1
|
Feng Y, Xie F, Ding R, Zhang Q, Zeng Y, Li L, Wu L, Yu Y, Fang L. One-pot rapid preparation of long-term antioxidant and antibacterial biomedical gels based on lipoic acid and eugenol for accelerating cutaneous wound healing. J Mater Chem B 2024; 12:12641-12651. [PMID: 39498838 DOI: 10.1039/d4tb01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The complex battlefield environment often puts great pressure on the treatment of open wounds caused by burns and trauma, which cannot heal for a long time due to the lack of medical resources. Once wounds are not sutured and severely infected, they can lead to infective endocarditis, sepsis, and even death. Therefore, it is urgent to develop advanced dressings to replace sutures and antibiotics, which can quickly seal wounds and maintain long-term stability of antibacterial and antioxidant properties. In this study, novel biobased antibacterial adhesive gels composed of natural small molecule lipoic acid and eugenol were prepared via a one-pot solvent-free reaction for wound management. The gels were crosslinked via the ring-opening polymerization of lipoic acid and hydrogen bond interaction. Due to its structure feature, the PLA-E1 gel displayed excellent flexibility, transparency, self-healing and adhesiveness. The gel system showed long-term high antioxidant activity (95%) after exposure to air at room temperature for one year. Meanwhile, the reactive oxygen species (ROS) scavenging efficacy was kept around 52%. Both trauma and burn in vivo experiments demonstrated that the PLA-E1 gel could accelerate wound healing through antibacterial, antioxidant, angiogenic and tissue regenerative effects, indicating the potential applications of cutaneous wound healing on the battlefield.
Collapse
Affiliation(s)
- Yungang Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Fangrui Xie
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Rui Ding
- College of Chemical Engineering, Taiyuan University of Technology, Yingze West Street 79, Taiyuan, 030024, China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Youzhi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Li Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lianbin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Linxuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Sun Q, Yang Z, Xu R, Li R, Li Y, Wang F, Li Y. Smart responsive staple for dynamic promotion of anastomotic stoma healing. Bioact Mater 2024; 39:630-642. [PMID: 38883312 PMCID: PMC11180322 DOI: 10.1016/j.bioactmat.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging. Here, we develop a smart responsive anastomotic staple (Ti-OH-MC) by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating. This design achieves dynamic sequential regulation of antibacterial, anti-inflammatory, and cell proliferation properties. During the inflammatory phase of the anastomotic stoma, our Ti-OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties, together with immune microenvironment regulation function. At the same time, as the healing progresses, the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple, which promotes cell adhesion and proliferation during the later proliferative and remodeling phases. As a result, our Ti-OH-MC exceeds the properties of clinically used titanium anastomotic staple, and can effectively promote the healing. The staple's preparation strategy is simple and biocompatible, promising for industrialisation and clinical application. This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.
Collapse
Affiliation(s)
- Qi Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruijun Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Renjie Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Yong Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Zhang M, Choi W, Kim M, Choi J, Zang X, Ren Y, Chen H, Tsukruk V, Peng J, Liu Y, Kim DH, Lin Z. Recent Advances in Environmentally Friendly Dual-crosslinking Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318035. [PMID: 38586975 DOI: 10.1002/anie.202318035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.
Collapse
Affiliation(s)
- Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Minju Kim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xuerui Zang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Vladimir Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
4
|
Wu S, Yuan Z, Xie P, Shafiq M, Hou J, Liang Y, Hashim R, Zhang W, Yang R, Mo X, Jiang S. Lecithin-complexed oregano essential oil-encapsulated fibrous barriers prevent postoperative adhesions by regulating Nrf2/NF-κB signaling pathways. APPLIED MATERIALS TODAY 2024; 38:102185. [DOI: 10.1016/j.apmt.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
6
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
7
|
Doan L, Tran K. Relationship between the Polymer Blend Using Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, Polyvinylpyrrolidone, and Antimicrobial Activities against Staphylococcus aureus. Pharmaceutics 2023; 15:2453. [PMID: 37896214 PMCID: PMC10610092 DOI: 10.3390/pharmaceutics15102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The findings from Pareto charts, main effect plots, and interaction plots demonstrate the importance of polymer concentration. Increasing concentration improves the inhibition percentage and decreases the MIC50. However, the primary factor that influences these changes is chitosan (CS). Additionally, the interaction between CS and PVP, along with other polymers, plays a crucial role in achieving better antimicrobial effects. These results enhance our understanding of the antimicrobial properties of the studied polymers and offer valuable insights for developing effective antimicrobial formulations. The MIC50 value of M1-M16 was at a polymer percentage of 12.5%. At 12.5% polymer percentage, with the limits of [PVA], [PEG], and [PVP] being 0.002-0.004 g/mL and [CS] being 0.001-0.002 g/mL, using the 2-level full factorial method, the inhibition percentage is equal to 174.1 - 27,812 PVA - 18,561 PVP - 25,960 PEG - 38,752 CS + 9,263,047 PVA*PVP + 10,430,763 PVA*PEG + 15,397,157 PVA*CS + 7,088,313 PVP*PEG + 7,841,221 PVP*CS + 14,228,046 PEG*CS - 3,367,292,860 PVA*PVP*PEG - 5,671,998,721 PVA*PVP*CS - 6,619,041,275 PVA*PEG*CS - 3,917,095,529 PVP*PEG*CS + 2,273,661,969,470 PVA*PVP*PEG*CS. Theoretically, the most economical concentrations of PVA, PVP, PEG, and CS are 0.002, 0.002, 0.002, and 0.001 mg/mL at a concentration of 12.5% to reach an inhibition percentage of 99.162%, which coincides with the MBC value.
Collapse
Affiliation(s)
- Linh Doan
- School of Chemical and Environmental Engineering, International University—Vietnam National University, Ho Chi Minh City 70000, Vietnam
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University—Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Khoa Tran
- School of Chemical and Environmental Engineering, International University—Vietnam National University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
8
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
9
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
10
|
Fontana-Escartín A, Hauadi KE, Lanzalaco S, Pérez-Madrigal MM, Armelin E, Turon P, Alemán C. Smart Design of Sensor-Coated Surgical Sutures for Bacterial Infection Monitoring. Macromol Biosci 2023; 23:e2300024. [PMID: 37119469 DOI: 10.1002/mabi.202300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Indexed: 05/01/2023]
Abstract
Virtually, all implantable medical devices are susceptible to infection. As the main healthcare issue concerning implantable devices is the elevated risk of infection, different strategies based on the coating or functionalization of biomedical devices with antiseptic agents or antibiotics are proposed. In this work, an alternative approach is presented, which consists of the functionalization of implantable medical devices with sensors capable of detecting infection at very early stages through continuous monitoring of the bacteria metabolism. This approach, which is implemented in surgical sutures as a representative case of implantable devices susceptible to bacteria colonization, is expected to minimize the risk of worsening the patient's clinical condition. More specifically, non-absorbable polypropylene/polyethylene (PP/PE) surgical sutures are functionalized with conducting polymers using a combination of low-pressure oxygen plasma, chemical oxidative polymerization, and anodic polymerization, to detect metabolites coming from bacteria respiration. Functionalized suture yarns are used for real-time monitoring of bacteria growth, demonstrating the potential of this strategy to fight against infections.
Collapse
Affiliation(s)
- Adrián Fontana-Escartín
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
| | - Karima El Hauadi
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, Rubí, 08191, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Barcelona, 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| |
Collapse
|
11
|
Liu R, Xi P, Yang N, Luo Y, Cheng B. Chitosan/poly (ethylene oxide) nanofiber sponge with dual-responsive drug release and excellent antibacterial property. Int J Biol Macromol 2023; 246:125731. [PMID: 37422246 DOI: 10.1016/j.ijbiomac.2023.125731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
An ideal wound dressing can absorb wound exudate in time, and has the advantages of moisture permeability, oxygen permeability, rapid hemostatic performance, antibacterial and low-toxic, which are the key to wound healing. However, traditional wound dressings exist structural and functional defects, especially in controlling bleeding and active wound protection. Herein, a novel three-dimensional chitosan/ poly (ethylene oxide) sponge dressing (3D CS/PEO sponge-ZPC) consists of CS/PEO nanofiber sponge (carrier unit), Zn metal-organic framework grown in-situ (Zn-MOF, drug loading unit and antibacterial unit), curcumin (CUR, antibacterial unit), and poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P(NIPAM-co-MAA), 'gatekeepers' unit) to promote the wound healing by absorb exudate in time, accelerate hemostasis and inhibit bacteria growth. Due to the unique structure of the as-prepared 3D CS/PEO sponge-ZPC was endowed with smart stimuli-responsive drug release mode, rapid hemostatic performance and strong antibacterial property. The result of CUR release showed smart "ON-OFF" drug release mode. Antibacterial results verified strong antibacterial property up to 99.9 %. Hemolysis test showed that hemolysis ratio of 3D CS/PEO sponge-ZPC met the acceptable standard. The rapid hemostatic property was demonstrated by hemostatic test. High wound healing effect was confirmed in vivo. These results provide an important research basis for the design of new smart dressing.
Collapse
Affiliation(s)
- Ru Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Peng Xi
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China; Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tianjin 300387, PR China.
| | - Ning Yang
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China; Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tianjin 300387, PR China.
| | - Ying Luo
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin 300170, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China; School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
12
|
Sharma D, Srivastava S, Kumar S, Sharma PK, Hassani R, Dailah HG, Khalid A, Mohan S. Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:325. [PMID: 37259465 PMCID: PMC9965065 DOI: 10.3390/ph16020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 12/25/2023] Open
Abstract
Skin is designed to protect various tissues, and because it is the largest and first human bodily organ to sustain damage, it has an incredible ability to regenerate. On account of extreme injuries or extensive surface loss, the normal injury recuperating interaction might be inadequate or deficient, bringing about risky and disagreeable circumstances that request the utilization of fixed adjuvants and tissue substitutes. Due to their remarkable biocompatibility, biodegradability, and bioactive abilities, such as antibacterial, immunomodulatory, cell proliferative, and wound mending properties, biodegradable polymers, both synthetic and natural, are experiencing remarkable progress. Furthermore, the ability to convert these polymers into submicrometric filaments has further enhanced their potential (e.g., by means of electrospinning) to impersonate the stringy extracellular grid and permit neo-tissue creation, which is a basic component for delivering a mending milieu. Together with natural biomaterial, synthetic polymers are used to solve stability problems and make scaffolds that can dramatically improve wound healing. Biodegradable polymers, commonly referred to as biopolymers, are increasingly used in other industrial sectors to reduce the environmental impact of material and energy usage as they are fabricated using renewable biological sources. Electrospinning is one of the best ways to fabricate nanofibers and membranes that are very thin and one of the best ways to fabricate continuous nanomaterials with a wide range of biological, chemical, and physical properties. This review paper concludes with a summary of the electrospinning (applied electric field, needle-to-collector distance, and flow rate), solution (solvent, polymer concentration, viscosity, and solution conductivity), and environmental (humidity and temperature) factors that affect the production of nanofibers and the use of bio-based natural and synthetic electrospun scaffolds in wound healing.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Saveetha University, Chennai 600077, India
| |
Collapse
|
13
|
Yap HYY, Ariffeen Rosli MF, Tan SH, Kong BH, Fung SY. The Wound Healing Potential of Lignosus rhinocerus and Other Ethno-myco Wound Healing Agents. MYCOBIOLOGY 2023; 51:1-15. [PMID: 36846625 PMCID: PMC9946334 DOI: 10.1080/12298093.2022.2164641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.
Collapse
Affiliation(s)
- Hui-Yeng Y. Yap
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Mohammad Farhan Ariffeen Rosli
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Soon-Hao Tan
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Boon-Hong Kong
- Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
15
|
Liu X, Guo C, Zhuang K, Chen W, Zhang M, Dai Y, Tan L, Ran Y. A recyclable and light-triggered nanofibrous membrane against the emerging fungal pathogen Candida auris. PLoS Pathog 2022; 18:e1010534. [PMID: 35613180 PMCID: PMC9173615 DOI: 10.1371/journal.ppat.1010534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The emerging "super fungus" Candida auris has become an important threat to human health due to its pandrug resistance and high lethality. Therefore, the development of novel antimicrobial strategy is essential. Antimicrobial photodynamic therapy (aPDT) has excellent performance in clinical applications. However, the relevant study on antifungal activity and the mechanism involved against C. auris remains scarce. Herein, a recyclable and biodegradable polylactic acid-hypocrellin A (PLA-HA) nanofibrous membrane is newly developed. In vitro PLA-HA-aPDT could significantly reduce the survival rate of C. auris plankton and its biofilms, and the fungicidal effect of the membrane is still significant after four repeated uses. Simultaneously, PLA-HA exhibits good biocompatibility and low hemolysis. In vivo experiments show that PLA-HA-aPDT can promote C. auris-infected wound healing, reduce inflammatory response, and without obvious toxic side-effects. Further results reveal that PLA-HA-aPDT could increase endogenous reactive oxygen species (ROS) levels, leading to mitochondrial dysfunction, release of cytochrome C, activation of metacaspase, and nuclear fragmentation, thereby triggering apoptosis of C. auris. Compared with HA, PLA-HA shows stronger controllability and reusability, which can greatly improve the utilization efficiency of HA alone. Taken together, the efficacy, safety and antifungal activity make PLA-HA-aPDT a highly promising antifungal candidate for skin or mucous membrane C. auris infection. It is urgent to develop new antifungal strategies to address the problem of Candida auris infection and drug resistance. Previous studies have revealed that antimicrobial photodynamic therapy (aPDT) based on natural products, such as hypocrellin A (HA), is a promising method in clinical applications. However, equivalent studies of aPDT on antifungal activity and its mechanism against C. auris remain scarce. Herein, we successfully prepared a recyclable, biodegradable, and light-driven antifungal PLA-HA nanofibrous membrane through the electrospinning technique. C. auris infection has been treated by aPDT in vitro and in vivo for the first time, especially HA-mediated aPDT. In vitro and in vivo experiments have provided sufficient lines of evidence that PLA-HA is a promising antifungal material for superficial C. auris infections due to its antifungal effect and excellent biocompatibility. Notably, there still remains a very high antifungal activity after utilizing PLA-HA four times. In addition, this study clarifies that the anti-C. auris mechanism of PLA-HA, namely, PLA-HA-mediated aPDT, is attributed to the formation of intracellular ROS, resulting in mitochondrial dysfunction and a decline in the mitochondrial transmembrane potential, releasing cytochrome C from mitochondria to the cytoplasm, promoting the activation of metacaspase, and inducing nuclear condensation and fragmentation of C. auris, thus triggering yeast cell apoptosis. This study lays a foundation for developing new antimicrobial nanofibrous dressings mediated by aPDT and provides an alternative strategy for the treatment of local fungal infectious diseases.
Collapse
Affiliation(s)
- Xinyao Liu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas United States of America
| | - Muqiu Zhang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Dai
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| |
Collapse
|
16
|
Wang S, Lu M, Wang W, Yu S, Yu R, Cai C, Li Y, Shi Z, Zou J, He M, Xie W, Yu D, Jin H, Li H, Xiao W, Fan C, Wu F, Li Y, Liu S. Macrophage Polarization Modulated by NF-κB in Polylactide Membranes-Treated Peritendinous Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104112. [PMID: 34816589 DOI: 10.1002/smll.202104112] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Foreign body reactions (FBR) to implants seriously impair tissue-implant integration and postoperative adhesion. The macrophage, owing to its phenotypic plasticity, is a major regulator in the formation of the inflammatory microenvironment; NF-κB signaling also plays a vital role in the process. It is hypothesized that NF-κB phosphorylation exerts a proinflammatory regulator in FBR to polylactide membranes (PLA-M) and adhesion. First, in vitro and in vivo experiments show that PLA-M induces NF-κB phosphorylation in macrophages, leading to M1 polarization and release of inflammatory factors. The inflammatory microenvironment formed due to PLA-M accelerates myofibroblast differentiation and release of collagen III and MMP2, jointly resulting in peritendinous adhesion. Therefore, JSH-23 (a selective NF-κB inhibitor)-loaded PLA membrane (JSH-23/PLA-M) is fabricated by blend electrospinning to regulate the associated M1 polarization for peritendinous anti-adhesion. JSH-23/PLA-M specifically inhibits NF-κB phosphorylation in macrophages and exhibits anti-inflammatory and anti-adhesion properties. The findings demonstrate that NF-κB phosphorylation has a critical role in PLA-induced M1 polarization and aggravating FBR to PLA-M. Additionally, JSH-23/PLA-M precisely targets modulation of NF-κB phosphorylation in FBR to break the vicious cycle in peritendinous adhesion therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Shiyang Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Ruyue Yu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Zhongmin Shi
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jian Zou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| |
Collapse
|
17
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
18
|
de la Harpe KM, Kondiah PPD, Marimuthu T, Choonara YE. Advances in carbohydrate-based polymers for the design of suture materials: A review. Carbohydr Polym 2021; 261:117860. [PMID: 33766349 DOI: 10.1016/j.carbpol.2021.117860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Suture materials constitute one of the largest biomedical material groups with a huge global market of $ 1.3 billion annually and employment in over 12 million procedures per year. Suture materials have radically evolved over the years, from basic strips of linen to more advanced synthetic polymer sutures. Yet, the journey to the ideal suture material is far from over and we now stand on the brink of a new era of improved suture materials with greater safety and efficacy. This next step in the evolutionary timeline of suture materials, involves the use of natural, carbohydrate polymers that have, until recent years, never before been considered for suture material applications. This review exposes the latest and most important advancements in suture material development while digging deep into how natural, carbohydrate polymers can serve to advance this field.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
19
|
Deng X, Qasim M, Ali A. Engineering and polymeric composition of drug-eluting suture: A review. J Biomed Mater Res A 2021; 109:2065-2081. [PMID: 33830631 DOI: 10.1002/jbm.a.37194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Sutures are the most popular surgical implants in the global surgical equipment market. They are used for holding tissues together to achieve wound closure. However, controlling the body's immune response to these "foreign bodies" at site of infection is challenging. Natural polymers such as collagen, silk, nylon, and cotton, and synthetic polymers such as polycaprolactone, poly(lactic-co-glycolic acid), poly(p-dioxanone) and so forth, contribute the robust foundation for the engineering of drug-eluting sutures. The incorporation of active pharmaceutical ingredients (APIs) with polymeric composition of suture materials is an efficient way to reduce inflammatory reaction in the wound site as well as to control bacterial growth, while allowing wound healing. The incorporation of polymeric composition in surgical sutures has been found to add high flexibility as well as excellent physical and mechanical properties. Fabrication processes and polymer materials allow control over drug-eluting profiles to effectively address wound healing requirements. This review outlines and discusses (a) polymer materials and APIs used in suture applications, including absorbable and nonabsorbable sutures; (b) suture structures, such as monofilament, multifilament, barded and smart sutures; and (c) the existing manufacturing techniques for drug-eluting suture production, including electrospinning, melt-extrusion and coating.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Qasim
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Bhavsar P, Dalla Fontana G, Zoccola M. Sustainable Superheated Water Hydrolysis of Black Soldier Fly Exuviae for Chitin Extraction and Use of the Obtained Chitosan in the Textile Field. ACS OMEGA 2021; 6:8884-8893. [PMID: 33842759 PMCID: PMC8028010 DOI: 10.1021/acsomega.0c06040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 05/28/2023]
Abstract
Interest in insects as waste biomass bioconverters and their use as valuable resources for fat, proteins, and chitin has increased considerably in the last few years. In this study, proteins were extracted from defatted black soldier fly (BSF) (Hermetia illucens) exuviae by green hydrolysis using superheated water at 150 °C for 20 h, and the remaining chitin was deacetylated into chitosan and used as a finishing agent for polyester fabrics. A total amount of 7% fat, 40% proteins, and 20% chitin was obtained from BSF exuviae. Different hydrolysis times ranging from 1 to 20 h were tried until the complete purification of chitin. The purity of chitin and the obtained chitosan after deacetylation was assessed by Fourier transform infrared spectroscopy and thermal analysis. A preliminary study was successfully carried out to use the obtained chitosan as a finishing agent for polyester pretreated fabrics using citric acid as a grafting agent. The presence of chitosan on the fabric was verified by scanning electron microscopy and by dyeing of the pretreated polyester fabric using a reactive dye with sulfonated groups that are able to be absorbed by electrostatic attraction because of the created cationic nature of the fiber surface treated by chitosan.
Collapse
|
21
|
Catauro M, Ciprioti SV. Characterization of Hybrid Materials Prepared by Sol-Gel Method for Biomedical Implementations. A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1788. [PMID: 33916333 PMCID: PMC8038627 DOI: 10.3390/ma14071788] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
The interaction between tissues and biomaterials (BM) has the purpose of improving and replacing anatomical parts of the human body, avoiding the occurrence of adverse reactions in the host organism. Unfortunately, the early failure of implants cannot be currently avoided, since neither a good mixture of mechanical and chemical characteristics of materials nor their biocompatibility has been yet achieved. Bioactive glasses are recognized to be a fine class of bioactive substances for good repair and replacement. BM interact with living bones through the formation of a hydroxyapatite surface layer that is analogous to bones. Bioglasses' composition noticeably affects their biological properties, as does the synthesis method, with the best one being the versatile sol-gel technique, which includes the change of scheme from a 'sol' fluid into a 'gel'. This process is widely used to prepare many materials for biomedical implants (e.g., hip and knee prostheses, heart valves, and ceramic, glassy and hybrid materials to serve as carriers for drug release). Nanoparticles prepared by the sol-gel method are interesting systems for biomedical implementations, and particularly useful for cancer therapy. This review provides many examples concerning the synthesis and characterization of the above-mentioned materials either taken from literature and from recently prepared zirconia/polyethylene glycol (PEG) hybrids, and the corresponding results are extensively discussed.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-813031 Aversa, Italy
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering (S.B.A.I.), Sapienza University of Rome, Via del Castro Laurenziano 7, Building RM017, I-00161 Rome, Italy
| |
Collapse
|
22
|
Wang L, Yang K, Li X, Zhang X, Zhang D, Wang LN, Lee CS. A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment. Acta Biomater 2021; 124:139-152. [PMID: 33524557 DOI: 10.1016/j.actbio.2021.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/30/2023]
Abstract
Self-healing hydrogel systems usually suffer from poor mechanical performance stemmed from weaker and reversible non-covalent interactions or dynamic chemical bonds, which hamper their practical applications. This issue is addressed by adopting a double-crosslinking design involving both dynamic Schiff base bonds and non-dynamic photo-induced crosslinking. This leads to the formation of a special topological structure which simultaneously provide good self-healing capability and enhanced mechanical performance (elastic recovery and tensile modulus of 157.4 kPa, close to modulus of native skin). The quaternary ammonium and protonated amino groups can provide superior antibacterial capability; and Schiff base formation between residual aldehyde groups and amino groups on tissue surface contribute to hydrogel's adhesion to tissues (5.9 kPa). Furthermore, the multifunctional hydrogels with desirable mechanical performance, self-healing capability, superior antibacterial capability and tissue adhesion can significantly promote healing of infectious cutaneous wound, tissue remodeling and regeneration.
Collapse
|
23
|
Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B 2021; 9:3106-3130. [PMID: 33885618 DOI: 10.1039/d1tb00067e] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the clinical strategies for treating chronic wounds are limited, especially when it comes to pain relief and rapid wound healing. Therefore, there is an urgent need to develop alternative treatment methods. This paper provides a systematic review on recent researches on how electrospun nanofiber scaffolds promote wound healing and how the electrospinning technology has been used for fabricating multi-dimensional, multi-pore and multi-functional nanofiber scaffolds that have greatly promoted the development of wound healing dressings. First, we provide a review on the four stages of wound healing, which is followed by a discussion on the evolvement of the electrospinning technology, what is involved in electrospinning devices, and factors affecting the electrospinning process. Finally, we present the possible mechanisms of electrospun nanofibers to promote wound healing, the classification of electrospun polymers, cell infiltration favoring fiber scaffolds, antibacterial fiber scaffolds, and future multi-functional scaffolds. Although nanofiber scaffolds have made great progress as a type of multi-functional biomaterial, major challenges still remain for commercializing them in a way that fully meets the needs of patients.
Collapse
Affiliation(s)
- Chen Gao
- College of Life Sciences, Anhui Medical University, Hefei 230022, Anhui, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ahmadian Z, Correia A, Hasany M, Figueiredo P, Dobakhti F, Eskandari MR, Hosseini SH, Abiri R, Khorshid S, Hirvonen J, Santos HA, Shahbazi M. A Hydrogen-Bonded Extracellular Matrix-Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pH-Responsive Wound Healing Acceleration. Adv Healthc Mater 2021; 10:e2001122. [PMID: 33103384 DOI: 10.1002/adhm.202001122] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Indexed: 01/02/2023]
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs, accelerated healing of skin injury is obtained through pH-dependent release of TA and its multifaceted mechanisms as an antibacterial, antioxidant, hemostatic, and anti-inflammatory moiety. The developed gelatin-TA (GelTA) hydrogel also shows an outstanding effect on the formation of extracellular matrix and wound closure in vivo via offered cell adhesion sites in the backbone of gelatin that provide increased re-epithelialization and better collagen deposition. These results suggest that the multifunctional GelTA hydrogel is a promising candidate for the clinical treatment of full-thickness wounds and further development of wound dressing materials that releases active agents in the neutral or slightly basic environment of infected nonhealing wounds.
Collapse
Affiliation(s)
- Zainab Ahmadian
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Alexandra Correia
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Masoud Hasany
- Department of Chemical and Petroleum Engineering Sharif University of Technology Azadi Avenue Tehran Iran
| | - Patrícia Figueiredo
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Faramarz Dobakhti
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology School of Medicine Zanjan University of Medical Sciences Zanjan 45139‐56111 Iran
| | - Ramin Abiri
- Department of Microbiology School of Medicine Kermanshah University of Medical Sciences Kermanshah 67148‐69914 Iran
| | - Shiva Khorshid
- Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Jouni Hirvonen
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
25
|
Chen C, Yang X, Li SJ, Ma FJ, Yan X, Ma YN, Ma YX, Ma QH, Gao SZ, Huang XJ. Red wine-inspired tannic acid-KH561 copolymer: its adhesive properties and its application in wound healing. RSC Adv 2021; 11:5182-5191. [PMID: 35424430 PMCID: PMC8694633 DOI: 10.1039/d0ra07342c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol-gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag+ or Au3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xiao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital) Jinan 250014 China
| | - Shu-Jing Li
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Feng-Jun Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xiao Yan
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yu-Ning Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yu-Xia Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Qing-Hai Ma
- The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital) Jinan 250014 China
| | - Shu-Zhong Gao
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
26
|
Wulandari E, Namivandi-Zangeneh R, Judzewitsch PR, Budhisatria R, Soeriyadi AH, Boyer C, Wong EHH. Silk Sponges with Surface Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Erna Wulandari
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Rashin Namivandi-Zangeneh
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Peter R. Judzewitsch
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Rachel Budhisatria
- Mochtar Riady Institute of Nanotechnology (MRIN), Banten 15810, Indonesia
| | | | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
|
28
|
Fukushi K, Yamaguchi J, Shibasaki Y, Fujimori A. Tracking and Recovery of Metal Desorption from Organized Films of Polyguanamine Derivatives having Cyclic Moieties. ChemistrySelect 2020. [DOI: 10.1002/slct.202003172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Keito Fukushi
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Junto Yamaguchi
- Faculty of Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yuji Shibasaki
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering Iwate University, 4–3-5 Ueda, Morioka Iwate 020-8551 Japan
| | - Atsuhiro Fujimori
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| |
Collapse
|
29
|
Deng X, Gould M, Ali MA. Fabrication and characterisation of melt-extruded chitosan/keratin/PCL/PEG drug-eluting sutures designed for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111696. [PMID: 33545855 DOI: 10.1016/j.msec.2020.111696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Diclofenac potassium loaded sutures based upon PEG/PCL/chitosan-keratin blends were fabricated using the hot-melt extrusion technique. Polymer sutures were evaluated based on their physical, thermal and mechanical properties, while the drug-eluting sutures were evaluated for drug release properties. Lastly, the performance of the drug-loaded sutures in the contact with the human keratinocyte cell line HaCat were assessed. Results showed that the sutures extruded homogeneously at a temperature of 63 ± 1 °C providing a uniform thickness of fibres. Analysis by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that completely amorphous and miscible solid dispersions were created. Fourier transform infrared (FTIR) spectroscopy indicated that the presence of hydrogen bonds between the polymers improved material miscibility. Tensile properties of the sutures were clearly affected by the PEG, chitosan and keratin additions. The optimal formulation of tensile strength was obtained when PCL/PEG/chitosan-keratin were combined at a ratio of 80/19/1 w/w. Rapid and sustained drug release rates were achieved with the PEG/PCL/chitosan/keratin blends at various combinations. The composite of PCL/PEG/chitosan-keratin with 30 wt% of diclofenac potassium also exhibited high cell viability and wound healing rates in vitro cytotoxicity testing. The anti-inflammatory properties imparted by the PCL/PEG/chitosan/keratin/drug sutures may further the use of composite sutures for wound healing in clinical settings.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Food Science, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
30
|
Chen CK, Liao MG, Wu YL, Fang ZY, Chen JA. Preparation of Highly Swelling/Antibacterial Cross-Linked N-Maleoyl-Functional Chitosan/Polyethylene Oxide Nanofiber Meshes for Controlled Antibiotic Release. Mol Pharm 2020; 17:3461-3476. [DOI: 10.1021/acs.molpharmaceut.0c00504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Min-Gan Liao
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yi-Ling Wu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Zi-Yu Fang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
31
|
Sarkar N, Morton H, Bose S. Effects of vitamin C on osteoblast proliferation and osteosarcoma inhibition using plasma coated hydroxyapatite on titanium implants. SURFACE & COATINGS TECHNOLOGY 2020; 394:125793. [PMID: 32612317 PMCID: PMC7328859 DOI: 10.1016/j.surfcoat.2020.125793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plasma-sprayed hydroxyapatite (HAp) coated titanium (Ti) implants are being extensively used in orthopedic surgeries and post-tumor resection to repair load-bearing segmental bone defects. In this study, vitamin C, an abundantly available natural biomolecule, is loaded onto plasma-sprayed HAp-coated commercially pure titanium (cpTi) surface to evaluate its chemopreventive and osteogenic properties, suggesting its clinical significance as an alternative or adjunct therapy in the treatment for osteosarcoma bone resection. Controlled release of vitamin C from HAp coated cpTi implant is assessed by in vitro drug release study, where Korsmeyer-Peppas model was applied to understand the release kinetics. After 21 days, the implants loaded with 400 and 800 μg of vitamin C showed a cumulative release of 62.7 and 74.1% in acidic microenvironment, whereas, 50.9% and 53.1% of total vitamin C release were observed by the implants loaded with 400 and 800 μg of vitamin C in physiological pH, respectively. To observe the effects of in vitro vitamin C release on osteosarcoma and osteoblast cellular activity, MG-63 (human osteosarcoma) and hFOB (human fetal osteoblast) cells were cultured on the surface of the implant and MTT cell viability assay and FESEM were carried out at 3 and 7 days of culture. Presence of high dosages 25 mM vitamin C shows a statistically significant (p≤0.05) decrease in osteosarcoma cell viability after 3 days, while both 5 mM and 25mM vitamin C reduced cellular viability by 2.5 folds (p≤0.05) compared to the control after 7 days. Interestingly, the presence of vitamin C showed no obvious signs of cytotoxicity towards osteoblast cell-line at day 3 and day 7, as confirmed by the MTT assay. Additionally, the FESEM images depict layers of hFOB cellular morphology on the surface of the implants, suggesting excellent cytocompatibility towards the osteoblast cells. These results suggest that vitamin C loaded HAp coated cpTi implant with improved osteogenic and chemopreventive properties can be considered as a promising reconstructive option to repair the post-tumor resection defects in osteosarcoma.
Collapse
|
32
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|
33
|
MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int J Biol Macromol 2020; 153:1058-1069. [DOI: 10.1016/j.ijbiomac.2019.10.236] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023]
|
34
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Affiliation(s)
- Guopu Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
36
|
Liu S, Yu J, Li H, Wang K, Wu G, Wang B, Liu M, Zhang Y, Wang P, Zhang J, Wu J, Jing Y, Li F, Zhang M. Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers (Basel) 2020; 12:E288. [PMID: 32024179 PMCID: PMC7077375 DOI: 10.3390/polym12020288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Polylactic acid (PLA) surgical suture can be absorbed by human body. In order to avoid surgical site infections (SSIs), the drug is usually loaded on the PLA suture, and then the drug can release directly to the wound. Because the different types of wounds heal at different times, it is needed to control the drug release rate of PLA suture to consistent to the wound healing time. Two biopolymers, polyglycolide (PGA) and polycaprolactone (PCL), were selected as the carrier of ciprofloxacin (CPFX) drug, and then the CPFX-PCL/PGA was coated on the PLA suture. The degradation rate of drug-carrier can be controlled by adjusting the proportion of PCL/PGA, which can regulate the rate of CPFX drug release from PLA suture. The results show that the surface of PLA suture, coating with PCL/PGA, was very rough, which led to increased stitching resistance when we were suturing the wound. These materials, such as the PLA suture, the PCL/PGA carriers and the CPFX drug, were just physically mixed rather than chemically reacted, which was very useful for ensuring the original efficacy of CPFX drug. With the increasing of PCL in the carriers, both the breaking strength and elongation of these un-degraded sutures increased. During degradation, the breaking strength of all sutures gradually decreased, and the more PCL in the coating materials, the longer effective strength-time for the suture. With the increasing of PCL in the drug-carrier, the rate of drug releasing became lower. The drug release mechanism of CPFX-PCL/PGA was a synergistic effect of drug diffusion and PCL/PGA carrier dissolution.
Collapse
Affiliation(s)
- Shuqiang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juanjuan Yu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Huimin Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Kaiwen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Gaihong Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Bowen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Mingfang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yao Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Peng Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yifan Jing
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
37
|
Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.089] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Li J, Liu X, Zhou Z, Tan L, Wang X, Zheng Y, Han Y, Chen DF, Yeung KWK, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Wu S. Lysozyme-Assisted Photothermal Eradication of Methicillin-Resistant Staphylococcus aureus Infection and Accelerated Tissue Repair with Natural Melanosome Nanostructures. ACS NANO 2019; 13:11153-11167. [PMID: 31425647 DOI: 10.1021/acsnano.9b03982] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients often face the challenge of antibiotic-resistant bacterial infections and lengthy tissue reconstruction after surgery. Herein, human hair-melanosome derivatives (HHMs), comprising keratins and melanins, are developed using a simple "low-temperature alkali heat" method for potentially personalized therapy. The mulberry-shaped HHMs have an average width of ∼270 nm and an average length of ∼700 nm, and the negatively charged HHMs can absorb positively charged Lysozyme (Lyso) to form the HHMs-Lyso composites through electrostatic interaction. These naturally derived biodegradable nanostructures act as exogenous killers to eliminate methicillin-resistant Staphylococcus aureus (MRSA) infection with a high antibacterial efficacy (97.19 ± 2.39%) by synergistic action of photothermy and "Lyso-assisted anti-infection" in vivo. Additionally, HHMs also serve as endogenous regulators of collagen alpha chain proteins through the "protein digestion and absorption" signaling pathway to promote tissue reconstruction, which was confirmed by quantitative proteomic analysis in vivo. Notably, the 13 upregulated collagen alpha chain proteins in the extracellular matrix (ECM) after HHMs treatment demonstrated that keratin from HHMs in collagen-dependent regulatory processes serves as a notable contributor to augmented wound closure. The current paradigm of natural material-tissue interaction regulates the cell-ECM interaction by targeting cell signaling pathways to accelerate tissue repair. This work may provide insight into the protein-level pathways and the potential mechanisms involved in tissue repair.
Collapse
Affiliation(s)
- Jun Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Ziao Zhou
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering , Peking University , Beijing 100871 , China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Da-Fu Chen
- Beijing Research Institute of Traumatology and Orthopaedics, Laboratory of Bone Tissue Engineering , Beijing Jishuitan Hospital , Beijing 100035 , People's Republic of China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam , Hong Kong 999077 , China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Xianjin Yang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering , Tianjin University , Tianjin 300072 , China
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| |
Collapse
|
39
|
Xu H, Li J, Yang X, Li J, Cai J. A Novel Approach of Curcumin Loaded Chitosan/Dextran Nanocomposite for the Management of Complicated Abdominal Wound Dehiscence. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01689-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Dart A, Bhave M, Kingshott P. Antimicrobial Peptide‐Based Electrospun Fibers for Wound Healing Applications. Macromol Biosci 2019; 19:e1800488. [DOI: 10.1002/mabi.201800488] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Dart
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Mrinal Bhave
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Peter Kingshott
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| |
Collapse
|
41
|
An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm 2019; 139:1-22. [DOI: 10.1016/j.ejpb.2019.03.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
|
42
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Alvarez-Lorenzo C, Concheiro A. Smart Drug Release from Medical Devices. J Pharmacol Exp Ther 2019; 370:544-554. [DOI: 10.1124/jpet.119.257220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
|
44
|
Lima LL, Taketa TB, Beppu MM, Sousa IMDO, Foglio MA, Moraes ÂM. Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:493-504. [PMID: 30948086 DOI: 10.1016/j.msec.2019.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
Advanced wound dressings capable of interacting with lesions and changing the wound microenvironment to improve healing are promising to increase the therapeutic efficacy of this class of biomaterials. Aiming at the production of bioactive wound dressings with the ability to control the wound microenvironment, biomaterials of three different chemical compositions, but with the same architecture, were produced and compared. Electrospinning was employed to build up a biomimetic extracellular matrix (ECM) layer consisting of poly(caprolactone) (PCL), 50/50 dl-lactide/glycolide copolymer (PDLG) and poly(l-lactide) (PLLA). As a post-treatment to broaden the bioactivity of the dressings, an alginate coating was applied to sheathe and functionalize the surface of the hydrophobic electrospun wound dressings, in combination with the extract of the plant Arrabidaea chica Verlot, known for its anti-inflammatory and healing promotion properties. Wettable bioactive structures capable to interact with media simulating lesion microenvironments, with tensile strength and elongation at break ranging respectively from 155 to 273 MPa and from 0.94 to 1.39% were obtained. In simulated exudative microenvironment, water vapor transmission rate (WVTR) values around 700 g/m2/day were observed, while water vapor permeability rates (WVPR) reached about 300 g/m2/day. In simulated dehydrated microenvironment, values of WVTR around 200 g/m2/day and WVPR around 175 g/m2/day were attained.
Collapse
Affiliation(s)
- Lonetá Lauro Lima
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Thiago Bezerra Taketa
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Marisa Masumi Beppu
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Ilza Maria de Oliveira Sousa
- School of Pharmaceutical Sciences - University of Campinas (UNICAMP), Rua Cândido Portinari, 200, CEP 13083-852 Campinas, SP, Brazil
| | - Mary Ann Foglio
- School of Pharmaceutical Sciences - University of Campinas (UNICAMP), Rua Cândido Portinari, 200, CEP 13083-852 Campinas, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
45
|
Gong CP, Luo Y, Pan YY. Novel synthesized zinc oxide nanoparticles loaded alginate-chitosan biofilm to enhanced wound site activity and anti-septic abilities for the management of complicated abdominal wound dehiscence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:124-130. [DOI: 10.1016/j.jphotobiol.2019.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023]
|
46
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
47
|
Srivastava SK, Clergeaud G, Andresen TL, Boisen A. Micromotors for drug delivery in vivo: The road ahead. Adv Drug Deliv Rev 2019; 138:41-55. [PMID: 30236447 DOI: 10.1016/j.addr.2018.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 01/16/2023]
Abstract
Autonomously propelled/externally guided micromotors overcome current drug delivery challenges by providing (a) higher drug loading capacity, (b) localized delivery (less toxicity), (c) enhanced tissue penetration and (d) active maneuvering in vivo. These microscale drug delivery systems can exploit biological fluids, as well as exogenous stimuli, like light-NIR, ultrasound and magnetic fields (or a combination of these), towards propulsion/drug release. Ability of these wireless drug carriers towards localized targeting and controlled drug release, makes them a lucrative candidate for drug administration in complex microenvironments (like solid tumors or gastrointestinal tract). In this report, we discuss these microscale drug delivery systems for their therapeutic benefits under in vivo setting and provide a design-application rationale towards greater clinical significance. Also, a proof-of-concept depicting 'microbots-in-a-capsule' towards oral drug delivery has been discussed.
Collapse
Affiliation(s)
- Sarvesh Kumar Srivastava
- Center for Intelligent Drug Delivery and Sensing Using microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Gael Clergeaud
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Thomas L Andresen
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| |
Collapse
|
48
|
Follmann HD, Messias I, Queiroz MN, Araujo RA, Rubira AF, Silva R. Designing hybrid materials with multifunctional interfaces for wound dressing, electrocatalysis, and chemical separation. J Colloid Interface Sci 2019; 533:106-125. [DOI: 10.1016/j.jcis.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
|
49
|
Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl isocyanate)-based polyurethane films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:483-494. [DOI: 10.1016/j.msec.2018.07.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023]
|
50
|
Sudhir VR, Biju T, Ramesh A, Ergieg S, Fanas SA, Desai V, Mohammed AA, Ahmed MA. Effect of Hyaluronic Acid Added to Suture Material and its Relationship with Bacterial Colonization: An In vitro Study. J Int Soc Prev Community Dent 2018; 8:391-395. [PMID: 30430064 PMCID: PMC6187885 DOI: 10.4103/jispcd.jispcd_222_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Aims and Objectives: The aims of this study were to evaluate the presence of Staphylococcus aureus and Escherichia coli, in polyglycolic acid (PGA) 4-0 and silk sutures, with or without hyaluronic acid (HA) treatment. Materials and Methods: This in vitro study measured S. aureus and E. coli growth on PGA and silk sutures, through incubation in agar media for 24 h. The suture length was 10 cm and divided into three parts: A (8 h), B (16 h), and C (24 h), which were observed every 8 h, followed by suspension on a microscopic slide. This was repeated thrice. The number of S. aureus and E. coli cells was recorded and compared between the suture types. Results: The mean S. aureus colony forming units (CFUs) differed at each time point between non-HA and HA-PGA sutures (P = 0.0016), with a greater number of CFUs on non-HA-PGA. The mean S. aureus CFUs were significantly higher on non-HA silk than on HA-silk sutures (P = 0.008). There was a significant increase in E. coli CFUs on non-HA silk than on HA-silk sutures (P = 0.008). E. coli CFUs were higher on non-HA-PGA than on HA-PGA sutures (P = 0.006). We performed repeated measures two-way ANOVA (SPSS version 13.0) for comparison between group factors and time points and Posthoc analysis using independent samples t-test. Conclusions: HA reduced wicking in both PGA and silk sutures.
Collapse
Affiliation(s)
| | - Thomas Biju
- Department of Periodontics, ABSMIDS, Mangalore, Karnataka, India
| | - Amitha Ramesh
- Department of Periodontics, ABSMIDS, Mangalore, Karnataka, India
| | | | | | - Vijay Desai
- Department of Periodontics, Ajman University, Ajman, UAE
| | | | - Malaz Abdulaziz Ahmed
- Department of Dentistry, General Dentist from College of Dentistry, Ajman University, Fujairah, UAE
| |
Collapse
|