cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington’s brain whilst the white and grey frontal cortex were spared. The caudate of Huntington’s patients had a shifted sphingolipid profile, favouring long (C13–C21) over very-long-chain (C22–C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington’s caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington’s patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington’s brain. However, there was evidence of possible post-translational modifications in the Huntington’s patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington’s disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Gabrielle R. Phillips
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Sarah E. Hancock
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon H. J. Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew M. Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health and Florey Neuroscience, Parkville, VIC 3052, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
14
|
Tippetts TS, Holland WL, Summers SA. Cholesterol - the devil you know; ceramide - the devil you don't. Trends Pharmacol Sci 2021; 42:1082-1095. [PMID: 34750017 PMCID: PMC8595778 DOI: 10.1016/j.tips.2021.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Ectopic lipids play a key role in numerous pathologies, including heart disease, stroke, and diabetes. Of all the lipids studied, perhaps the most well understood is cholesterol, a widely used clinical biomarker of cardiovascular disease and a target of pharmacological interventions (e.g., statins). Thousands of studies have interrogated the regulation and action of this disease-causing sterol. As a growing body of literature indicates, a new class of lipid-based therapies may be on the horizon. Ceramides are cholesterol-independent biomarkers of heart disease and diabetes in humans. Studies in rodents suggest that they are causative agents of disease, as lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes. Herein, we discuss the evidence supporting the potential of therapeutics targeting ceramides to treat cardiometabolic disease, contrasting it with the robust datasets that drove the creation of cholesterol-lowering pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Scott A. Summers
- Correspondence should be addressed to: Scott A. Summers, Department of Nutrition and Integrative Physiology, University of Utah College of Health, 15N, 2030 East, Rm 3110, Salt Lake City Utah 84112, , Tel: 801-585-9359
| |
Collapse
|
15
|
Voshall A, Christie NTM, Rose SL, Khasin M, Van Etten JL, Markham JE, Riekhof WR, Nickerson KW. Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point. JOURNAL OF PHYCOLOGY 2021; 57:1199-1211. [PMID: 33713347 PMCID: PMC8453531 DOI: 10.1111/jpy.13164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and β-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and GenomicsBoston Children’s Hospital and Harvard Medical SchoolBostonMassachusetts02115USA
| | - Nakeirah T. M. Christie
- Department of Molecular Biophysics & BiochemistryYale UniversityNew Haven, Connecticut06520USA
| | - Suzanne L. Rose
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | - Maya Khasin
- Wheat, Sorghum, and Forage Research UnitUSDALincolnNebraska68583‐0937USA
| | - James L. Van Etten
- Department of Plant Pathology, and Nebraska Center for VirologyUniversity of NebraskaLincolnNebraska68583‐0900USA
| | - Jennifer E. Markham
- Department of Biochemistry, and Center for Plant Science InnovationUniversity of NebraskaLincolnNebraska68588‐0664USA
| | - Wayne R. Riekhof
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | | |
Collapse
|
16
|
Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P. Metabolomics of sebum reveals lipid dysregulation in Parkinson's disease. Nat Commun 2021; 12:1592. [PMID: 33707447 PMCID: PMC7952564 DOI: 10.1038/s41467-021-21669-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, which is characterised by degeneration of distinct neuronal populations, including dopaminergic neurons of the substantia nigra. Here, we use a metabolomics profiling approach to identify changes to lipids in PD observed in sebum, a non-invasively available biofluid. We used liquid chromatography-mass spectrometry (LC-MS) to analyse 274 samples from participants (80 drug naïve PD, 138 medicated PD and 56 well matched control subjects) and detected metabolites that could predict PD phenotype. Pathway enrichment analysis shows alterations in lipid metabolism related to the carnitine shuttle, sphingolipid metabolism, arachidonic acid metabolism and fatty acid biosynthesis. This study shows sebum can be used to identify potential biomarkers for PD.
Collapse
Affiliation(s)
- Eleanor Sinclair
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Depanjan Sarkar
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Caitlin Walton-Doyle
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Joy Milne
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Tilo Kunath
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Royston Goodacre
- Institute of Systems, Molecular and Integrative Biology, Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Monty Silverdale
- Department of Neurology, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Perdita Barran
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Cholesteryl ester levels are elevated in the caudate and putamen of Huntington's disease patients. Sci Rep 2020; 10:20314. [PMID: 33219259 PMCID: PMC7680097 DOI: 10.1038/s41598-020-76973-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative illness caused by a mutation in the huntingtin gene (HTT) and subsequent protein (mhtt), to which the brain shows a region-specific vulnerability. Disturbances in neural cholesterol metabolism are established in HD human, murine and cell studies; however, cholesteryl esters (CE), which store and transport cholesterol in the brain, have not been investigated in human studies. This study aimed to identify region-specific alterations in the concentrations of CE in HD. The Victorian Brain Bank provided post-mortem tissue from 13 HD subjects and 13 age and sex-matched controls. Lipids were extracted from the caudate, putamen and cerebellum, and CE were quantified using targeted mass spectrometry. ACAT 1 protein expression was measured by western blot. CE concentrations were elevated in HD caudate and putamen compared to controls, with the elevation more pronounced in the caudate. No differences in the expression of ACAT1 were identified in the striatum. No remarkable differences in CE were detected in HD cerebellum. The striatal region-specific differences in CE profiles indicate functional subareas of lipid disturbance in HD. The increased CE concentration may have been induced as a compensatory mechanism to reduce cholesterol accumulation.
Collapse
|
18
|
Mironenka J, Różalska S, Soboń A, Bernat P. Lipids, proteins and extracellular metabolites of Trichoderma harzianum modifications caused by 2,4-dichlorophenoxyacetic acid as a plant growth stimulator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110383. [PMID: 32143105 DOI: 10.1016/j.ecoenv.2020.110383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Strains of Trichoderma harzianum are well-known producers of bioactive secondary metabolites and have a beneficial effect on plants. However, to the best of our knowledge, the effect of the commonly used pesticides on the activity of this fungus is not yet investigated. Therefore, in the present study, the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the lipidome and selected extracellular compounds synthesized by T. harzianum IM 0961 was examined. It was observed that the herbicide 2,4-D caused changes in the lipid composition of the mycelium and that the herbicide exhibited lipophilic properties. In addition, the herbicide disturbed the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio and increased membrane permeability. The higher amount of cardiolipin CL 72:7 and the lower amount of CL 72:8 could have been associated with a decreased ratio of 18:2 and 18:1 fatty acids in the herbicide-treated samples. Moreover, in the presence of 2,4-D, an increased lipid peroxidation (twofold), as well as a higher content of oxylipin (9-HODE and 13-HODE) and phosphatidic acid (PA), was noted, confirming that 2,4-D induced lipid peroxidation in the mycelium. The herbicide also exerted its toxic effect on the production of 14-aminoacid peptaibols and two compounds, harzianic acid and t22-azaphilone, exhibiting antibiotic and plant growth-promoting activity. During proteomic analysis, the synthesis of some proteins, such as calcineurin-like phosphoesterase metallophosphatases (MPPs), which modulate the properties of cell walls, was found to be inhibited by the herbicide. These presented findings may be of significant value in understanding the effect of 2,4-D on the activity of T. harzianum.
Collapse
Affiliation(s)
- Julia Mironenka
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Adrian Soboń
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Microbial Genetics, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
19
|
Alessenko AV, Lebedev AT, Kurochkin IN. The Role of Sphingolipids in Cardiovascular Pathologies. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Alessenko AV, Lebedev АТ, Kurochkin IN. [The role of sphingolipids in cardiovascular pathologies]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:487-495. [PMID: 30632976 DOI: 10.18097/pbmc20186406487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in industrialized countries. One of the most significant risk factors for atherosclerosis is hypercholesterolemia. Its diagnostics is based on routine lipid profile analysis, including the determination of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides. However in recent years, much attention has been paid to the crosstalk between the metabolic pathways of the cholesterol and sphingolipids biosynthesis. Sphingolipids are a group of lipids, containing a molecule of aliphatic alcohol sphingosine. These include sphingomyelins, cerebrosides, gangliosides and ceramides, sphingosines, and sphingosine-1-phosphate (S-1-P). It has been found that catabolism of sphingolipids is associated with catabolism of cholesterol. However, the exact mechanism of this interaction is still unknown. Particular attention as CVD inducer attracts ceramide (Cer). Lipoprotein aggregates isolated from atherosclerotic pluques are enriched with Cer. The level of Cer and sphingosine increases after ischemia reperfusion of the heart, in the infarction zone and in the blood, and also in hypertension. S-1-P exhibits pronounced cardioprotective properties. Its content sharply decreases with ischemia and myocardial infarction. S-1-P presents predominantly in HDL, and influences their multiple functions. Increased levels of Cer and sphingosine and decreased levels of S-1-P formed in the course of coronary heart disease can be an important factor in the development of atherosclerosis. It is proposed to use determination of sphingolipids in blood plasma as markers for early diagnosis of cardiac ischemia and for hypertension in humans. There are intensive studies aimed at correction of metabolism S-1-P. The most successful drugs are those that use S-1-P receptors as a targets, since all of its actions are receptor-mediated.
Collapse
Affiliation(s)
- A V Alessenko
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | - I N Kurochkin
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
22
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
24
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
25
|
Mastrokolias A, Pool R, Mina E, Hettne KM, van Duijn E, van der Mast RC, van Ommen G, ‘t Hoen PAC, Prehn C, Adamski J, van Roon-Mom W. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington's disease peripheral blood samples. Metabolomics 2016; 12:137. [PMID: 27524956 PMCID: PMC4963448 DOI: 10.1007/s11306-016-1084-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Metabolic changes have been frequently associated with Huntington's disease (HD). At the same time peripheral blood represents a minimally invasive sampling avenue with little distress to Huntington's disease patients especially when brain or other tissue samples are difficult to collect. OBJECTIVES We investigated the levels of 163 metabolites in HD patient and control serum samples in order to identify disease related changes. Additionally, we integrated the metabolomics data with our previously published next generation sequencing-based gene expression data from the same patients in order to interconnect the metabolomics changes with transcriptional alterations. METHODS This analysis was performed using targeted metabolomics and flow injection electrospray ionization tandem mass spectrometry in 133 serum samples from 97 Huntington's disease patients (29 pre-symptomatic and 68 symptomatic) and 36 controls. RESULTS By comparing HD mutation carriers with controls we identified 3 metabolites significantly changed in HD (serine and threonine and one phosphatidylcholine-PC ae C36:0) and an additional 8 phosphatidylcholines (PC aa C38:6, PC aa C36:0, PC ae C38:0, PC aa C38:0, PC ae C38:6, PC ae C42:0, PC aa C36:5 and PC ae C36:0) that exhibited a significant association with disease severity. Using workflow based exploitation of pathway databases and by integrating our metabolomics data with our gene expression data from the same patients we identified 4 deregulated phosphatidylcholine metabolism related genes (ALDH1B1, MBOAT1, MTRR and PLB1) that showed significant association with the changes in metabolite concentrations. CONCLUSION Our results support the notion that phosphatidylcholine metabolism is deregulated in HD blood and that these metabolite alterations are associated with specific gene expression changes.
Collapse
Affiliation(s)
- Anastasios Mastrokolias
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Rene Pool
- Department of Biological Psychology, Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, The Netherlands
- The EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kristina M. Hettne
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Center for Mental Health Care Delfland, Jorisweg 2, Delft, The Netherlands
| | - Roos C. van der Mast
- Department of Psychiatry, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - GertJan van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter A. C. ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Cornelia Prehn
- Helmholtz Zentrum, München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum, München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
26
|
Gulati S, Balderes D, Kim C, Guo ZA, Wilcox L, Area-Gomez E, Snider J, Wolinski H, Stagljar I, Granato JT, Ruggles KV, DeGiorgis JA, Kohlwein SD, Schon EA, Sturley SL. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB J 2015. [PMID: 26220175 DOI: 10.1096/fj.14-264796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.
Collapse
Affiliation(s)
- Sonia Gulati
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Dina Balderes
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Christine Kim
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zhongmin A Guo
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Lisa Wilcox
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Estela Area-Gomez
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Jamie Snider
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Heimo Wolinski
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Igor Stagljar
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Juliana T Granato
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Kelly V Ruggles
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Joseph A DeGiorgis
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sepp D Kohlwein
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Eric A Schon
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Stephen L Sturley
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
27
|
Platt FM, Wassif C, Colaco A, Dardis A, Lloyd-Evans E, Bembi B, Porter FD. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 2015; 15:173-94. [PMID: 25184529 DOI: 10.1146/annurev-genom-091212-153412] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom;
| | | | | | | | | | | | | |
Collapse
|
28
|
da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol Biol Cell 2014; 25:3234-46. [PMID: 25143408 PMCID: PMC4196872 DOI: 10.1091/mbc.e14-03-0851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
Collapse
Affiliation(s)
- Aline Xavier da Silveira Dos Santos
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Maria-Auxiliadora Aguilera-Romero
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Fabrice David
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Manuele Piccolis
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Robbie Loewith
- National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
29
|
Klug L, Tarazona P, Gruber C, Grillitsch K, Gasser B, Trötzmüller M, Köfeler H, Leitner E, Feussner I, Mattanovich D, Altmann F, Daum G. The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:215-26. [PMID: 24246743 DOI: 10.1016/j.bbalip.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/28/2022]
Abstract
The methylotrophic yeast Pichia pastoris is a popular yeast expression system for the production of heterologous proteins in biotechnology. Interestingly, cell organelles which play an important role in this process have so far been insufficiently investigated. For this reason, we started a systematic approach to isolate and characterize organelles from P. pastoris. In this study, we present a procedure to isolate microsomal membranes at high purity. These samples represent endoplasmic reticulum (ER) fractions which were subjected to molecular analysis of lipids and proteins. Organelle lipidomics included a detailed analysis of glycerophospholipids, fatty acids, sterols and sphingolipids. The microsomal proteome analyzed by mass spectrometry identified typical proteins of the ER known from other cell types, especially Saccharomyces cerevisiae, but also a number of unassigned gene products. The lipidome and proteome analysis of P. pastoris microsomes are prerequisite for a better understanding of functions of this organelle and for modifying this compartment for biotechnological applications.
Collapse
|
30
|
Abstract
This article describes a procedure to prepare a raft-like intracellular membrane fraction enriched for the trans-Golgi network (TGN) and endosomal compartments. The initial step in this technique involves cell disruption by homogenization, followed by clearance of the plasma membrane, late endosomes, mitochondria and the endoplasmic reticulum by differential sedimentation. Carbonate treatment, sonication and sucrose density-gradient ultracentrifugation are subsequently used to isolate the target membranes. The isolated subcellular fraction contains less than 1% of the total cellular proteins, but it is highly enriched for syntaxin-6 and Rab11. Typically, 40-60% of the cellular pool of GM1 glycosphingolipid and 10-20% of the total cellular cholesterol cofractionate with this buoyant membrane fraction. Given the role of GM1 as a cell-surface receptor for the cholera toxin and that levels of both GM1 and cholesterol in the TGN-endosomal compartment are upregulated in some inherited diseases, this protocol can potentially be applied to the analysis of disease-associated changes to GM1-enriched intracellular membranes. The isolated membranes are very well separated from caveolin-rich domains of the plasma membrane, the TGN and recycling endosomes. The entire protocol can be completed in as little as 1 d.
Collapse
Affiliation(s)
- Mark G Waugh
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| |
Collapse
|
31
|
Raychaudhuri S, Young BP, Espenshade PJ, Loewen C. Regulation of lipid metabolism: a tale of two yeasts. Curr Opin Cell Biol 2012; 24:502-8. [PMID: 22694927 DOI: 10.1016/j.ceb.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/14/2012] [Indexed: 01/04/2023]
Abstract
Eukaryotic cells synthesize multiple classes of lipids by distinct metabolic pathways in order to generate membranes with optimal physical and chemical properties. As a result, complex regulatory networks are required in all organisms to maintain lipid and membrane homeostasis as well as to rapidly and efficiently respond to cellular stress. The unicellular nature of yeast makes it particularly vulnerable to environmental stress and yeast has evolved elaborate signaling pathways to maintain lipid homeostasis. In this article we highlight the recent advances that have been made using the budding and fission yeasts and we discuss potential roles for the unfolded protein response (UPR) and the SREBP-Scap pathways in coordinate regulation of multiple lipid classes.
Collapse
Affiliation(s)
- Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
32
|
Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1040-9. [PMID: 22265716 DOI: 10.1016/j.bbalip.2012.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/30/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is a major site of synthesis of both lipids and proteins, many of which must be transported to other organelles. The COPII coat-comprising Sar1, Sec23/24, Sec13/31-generates transport vesicles that mediate the bulk of protein/lipid export from the ER. The coat exhibits remarkable flexibility in its ability to specifically select and accommodate a large number of cargoes with diverse properties. In this review, we discuss the fundamentals of COPII vesicle production and describe recent advances that further our understanding of just how flexible COPII cargo recruitment and vesicle formation may be. Large or bulky cargo molecules (e.g. collagen rods and lipoprotein particles) exceed the canonical size for COPII vesicles and seem to rely on the additional action of recently identified accessory molecules. Although the bulk of the research has focused on the fate of protein cargo, the mechanisms and regulation of lipid transport are equally critical to cellular survival. From their site of synthesis in the ER, phospholipids, sphingolipids and sterols exit the ER, either accompanying cargo in vesicles or directly across the cytoplasm shielded by lipid-transfer proteins. Finally, we highlight the current challenges to the field in addressing the physiological regulation of COPII vesicle production and the molecular details of how diverse cargoes, both proteins and lipids, are accommodated. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
33
|
Deficiency of a Niemann-Pick, type C1-related protein in toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog 2011; 7:e1002410. [PMID: 22174676 PMCID: PMC3234224 DOI: 10.1371/journal.ppat.1002410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/16/2011] [Indexed: 02/07/2023] Open
Abstract
Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved 'sterol-sensing domain' (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.
Collapse
|
34
|
Shechtman CF, Henneberry AL, Seimon TA, Tinkelenberg AH, Wilcox LJ, Lee E, Fazlollahi M, Munkacsi AB, Bussemaker HJ, Tabas I, Sturley SL. Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response. J Biol Chem 2011; 286:11951-9. [PMID: 21266578 DOI: 10.1074/jbc.m110.215038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.
Collapse
Affiliation(s)
- Caryn F Shechtman
- Institute of Human Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Breslow DK, Weissman JS. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 2010; 40:267-79. [PMID: 20965421 DOI: 10.1016/j.molcel.2010.10.005] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/17/2022]
Abstract
Sphingolipids and their metabolites play key cellular roles both as structural components of membranes and as signaling molecules that mediate responses to physiologic cues and stresses. Despite progress during the last two decades in defining the enzymatic machinery responsible for synthesizing and degrading sphingolipids, comparatively little is known about how these enzymes are regulated to ensure sphingolipid homeostasis. Here, we review new insights into how cells sense and control sphingolipid biosynthesis and transport. We also discuss emerging evidence that sphingolipid metabolism is closely coordinated with that of sterols and glycerolipids and with other processes that occur in the secretory pathway. An improved understanding of sphingolipid homeostasis promises to shed light on basic processes in cell biology and disease, including how cells establish and maintain the complex membrane composition and architecture that is a defining feature of eukaryotic cell biology.
Collapse
Affiliation(s)
- David K Breslow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4(th) Street, San Francisco, CA 94158, USA
| | | |
Collapse
|