1
|
Bihola A, Chaudhary MB, Bumbadiya MR, Suvera P, Adil S. Technological innovations in margarine production: Current trends and future perspectives on trans-fat removal and saturated fat replacement. Compr Rev Food Sci Food Saf 2025; 24:e70088. [PMID: 39699296 DOI: 10.1111/1541-4337.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
The margarine market is growing globally due to its lower cost, ease of availability, large-scale commercialization, and expanding market in the bakery and confectionary industries. Butter contains greater amounts of saturated fat and has been associated with cardiovascular diseases. The trans fats generated through the hydrogenation process have several adverse impacts on human health, such as the risk of atherosclerosis, coronary heart disease, postmenopausal breast cancer, vision and neurological system impairment, type II diabetes, and obesity. Therefore, it is important to formulate margarine, low in saturated and trans fats using innovative technologies such as novel hydrogenation, interesterification techniques, and oleogel technology. By utilizing these technologies and oils with a healthy lipid profile, margarine manufacturers are able to produce healthier margarine. This review covers recent technological advancements in margarine, which include various hydrogenation techniques such as high-voltage atmospheric cold plasma hydrogenation, microwave plasma hydrogenation, dielectric-barrier discharge plasma hydrogenation, and interesterification based on supercritical CO2 systems. In addition, the application of interesterified oil and oleogel (structured vegetable oils) in the production of margarine low in saturated fat is comprehensively discussed, with emphasis on the utilization of unconventional sources of oils such as tiger nut oil, Moringa oleifera seed oil, Irvingia gabonensis seed fat, winged bean oil, and hemp seed oil. The novel hydrogenation techniques can hydrogenate oils without formation of trans fats, and such hydrogenated oils could be employed in the formulation of trans-fat-free margarine. Interesterified oil treated with supercritical CO2 was employed in healthy margarine development. Using the oleogel technique, various unconventional oil sources can be used in margarine formulations. The incorporation of oleogel in margarine makes it possible to improve the lipid profile of margarine due to a reduction in saturated fat content. All of these novel techniques have the potential to revolutionize the margarine industry by enabling the production of high-quality, healthy margarine.
Collapse
Affiliation(s)
- Ankit Bihola
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - M B Chaudhary
- ICAR-Indian Agricultural Research Institute, Assam, India
| | - M R Bumbadiya
- ICAR-National Research Center on Camel, Bikaner, Rajasthan, India
| | - Priyanka Suvera
- Department of Food Technology, Sardarkrushinagar Dantiwada Agricultural University, Dantiwada, Gujarat, India
| | - Shaikh Adil
- Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
2
|
Wei J, Cui J, Zhou Y, Li T, Wei Q, Li T, Zhang W. Mechanism of methyl elaidate on the thermal oxidation behavior. Food Res Int 2024; 197:115227. [PMID: 39593312 DOI: 10.1016/j.foodres.2024.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The effects of cis-trans isomerization on the oxidation products of oleic acid (composites and structure characterization) were investigated. The reduction of thermal oxidation reaction of methyl elaidate (ME) was 6.72 % lower than that of methyl oleate (MO), and the oxidation products (core aldehydes) first increased and then decreased with the prolongation of thermal oxidation time. ME exhibited better oxidation stability than MO in free radicals, hydroperoxides, double bonds, aldehydes, and glycerides. The oxidation products were mainly 11-oxo-9-undecenoate (initial stage) and methyl 9-oxononanoate (later stage), following the free radical chain reaction mechanism. The H8 in double bond was more easily dehydrogenated in the chain initiation stage than H11, followed by the formation of core aldehyde through three intermediates and two transition states each pathway. ME required a higher energy barrier (1.3-13.6 kJ/mol) than MO reaction, making it more difficult for ME to undergo thermal oxidation reaction. The transition state 4 and 5 were rate determining steps of chain initiation reaction and proliferation reaction, respectively. This study was of great significance to further control the formation of these trans fats and their oxidation products.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China
| | - Jingtao Cui
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanchi Zhou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China.
| |
Collapse
|
3
|
Miró-Colmenárez PJ, Illán-Marcos E, Díaz-Cruces E, Rocasolano MM, Martínez-Hernandez JM, Zamora-Ledezma E, Zamora-Ledezma C. Current Insights into Industrial Trans Fatty Acids Legal Frameworks and Health Challenges in the European Union and Spain. Foods 2024; 13:3845. [PMID: 39682917 DOI: 10.3390/foods13233845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The presence of industrial trans-fatty acids (iTFAs) in processed foods poses significant public health concerns, necessitating comprehensive regulatory frameworks. In this study, the current legal landscape governing iTFA in the European Union and Spain is analyzed, with a particular focus on regulatory effectiveness and implementation challenges. The research methodology combines a systematic review of existing regulations, including EU Regulation No. 1169/2011 and Spanish Law 17/2011, with the analysis of the scientific literature on iTFA health impacts. The results reveal significant regulatory gaps, particularly in enforcement mechanisms and iTFA detection methods. Key challenges are also identified in the present study, including inconsistent compliance monitoring, varying analytical methods for iTFA detection, and contradictions between EU and Spanish regulatory frameworks. Additionally, in this work, the need for harmonized approaches to ultra-processed food regulation is emphasized. Further, the conclusion is that despite the current regulations providing a foundation for iTFA control, it is compulsory to enhance the monitoring systems, and clearer regulatory guidelines are necessary. These would contribute valuable insights for policymakers, food industry stakeholders, and public health professionals working towards effective iTFA regulation.
Collapse
Affiliation(s)
- Pablo Javier Miró-Colmenárez
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Esther Illán-Marcos
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Méndez Rocasolano
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Manuel Martínez-Hernandez
- Department of Nutrition and Food Technology, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ezequiel Zamora-Ledezma
- Ecosystem Functioning & Climate Change Team-FAGROCLIM, Faculty of Agriculture Engineering, Universidad Técnica de Manabí (UTM), Lodana 13132, Ecuador
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
4
|
Steiner-Zitzenbacher B, Velasco J, Gallegos C, Ruiz-Méndez MV. Phytosterol Depletion in Soybean Oil Using a Synthetic Silica Adsorbent. Foods 2024; 13:3172. [PMID: 39410207 PMCID: PMC11475823 DOI: 10.3390/foods13193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Phytosterols in vegetable oils have gained attention for their nutritional benefits in foods and food supplements. However, the use of vegetable oils in emulsions for infant formulas and parenteral nutrition has raised some concerns, as phytosterols may contribute to phytosterolemia in the case of infant formulas and, in a second scenario, to parenteral nutrition-associated liver disease. The present study proposes removing phytosterols from soybean oil using a synthetic amorphous silica Trisyl® (E551) as an adsorbent material. The process is simple and involves stirring the oil at a high temperature under vacuum conditions followed by filtration to remove the adsorbent. A rotational factorial design of experiments, considering the adsorbent/oil ratio, temperature, and time was carried out to determine the optimal conditions. Additionally, the effects on tocopherols levels and formation of trans fatty acids were explored. The total sterol content in the initial refined soybean oil was 2540 mg/kg, with 32% in ester form (813 mg/kg). The treatments effectively reduced the sterol concentration, achieving a reduction of nearly 70% when 10% Trisyl®, 140 °C, and a 90-min treatment were applied. Under these conditions, nearly 80% of the oil was recovered. Campesterol and stigmasterol levels were almost halved. Tocopherol losses were found to be below 20%. Thermal degradation, as analyzed by triacylglycerol polymers and trans fatty acids, was not observed in the treatments.
Collapse
Affiliation(s)
| | - Joaquín Velasco
- Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, 41013 Seville, Spain;
| | - Crispulo Gallegos
- Business Unit Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany;
| | | |
Collapse
|
5
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
6
|
Ali S, Mehri F, Nasiri R, Limam I, Fakhri Y. Fluoride in Raw Rice (Oryza sativa): a Global Systematic Review and Probabilistic Health Risk Assessment. Biol Trace Elem Res 2024; 202:4324-4333. [PMID: 38103108 DOI: 10.1007/s12011-023-04004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Rice (Oryza sativa) is one of the essential staple foods highly consumed globally, with nearly 40% to 45% of the global population estimated to consume rice. Therefore, consumable rice should have low levels of harmful elements. This study investigates fluoride (F¯) content in raw rice (uncooked rice) and evaluates Probabilistic Health Risk Assessment (PHRA) through Monte Carlo simulation (MCS) due to the consumption of F¯ enriched rice. The literature review reveals that limited studies have been conducted on the investigation of F¯ in raw rice. The fluoride (F¯) concentration in raw rice varies across the studied countries, indicating the need for additional studies to facilitate a more accurate comparison. The F¯ content in raw rice varied among the studied countries, making it difficult to definitively state that the concentration of F¯ in one country is higher. However, the concentration of F¯ in raw rice in India is notably elevated. This study also highlighted the importance of investigating the F¯ content in raw rice. The study will be highly helpful for policymakers to formulate guidelines for water used for irrigation.
Collapse
Affiliation(s)
- Shakir Ali
- Department of Geology, University of Delhi, Delhi, 110007, India
- CAWTM, MRIIRS, Sector 43, Faridabad, Haryana, 121004, India
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasul Nasiri
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
7
|
Qin Zhang Q, Tang J, Feng Wu Y, Yu Qian C, Qin S, Hang Cai Z, Wang H, Mei Xiao H. Gelation of crocodile myofibrillar protein - κ-carrageenan mixtures in two low-NaCl solution. Food Chem 2024; 445:138753. [PMID: 38394905 DOI: 10.1016/j.foodchem.2024.138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Crocodile meat is a novel reptile meat source, but its processing method is rare. This study investigated the effect of κ-carrageenan addition and partial substitution of NaCl on the gel properties of crocodile myofibrillar protein (CMP). Result showed that CMP formed gel when temperature above 60 ℃. The water-holding capacity, gel strength, denaturation degree, sulfhydryl content covalent bond and hydrophobic bond of gel in KCl solution were significantly higher than those in CaCl2 solution (P < 0.05). K+ induced CMP to form a tight network structure with uniform small pores though covalent and hydrophobic bonds, but the gel properties were reduced by κ-carrageenan. In CaCl2 solution, κ-carrageenan improved the gel structure by filling the protein network through hydrogen bonding. Therefore, it can be concluded that KCl is better than CaCl2 in the manufacturing of low-sodium crocodile foods. Moreover, κ-carrageenan was only beneficial to gel quality in CaCl2 solution.
Collapse
Affiliation(s)
- Qiu Qin Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Feng Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yu Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Hang Cai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong Mei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Yildiz AY, Echegaray N, Öztekin S, Lorenzo JM. Quality and stability of frying oils and fried foods in ultrasound and microwave-assisted frying processes and hybrid technologies. Compr Rev Food Sci Food Saf 2024; 23:e13405. [PMID: 39030791 DOI: 10.1111/1541-4337.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.
Collapse
Affiliation(s)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
9
|
Wan L, Li T, Yao M, Zhang B, Zhang W, Zhang J. Linoelaidic acid gavage has more severe consequences on triglycerides accumulation, inflammation and intestinal microbiota in mice than elaidic acid. Food Chem X 2024; 22:101328. [PMID: 38576778 PMCID: PMC10992693 DOI: 10.1016/j.fochx.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
This work aims to study the effects of oral gavage (0.2 mg/g body weight) of elaidic acid (C18:1-9 t, EA) and linoelaidic acid (C18:2-9 t,12 t, LEA) on lipid metabolism, inflammation and gut homeostasis of mice. Results showed that both EA and LEA gavage significantly increased LDL-c, TC and oxidative stress levels in the liver and serum and may stimulate liver inflammation via NF-κB and MAPK signaling pathway. Compared with EA, LEA gavage significantly promoted TAG accumulation and inflammatory signaling. Serum lipidomics revealed that LEA intake significantly increased the concentration of ∼50 TAGs, while EA gavage primarily caused significant decreases in several SMs. 16S rRNA demonstrated that LEA ingestion markedly changed fecal microbiota by enriching Lactobacillus (phylum Firmicutes), however, EA treatment did not affect it. Overall, LEA gavage has more severe consequences on TAG accumulation, inflammation and microbial structure than EA, highlighting that the number of trans double bonds affects these processes.
Collapse
Affiliation(s)
- Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Mengying Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
10
|
Zhang J, Mao Z, Zheng J, Sun C, Xu G. The Effects of Different Doses of Canthaxanthin in the Diet of Laying Hens on Egg Quality, Physical Characteristics, Metabolic Mechanism, and Offspring Health. Int J Mol Sci 2024; 25:7154. [PMID: 39000258 PMCID: PMC11241014 DOI: 10.3390/ijms25137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin's role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies.
Collapse
Affiliation(s)
| | | | | | | | - Guiyun Xu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (Z.M.); (J.Z.); (C.S.)
| |
Collapse
|
11
|
Mahmudiono T, Esfandiari Z, Zare A, Sarkhoshkalat M, Mehri F, Fakhri Y. Concentration of potentially toxic elements in fillet shrimps of Mediterranean Sea: Systematic review, meta-analysis and health risk assessment. Food Chem X 2024; 21:101206. [PMID: 38379801 PMCID: PMC10876684 DOI: 10.1016/j.fochx.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
In this study, an attempt was made to meta-analyzed the concentration of potentially toxic elements (PTEs) in shrimps tissue of Mediterranean Sea and health risk of consumers was estimated. Search was conducted in international databases includes Scopus, PubMed, Embase, Science Direct and Web of Science from 1 January 2010 to 20 July 2023. The random effects model used to meta-analysis of concentration of PTEs in shrimp in subgroups. In addition, non-carcinogenic and carcinogenic risks for adults and children were calculated using target hazard quotient (THQ) and cancer risk (CR). Meta-analysis concentration of PTEs in shrimps was conducted using random effects model based on country subgroups. The rank order of PTEs based on mean (pooled) level in fillet of shrimps was Fe (15.395 mg/kg-ww) > Zn (10.428 mg/kg-ww) > Cu (6.941 mg/kg-ww) Pb (5.7 mg/kg-ww) > Ni (1.115 mg/kg-ww) > As (0.681 mg/kg-ww) > Cd (0.412 mg/kg-ww) > Hg (0.300 mg/kg-ww). THQ level in adults and children due to Cd and Pb in Italy was higher than 1 value. THQ level in adults and children due to Cu, Ni, Fe, Zn and inorganic As was lower than 1 value. CR due to inorganic As in Greece and Türkiye for adults and children was higher than 1E-6 value. Therefore, it was recommended to continuously monitor and reduce the concentration of PTEs in shrimps in Italy, Greece and Türkiye, especially.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zare
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
12
|
Guo M, Shen W, Zhou M, Song Y, Liu J, Xiong W, Gao Y. Safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia: A metanalysis in biomedicine. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5335-5359. [PMID: 38872538 DOI: 10.3934/mbe.2024235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Trigeminal neuralgia is a debilitating condition characterized by severe facial pain. Carbamazepine has been widely used as a first-line treatment option for trigeminal neuralgia, but there is a need to evaluate its safety and efficacy based on existing evidence. This meta-analysis aims to systematically assess the available literature and provide a comprehensive evaluation of the safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia. A thorough search of electronic databases yielded a total of 15 relevant studies that met the inclusion criteria. The pooled analysis of these studies revealed that carbamazepine demonstrated significant efficacy in reducing pain intensity and frequency in patients with trigeminal neuralgia. Moreover, the drug was generally well-tolerated, with the most common adverse events being mild and transient. Subgroup analyses based on different dosages and treatment durations further supported the overall findings. However, caution should be exercised in patients with certain comorbidities or specific populations, as some rare but severe adverse events were reported. In conclusion, this meta-analysis provides strong evidence supporting the safety and efficacy of carbamazepine as a valuable therapeutic option for the management of trigeminal neuralgia. These results can guide clinicians in making informed decisions regarding the use of carbamazepine and contribute to optimizing treatment strategies for patients with trigeminal neuralgia. Further research is warranted to explore long-term safety and efficacy outcomes, as well as to compare carbamazepine with alternative treatment modalities.
Collapse
Affiliation(s)
- M Guo
- Medical School, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311113, China
- Medical Center (Yuhang), Zhejiang University, Hangzhou, 311121, China
| | - W Shen
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| | - M Zhou
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| | - Y Song
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| | - J Liu
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| | - W Xiong
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| | - Y Gao
- Department of Physiology Teaching, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
13
|
Deng N, Hu Z, Li H, Li C, Xiao Z, Zhang B, Liu M, Fang F, Wang J, Cai Y. Physicochemical properties and pork preservation effects of lotus seed drill core powder starch-based active packaging films. Int J Biol Macromol 2024; 260:129340. [PMID: 38262831 DOI: 10.1016/j.ijbiomac.2024.129340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Lotus seed drill core powder starch (LCPS)-based active packaging films incorporated with cellulose nanocrystals (CNC) and grapefruit essential oil-corn nanostarch Pickering emulsion (ECPE) were characterized, and their pork preservation effects were investigated in this study. In contrast with corn, potato and rice starches, LCPS showed higher amylose content, elliptical and circular shape with more uniform size distribution. Furthermore, LCPS film exhibited lower light transmittance, stronger tensile strength, and smaller elongation at break compared to the other starch films. Then, the LCPS film containing 4 % CNC and 9 % ECPE was fabricated which had stronger mechanical properties, lower water vapor permeability and oxygen transmission rate, and denser network structure. FTIR and XRD analyses also confirmed that CNC and ECPE were successfully implanted into the LCPS matrix without damaging the crystalline structure of LCPS. Herein, the LCPS/CNC/ECPE film exerted potential antibacterial activity against Escherichia coli and Staphylococcus aureus. Besides, packaging with this composite film significantly preserved the pork during cold storage via decreasing its juice loss rate, pH value, total number of colonies, total volatile base nitrogen and thiobarbituric acid reactive substance values. The present study will provide a theoretical basis for the application of LCPS as new biodegradable active films.
Collapse
Affiliation(s)
- Na Deng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhiqiang Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Intelligent Manufacturing and Quality Safety of Xiang Flavoured Compound Seasoning for Chain Catering, Liuyang 410023, China.
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
14
|
Mahmudiono T, Fakhri Y, Ranaei V, Pilevar Z, Limam I, Sahlabadi F, Rezaeiarshad N, Torabbeigi M, Jalali S. Concentration of Tetrabromobisphenol-A in fish: systematic review and meta-analysis and probabilistic health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0157. [PMID: 38386608 DOI: 10.1515/reveh-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, 148005 Universitas Airlangga , Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, 14656 Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Zahra Pilevar
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, 125609 Birjand University of Medical Sciences , Birjand, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Marzieh Torabbeigi
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Samaneh Jalali
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
15
|
Zhou ZQ, Wei M, Tan CL, Deng ZY, Li J. Low intake of ruminant trans fatty acids ameliorates the disordered lipid metabolism in C57BL/6J mice fed a high-fat diet. Food Funct 2024; 15:1539-1552. [PMID: 38234289 DOI: 10.1039/d3fo04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Currently, the health benefits of ruminant trans fatty acids (R-TFA) are still controversial. Our previous investigations indicated that R-TFA at higher dosages (1.3% and 4% E) caused disordered lipid metabolism in mice; however, through collecting R-TFA intake data in 9 provinces of China, it was suggested that, in 2021, the range of R-TFA intake for Chinese residents was about 0.053-0.307 g d-1. Based on the 2022 Nutritional Dietary Guidelines for Chinese Residents, the recommended daily energy supply from R-TFA was about 0.11%-0.15% E. However, the health effects of R-TFA at a lower dosage are still unknown; therefore, our current research aims to further explore the effects of R-TFA on health. Through in vivo experiments, it was shown that R-TFA (0.15% E) decreased body weight gain and serum cholesterol levels in C57BL/6J mice fed a high-fat diet, while it had no significant effect on mice fed a low-fat diet. Besides, hepatic histopathology analysis suggested that R-TFA (0.15% E) ameliorated the degree of hepatic steatosis and reduced intrahepatocyte lipid droplet accumulation in C57BL/6J mice fed a high-fat diet. Through lipidomics analysis, we further screened 8 potential lipid metabolites that participate in regulating the dysregulation of lipid metabolism. Finally, it was suggested that R-TFA (0.15% E) down-regulated the expression of genes related to inflammation and cholesterol synthesis while up-regulated the expression of genes related to cholesterol clearance, which might partially explain the salutary effect of R-TFA (0.15% E) in ameliorating the hepatic steatosis and improving disordered lipid metabolism in mice fed a high-fat diet. Our current research will provide a reference for the intake of R-TFA and, furthermore, give some insights into understanding the health effects of R-TFA.
Collapse
Affiliation(s)
- Ze-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Chao-Li Tan
- Jiangxi Sunshine Dairy Co., Ltd, Nanchang, Jiangxi 330001, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
- National Center of Technology Innovation for Dairy, China
| |
Collapse
|
16
|
Hei X, Liu Z, Li S, Wu C, Jiao B, Hu H, Ma X, Zhu J, Adhikari B, Wang Q, Shi A. Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. Int J Biol Macromol 2024; 257:128183. [PMID: 37977455 DOI: 10.1016/j.ijbiomac.2023.128183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pickering emulsions are of great interest to the food industry and their freeze-thaw stability important when used in frozen foods. Particles of soybean isolate (SPI) were heat treated and then crosslinked with transglutaminase (TG) enzyme to produce Pickering emulsions. The protein particles produced using unheated and uncrosslinked SPI (NSPI) was used as the benchmark. The mean particle size, absolute zeta potential, and surface hydrophobicity of protein particles produced using heat treatment and TG crosslinking (at 40 U/g) SPI (HSPI-TG-40) were the highest and substantially higher than those produced using NSPI. The thermal treatment of protein particles followed by crosslinking with TG enzyme improved the freeze-thaw stability of Pickering emulsions stabilized by them. The Pickering emulsions produced using HSPI-TG-40 had the lowest temperature for ice crystal formation and they had better freeze-thaw stability. The plant-based ice cream prepared by HSPI-TG-40 particle-stabilized Pickering emulsions had suitable texture and freeze-thaw stability compared to the ice cream produced using NSPI. The Pickering particles produced using heat treatment of SPI followed by crosslinking with TG (at 40 U/g) produced the most freeze-thaw stable Pickering emulsions. These Pickering particles and Pickering emulsions could be used in frozen foods such as ice cream.
Collapse
Affiliation(s)
- Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanshan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Küçükgöz K, Echave J, Garcia-Oliveira P, Seyyedi-Mansour S, Donn P, Xiao J, Trząskowska M, Prieto MA. Polyphenolic profile, processing impact, and bioaccessibility of apple fermented products. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38251987 DOI: 10.1080/10408398.2023.2277353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Health-promoting foods have become increasingly popular due to intensified consumer interest and awareness of illnesses. There is a global market for apple fruits, which are affordable, nutritious, tasty, and produced in large quantities for direct consumption as well as food processing to make derived products. The food matrix of apples is suitable for fermentation, besides containing a high amount of phenolics and polyphenols. Fermentation of apples is one of the most common methods of preserving apple fruit and its byproducts. With different fermentation techniques, apple fruit can be used to make a wide range of products, such as fermented apple juice, cider, liqueurs, apple cider, apple vinegar and fermented apple solids, because it is not only a low-cost and simple method of processing the fruit, but it can also sometimes increase the bioavailability of nutrients and the levels of components that can improve health and sensory quality. To understand the health benefits of food products and how the fermentation process impacts polyphenols, it is also crucial to observe the effects of digestion on polyphenol bioaccessibility. Polyphenolic profile changes can be observed via both in vitro and in vivo digestion methods; however, in vitro digestion methods have the advantage of observing every step of gastrointestinal track effects and have less cost as well. In this review, the polyphenolic profile, processing impact, and bioaccessibility of apple-fermented products is assessed, with most available studies showing polyphenol profiles and bioaccessibility in apple varieties and fermented apple products.
Collapse
Affiliation(s)
- K Küçükgöz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - J Echave
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - P Garcia-Oliveira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - S Seyyedi-Mansour
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - P Donn
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - J Xiao
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - M A Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| |
Collapse
|
18
|
Zou S, Zhou J, Du Y, Cheng J, Wang Y, Zhang Z. Texture and volatile profiles of beef tallow substitute produced by a pilot-scale continuous enzymatic interesterification. Food Chem 2023; 429:136980. [PMID: 37527600 DOI: 10.1016/j.foodchem.2023.136980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Edible beef tallow (BT) has been widely used in Sichuan hotpot due to its unique flavor and texture. However, BT should not be consumed in excess caused by its trans-fatty acids and cholesterol issues. In this study, a BT substitute was prepared after enzymatic interesterification in a pilot-scale packed-bed reactor using soybean oil and fully hydrogenated palm oil (4:3, w/w) as feedstock. The products were characterized against BT in terms of fatty acid/triacylglycerol compositions, solid fat content, polymorphism, and melting/crystallization behaviors to select the most promising BT substitute. The optimal flow rate was 120 mL/min. Changes in volatile compounds during stir-frying and simmering were also investigated for Sichuan hotpots made with these two oils. The volatile compounds of BT substitute were similar to that of natural BT. The findings will contribute to expanding the base oil categories of Sichuan hotpot oils.
Collapse
Affiliation(s)
- Shuo Zou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yilin Du
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianqiang Cheng
- Guangdong Sumbillion Food for Special Medical Purposes Co., Ltd, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
19
|
Abdulrahman SJ, Abdulhadi MA, Turki Jalil A, Falah D, Merza MS, Almulla AF, Ali A, Ali RT. Conjugated linoleic acid and glucosamine supplements may prevent bone loss in aging by regulating the RANKL/RANK/OPG pathway. Mol Biol Rep 2023; 50:10579-10588. [PMID: 37932498 DOI: 10.1007/s11033-023-08839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Dumooa Falah
- National University of Science and Technology, Dhi Qar, Iraq
| | - Muna S Merza
- Prosthetic dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
20
|
Chamorro F, Otero P, Carpena M, Fraga-Corral M, Echave J, Seyyedi-Mansour S, Cassani L, Prieto MA. Health Benefits of Oily Fish: Illustrated with Blue Shark ( Prionace glauca), Shortfin Mako Shark ( Isurus oxyrinchus), and Swordfish ( Xiphias gladius). Nutrients 2023; 15:4919. [PMID: 38068777 PMCID: PMC10708079 DOI: 10.3390/nu15234919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Oily fish is a rich source of energy, proteins, essential amino acids, lipids, vitamins, and minerals. Among the macronutrients with the highest contribution are lipids, mainly long-chain omega 3 polyunsaturated fatty acids (ω-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Both EPA and DHA play a beneficial role in promoting health and preventing many diseases, including cardiovascular diseases, such as stroke and acute myocardial infarction. They also contribute to the prevention of neurological, metabolic, and immune-system-related diseases, as well as supporting body-weight control. Oily fish consumption is also important at different stages of human life, from conception to old age. For example, DHA plays an important role in brain and retina development during fetal development and in the first two years of life, as it positively influences neurodevelopment, such as visual acuity, and cognitive functions. In contrast with the possible health benefits of the intake of oily fish, the presence of certain chemical pollutants, for example, heavy metals, can be a risk for the health of consumers, mainly in sensitive population groups such as pregnant women and children under 2 years of age. The presence of these pollutants is influenced to a greater extent by fish species, their role in the trophic chain, and their size. However, various studies state that the benefits outweigh the risk of consuming certain species. This review will be focused on the health benefits of the intake of three oily fish species, namely blue shark (Prionace glauca), shortfin mako shark (Isurus oxyrinchus), and swordfish (Xiphias gladius).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (F.C.); (P.O.); (M.C.); (M.F.-C.); (J.E.); (S.S.-M.); (L.C.)
| |
Collapse
|
21
|
Baraiya K, Yadav VK, Choudhary N, Ali D, Raiyani D, Chowdhary VA, Alooparampil S, Pandya RV, Sahoo DK, Patel A, Tank JG. A Comparative Analysis of the Physico-Chemical Properties of Pectin Isolated from the Peels of Seven Different Citrus Fruits. Gels 2023; 9:908. [PMID: 37998997 PMCID: PMC10671531 DOI: 10.3390/gels9110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
In the present research work, pectin was isolated from the peels of seven citrus fruits (Citrus limon, Citrus limetta, Citrus sinensis, Citrus maxima, Citrus jambhiri, Citrus sudachi, and Citrus hystrix) for a comparison of its physicochemical parameters and its potential use as a thickening agent, gelling agent, and food ingredient in food industries. Among the seven citrus fruits, the maximum yield of pectin was observed from Citrus sudachi, and the minimum yield of pectin was observed from Citrus maxima. The quality of each pectin sample was compared by using parameters such as equivalent weight, anhydrouronic acid (AUA) content, methoxy content, and degree of esterification. It was observed that all seven pectin samples had a high value of equivalent weight (more than 1000), suggesting that all the pectin samples had a high content of non-esterified galacturonic acid in the molecular chains, which provides viscosity and water binding properties. The methoxy content and degree of esterification of all the pectins was lower than 50%, which suggests that it cannot easily disperse in water and can form gel only in presence of divalent cations. The AUA content of all isolated pectins samples was above 65%, which suggests that the pectin was pure and can be utilized as a food ingredient in domestic foods and food industries. From the FTIR analysis of pectin, it was observed that the bond pattern of Citrus maxima, Citrus jambhiri, and Citrus hystrix was similar. The bond pattern of Citrus limon, Citrus limetta, and Citrus sinensis was similar. However, the bond pattern of Citrus sudachi was different from that of all other citrus fruits. The difference in the bond pattern was due to the hydrophobic nature of pectin purified from Citrus limon, Citrus limetta, Citrus sudachi, and Citrus sinensis and the hydrophilic nature of pectin purified from Citrus maxima, Citrus jambhiri, and Citrus hystrix. Hence, hydrophobic pectin can be utilized in the preparation of hydrogels, nanofibers, food packaging material, polysoaps, drug delivery agents, and microparticulate materials, whereas hydrophilic pectin can be utilized for the preparation of gelling and thickening agents.
Collapse
Affiliation(s)
- Khodidash Baraiya
- Department of Biosciences, Saurashtra University, Rajkot 360005, India; (K.B.); (D.R.); (V.A.C.); (S.A.)
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Daya Raiyani
- Department of Biosciences, Saurashtra University, Rajkot 360005, India; (K.B.); (D.R.); (V.A.C.); (S.A.)
| | - Vibhakar A. Chowdhary
- Department of Biosciences, Saurashtra University, Rajkot 360005, India; (K.B.); (D.R.); (V.A.C.); (S.A.)
| | - Sheena Alooparampil
- Department of Biosciences, Saurashtra University, Rajkot 360005, India; (K.B.); (D.R.); (V.A.C.); (S.A.)
| | - Rohan V. Pandya
- Department of Microbiology, Atmiya University, Rajkot 360005, India;
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Jigna G. Tank
- Department of Biosciences, Saurashtra University, Rajkot 360005, India; (K.B.); (D.R.); (V.A.C.); (S.A.)
| |
Collapse
|
22
|
Zhou Z, Wei M, Zhong J, Deng Y, Hou Y, Liu W, Deng Z, Li J. Integration of hepatic lipidomics and transcriptomics reveals the effect of butter-derived ruminant trans fatty acids on lipid metabolism in C57BL/6J mice. Food Funct 2023; 14:9825-9840. [PMID: 37850500 DOI: 10.1039/d3fo02508j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism results in metabolism-related diseases. Our previous research indicated that 1.3% E and 4% E ruminant trans fatty acids (R-TFA) caused dyslipidemia and promoted atherosclerotic plaques in ApoE-/- mice, presenting detrimental effects. However, the effect of R-TFA on the lipid metabolism of normal mice remains unclear. Therefore, our current research aims to explore the effects of butter-derived R-TFAs on the lipid metabolism of C57BL/6J mice through the integration of lipidomics and transcriptomics. As a result, we found that 1.3% E butter-derived R-TFA promoted dyslipidemia and impaired hepatic function in C57BL/6J mice fed a high-fat diet, which was associated with an increase in DG (18:1/22:5), TG (18:1/18:2/22:4) and FA (24:5) as determined through lipidomics analysis, but had a less significant effect on C57BL/6J mice fed a low-fat diet. Through a combination analysis and verification of gene expression, we found that the arachidonic acid pathway might be involved in the disruption of lipid metabolism by butter-derived R-TFA. In addition, butter-derived R-TFA up-regulated the expression of unigene thromboxane-A synthase 1 (Tbxas1), arachidonate lipoxygenase 3 (Aloxe3), acyl-coenzyme A thioesterase 2 (Acot2), epoxide hydrolase 2 (Ephx2) and carbonyl reductase 3 (Cbr3) in C57BL/6J mice fed a high-fat diet. Herein, our research provides a new perspective for exploring the effects of butter-derived R-TFA on lipid metabolism and speculates on the possible mechanism of lipid metabolism disorder induced by butter-derived R-TFA in C57BL/6J mice fed a high-fat diet.
Collapse
Affiliation(s)
- Zeqiang Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jinjing Zhong
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Yiling Deng
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Wenqun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
23
|
Si B, Liu K, Huang G, Chen M, Yang J, Wu X, Li N, Tang W, Zhao S, Zheng N, Zhang Y, Wang J. Relationship between rumen bacterial community and milk fat in dairy cows. Front Microbiol 2023; 14:1247348. [PMID: 37886063 PMCID: PMC10598608 DOI: 10.3389/fmicb.2023.1247348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Milk fat is the most variable nutrient in milk, and recent studies have shown that rumen bacteria are closely related to milk fat. However, there is limited research on the relationship between rumen bacteria and milk fatty. Fatty acids (FAs) are an important component of milk fat and are associated with various potential benefits and risks to human health. Methods In this experiment, forty-five healthy Holstein dairy cows with alike physiological and productive conditions were selected from medium-sized dairy farms and raised under the same feeding and management conditions. The experimental period was two weeks. During the experiment, raw milk and rumen fluid were collected, and milk components were determined. In this study, 8 high milk fat percentage (HF) dairy cows and 8 low milk fat percentage (LF) dairy cows were selected for analysis. Results Results showed that the milk fat percentage in HF group was significantly greater than that of the dairy cows in the LF group. 16S rRNA gene sequencing showed that the rumen bacterial abundance of HF dairy cows was significantly higher than that in LF dairy cows; at the genus level, the bacterial abundances of Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03 in HF group were significantly higher than those in the LF group. Spearman rank correlation analysis indicated that milk fat percentage was positively related to Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03. Furthermore, Prevotellaceae_UCG-001 was positively related to C14:0 iso, C15:0 iso, C18:0, Ruminococcus_1 with C18:1 t9, Lachnospiraceae_AC2044_group with C18:1 t9 and C18:1 t11, U29-B03 with C15:0 iso. Discussion To sum up, rumen bacteria in dairy cows are related to the variation of milk fat, and some rumen bacteria have potential effects on the deposition of certain fatty acids in raw milk.
Collapse
Affiliation(s)
- Boxue Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaizhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoxin Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyong Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xufang Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhao Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Wei M, Wang J. Potential health risks of foodborne performance-enhancing drugs in competitive sports. Heliyon 2023; 9:e21104. [PMID: 37916089 PMCID: PMC10616320 DOI: 10.1016/j.heliyon.2023.e21104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Athletes need to consume a significant amount of energy during prolonged training and in high-intensity competition. It is necessary for them to take nutritional foods that recharge their bodies. However, in sporting events of recent years, both domestic and international, many positive drug tests are found to be caused by the ingestion of foods that contain performance-enhancing drugs (PEDs). As a result, the prevention and control of PEDs in food supply have drawn increasing attention. For better prevention and control, the first step is to understand the food contaminants -- PEDs. This study has categorized PEDs through their presence in animal-derived foods, plant-derived foods, and synthetic nutritional supplements in competitive sports. It investigates the potential risks of foodborne doping using techniques such as external addition and endogenous component analysis. This research explored the causes of PEDs in food and their negative effects on athletes and proposed measures to ensure the safety of nutritional substances in competitive sports. PEDs in animal-derived foods include β-adrenergic agonists, anabolic steroids, and glucocorticoids, which can be found in meat and ox penis, amongst other food sources. In contrast, PEDs in plant-derived foods include alkaloids, higenamine, and zeranol, which can be found in coffee, tea, Sichuan pepper, custard apple, and cereal. Performance-enhancing drugs (PEDs) that are often added to synthetic supplements include creatine, traditional Chinese herbs, 1, 3-dimethylbutylamine (DMAA), sibutramine, ephedrine, and methylhexanamine. Targeted anti-doping training should be provided to athletes. In addition, the latest domestic and international standards and regulations regarding PEDs or prohibited and restricted ingredients in foods should be tracked in real-time. The control list for performance-enhancing drugs in food should be continually updated and refined. Research on detection methods for performance-enhancing drugs in food should also be advanced. Moreover, market surveillance and law enforcement should be strengthened to ensure that sports foods meet national safety standards before they enter the market. This paper provides workable solutions to clarify the types and scope of performance-enhancing drugs in food, aiming to improve the prevention and control of PEDs in animal-derived foods, plant-derived foods, and supplements in major sporting events.
Collapse
Affiliation(s)
- Maoqiong Wei
- Agri-Food Quality Standard & Testing Technology Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Ju'an Wang
- College of Sport of Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
25
|
Karimi P, Sadeghi S, Kariminejad F, Sadani M, Sheikh Asadi AM, Oghazyan A, Bay A, Mahmudiono T, Fakhri Y. The concentration of pesticides in tomato: a global systematic review, meta-analysis, and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103390-103404. [PMID: 37697195 DOI: 10.1007/s11356-023-29645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
To improve farming productivity, a large number of pesticides have been used worldwide in recent decades, leading to the pollution of soil, agri-products, and water, directly/indirectly affecting human health. In this regard, many studies were conducted in different countries on residual pesticides in the environment. In the current study, residual pesticides including chlorpyrifos, cypermethrin, diazinon, malathion, and metalaxyl in tomatoes were meta-analyzed and health risk of consumers was estimated. For this purpose, based on a systematic review, data from 47 studies were extracted and meta-analyzed, and the health impact of pooled concentrations was assessed via a health risk method. According to the results, metalaxyl had the most concentration followed by malathion, cypermethrin, diazinon, and chlorpyrifos, respectively. The non-carcinogenic risk (n-CR) was calculated from crop consumption also showed that exposure to malathion has the most risk. Among the investigated communities, Iranian consumers were in considerable health risk (THQ > 1). Considering that the potential for the use of pesticides will increase with the need for food in the future, hence, governments must manage the usage by governments via alternative methods such as cultural, biological, physical, and genetic modifications.
Collapse
Affiliation(s)
- Pouria Karimi
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Sadeghi
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kariminejad
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Sadani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Mohammad Sheikh Asadi
- Chair of Environmental Analytics and Pollutants, Institute IWAR, Technical University of Darmstadt, Franziska-Braun-Straße 7, D-64287, Darmstadt, Germany
| | - Ali Oghazyan
- Department of Environmental Health Engineering, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abotaleb Bay
- Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
26
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
28
|
Agarwal N, Solanki VS, Ameta KL, Yadav VK, Gupta P, Wanale SG, Shrivastava R, Soni A, Sahoo DK, Patel A. 4-Dimensional printing: exploring current and future capabilities in biomedical and healthcare systems-a Concise review. Front Bioeng Biotechnol 2023; 11:1251425. [PMID: 37675401 PMCID: PMC10478005 DOI: 10.3389/fbioe.2023.1251425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
4-Dimensional Printing (4DP) is the latest concept in the pharmacy and biomedical segment with enormous potential in dosage from personalization and medication designing, which adopts time as the fourth dimension, giving printed structures the flexibility to modify their morphology. It can be defined as the fabrication in morphology with the help of smart/intelligent materials like polymers that permit the final object to alter its properties, shape, or function in response to external stimuli such as heat, light, pH, and moisture. The applications of 4DP in biomedicines and healthcare are explored with a focus on tissue engineering, artificial organs, drug delivery, pharmaceutical and biomedical field, etc. In the medical treatments and pharmaceutical field 4DP is paving the way with unlimited potential applications; however, its mainstream use in healthcare and medical treatments is highly dependent on future developments and thorough research findings. Therefore, previous innovations with smart materials are likely to act as precursors of 4DP in many industries. This review highlights the most recent applications of 4DP technology and smart materials in biomedical and healthcare fields which can show a better perspective of 4DP applications in the future. However, in view of the existing limitations, major challenges of this technology must be addressed along with some suggestions for future research. We believe that the application of proper regulatory constraints with 4DP technology would pave the way for the next technological revolution in the biomedical and healthcare sectors.
Collapse
Affiliation(s)
- Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, India
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Keshav Lalit Ameta
- Centre for Applied Chemistry, School of Applied Material Sciences, Central University of Gujarat, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Premlata Gupta
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | | | - Ruchi Shrivastava
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Anjali Soni
- Department of Chemistry, Medicaps University, Indore, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
29
|
Liu H, Zhang J, Chen Q, Hu A, Li T, Guo F, Wang Q. Preparation of Whole-Cut Plant-Based Pork Meat and Its Quality Evaluation with Animal Meat. Gels 2023; 9:461. [PMID: 37367132 DOI: 10.3390/gels9060461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Low-moisture (20~40%) and high-moisture (40~80%) textured vegetable proteins (TVPs) can be used as important components of plant-based lean meat, while plant-based fat can be characterized by the formation of gels from polysaccharides, proteins, etc. In this study, three kinds of whole-cut plant-based pork (PBP) were prepared based on the mixed gel system, which were from low-moisture TVP, high-moisture TVP, and their mixtures. The comparisons of these products with commercially available plant-based pork (C-PBP1 and C-PBP2) and animal pork meat (APM) were studied in terms of appearance, taste, and nutritional qualities. Results showed the color changes of PBPs after frying were similar to that of APM. The addition of high-moisture TVP would significantly improve hardness (3751.96~7297.21 g), springiness (0.84~0.89%), and chewiness (3162.44~6466.94 g) while also reducing the viscosity (3.89~10.56 g) of products. It was found that the use of high-moisture TVP led to a significant increase in water-holding capacity (WHC) from 150.25% to 161.01% compared with low-moisture TVP; however, oil-holding capacity (OHC) was reduced from 166.34% to 164.79%. Moreover, essential amino acids (EAAs), the essential amino acids index (EAAI), and biological value (BV) were significantly increased from 272.68 mg/g, 105.52, and 103.32 to 362.65 mg/g, 141.34, and 142.36, respectively, though in vitro protein digestibility (IVPD) reduced from 51.67% to 43.68% due to the high-moisture TVP. Thus, the high-moisture TVP could help to improve the appearance, textural properties, WHC, and nutritional qualities of PBPs compared to animal meat, which was also better than low-moisture TVP. These findings should be useful for the application of TVP and gels in plant-based pork products to improve the taste and nutritional qualities.
Collapse
Affiliation(s)
- Haodong Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Anna Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Tongqing Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
30
|
Chen M, Wang F, Wu X, Si B, Pan J, Zheng N, Zhang Y, Wang J. Updating the fatty acid profiles of retail bovine milk in China based on an improved GC-MS method: implications for nutrition. Front Nutr 2023; 10:1204005. [PMID: 37305087 PMCID: PMC10248175 DOI: 10.3389/fnut.2023.1204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
The importance of food components to potential benefits and risks to human health is gradually being consumer awareness. Milk is an important part of the lipid content of the human diet, and there are few detailed reports on the fatty acid (FA) profiles of retail milk. In the study, we developed a gas chromatography-mass spectrometry (GC-MS) method to simultaneously determine 82 FAs, including 11 even-chain saturated FAs, 10 odd-chain saturated FAs, 9 branched-chain saturated FAs, 30 monounsaturated FAs, and 22 polyunsaturated FAs; this was applied to analyze samples (186 samples) of commercially available milk from 22 provinces throughout China and to evaluate the nutritional value of these samples based on FA-related indices. The results showed that the overall composition of milk FAs among the different regions was numerically similar, and minor FAs showed few differences. When considering the retail milk FA composition and dairy fat intake in China, regional variations have a limited impact on FA consumption. Moreover, milk accounts for approximately one-third and <10% of the maximum recommended intake of saturated FAs and trans-FAs in consumer diets, respectively. This study provides an updated report on the composition of FAs and the nutritional value of retail milk across China, which can serve as a reference for producers for future research on regulating milk FAs, for consumers to select milk, and for nutrition departments to formulate relevant nutritional guidance recommendations.
Collapse
Affiliation(s)
- Meiqing Chen
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengen Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xufang Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boxue Si
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junyu Pan
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Tanislav AE, Pușcaș A, Mureșan V, Mudura E. The oxidative quality of bi-, oleo- and emulgels and their bioactives molecules delivery. Crit Rev Food Sci Nutr 2023; 64:8990-9016. [PMID: 37158188 DOI: 10.1080/10408398.2023.2207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During recent years, the applicability of bi-, oleo- and emulgels has been widely studied, proving several advantages as compared to conventional fats, such as increasing the unsaturated fat content of products and being more sustainable for temperate regions as compared to tropical fats. Moreover, these alternative fat systems improve the nutritional profile, increase the bioavailability of bioactive compounds, and can be used as preservation films and markers for the inactivation of pathogens, while in 3D printing facilitate the obtaining of superior food products. Furthermore, bi-, oleo- and emulgels offer food industries efficient, innovative, and sustainable alternatives to animal fats, shortenings, margarine, palm and coconut oil due to the nutritional improvements. According to recent studies, gels can be used as ingredients for the total or partial replacement of saturated and trans fats in the meat, bakery and pastry industry. The evaluation of the oxidative quality of this gelled systems is significant because the production process involves the use of heat treatments and continuous stirring where large amounts of air can be incorporated. The aim of this literature review is to provide a synthesis of studies to better understand the interaction of components and to identify future improvements that can be applied in oil gelling technology. Generally, higher temperatures used in obtaining polymeric gels, lead to more oxidation compounds, while a higher concentration of structuring agents leads to a better protection against oxidation. Due to the gel network ability to function as a barrier against oxidation factors, gelled matrices are able to provide superior protection for the bioactive compounds. The release percentage of bioactive molecules can be regulated by formulating the gel matrix (type and concentration of structuring agents and type of oil). In terms of food products, future research may include the use of antioxidants to improve the oxidative stability of the reformulated products.
Collapse
Affiliation(s)
- Anda Elena Tanislav
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Elena Mudura
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Li T, Qu Y, Hu X, Liang M, Guo Q, Wang Q. Green synthesis and structure characterization of resveratrol conjugated linoleate. Food Chem 2023; 422:136151. [PMID: 37126956 DOI: 10.1016/j.foodchem.2023.136151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
To improve the stability and broaden the application of resveratrol (Res), the Res conjugated linoleate (RCL) were synthesized successfully using Res and 9c,11t-conjugated linoleic acid (CLA) with N, N'-carbonyldiimidazole (CDI) as catalyst for the first time. The Res conversion and the yield of RCL were achieved at 96.85% and 65.30%, respectively. In comparison with Res, RCL has lower acid value (1.80 mg/g) and peroxide value (3.25 meq/kg) and higher thermal stability (improved by 115.3 ℃). RCL was identified as a novel triester compound with a physical appearance as a light-yellow viscous oil. The 9c,11t-CLA was activated by CDI first, reacted with Res to form 4'-Res-ester preferentially, followed by 5,4'-Res-ester and 3,5,4'-Res-ester. The transition-state quaternary ring structures of monoesters were the key structures determining the formation of RCL. This study provided an efficient and eco-friendly approach for the synthesis of RCL, promoting the development of the synthesis of Res long-chain fatty acid ester.
Collapse
Affiliation(s)
- Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Xiaoning Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|