1
|
Yang J, Zhu Y, Li H, Wang K, Li D, Qi Q. Effect of robotic exoskeleton training on lower limb function, activity and participation in stroke patients: a systematic review and meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1453781. [PMID: 39193147 PMCID: PMC11347425 DOI: 10.3389/fneur.2024.1453781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Background The current lower limb robotic exoskeleton training (LRET) for treating and managing stroke patients remains a huge challenge. Comprehensive ICF analysis and informative treatment options are needed. This review aims to analyze LRET' s efficacy for stroke patients, based on ICF, and explore the impact of intervention intensities, devices, and stroke phases. Methods We searched Web of Science, PubMed, and The Cochrane Library for RCTs on LRET for stroke patients. Two authors reviewed studies, extracted data, and assessed quality and bias. Standardized protocols were used. PEDro and ROB2 were employed for quality assessment. All analyses were done with RevMan 5.4. Results Thirty-four randomized controlled trials (1,166 participants) were included. For function, LRET significantly improved motor control (MD = 1.15, 95%CI = 0.29-2.01, p = 0.009, FMA-LE), and gait parameters (MD = 0.09, 95%CI = 0.03-0.16, p = 0.004, Instrumented Gait Velocity; MD = 0.06, 95%CI = 0.02-0.09, p = 0.002, Step length; MD = 4.48, 95%CI = 0.32-8.65, p = 0.04, Cadence) compared with conventional rehabilitation. For activity, LRET significantly improved walking independence (MD = 0.25, 95%CI = 0.02-0.48, p = 0.03, FAC), Gait Velocity (MD = 0.07, 95%CI = 0.03-0.11, p = 0.001) and balance (MD = 2.34, 95%CI = 0.21-4.47, p = 0.03, BBS). For participation, social participation (MD = 0.12, 95%CI = 0.03-0.21, p = 0.01, EQ-5D) was superior to conventional rehabilitation. Based on subgroup analyses, LRET improved motor control (MD = 1.37, 95%CI = 0.47-2.27, p = 0.003, FMA-LE), gait parameters (MD = 0.08, 95%CI = 0.02-0.14, p = 0.006, Step length), Gait Velocity (MD = 0.11, 95%CI = 0.03-0.19, p = 0.005) and activities of daily living (MD = 2.77, 95%CI = 1.37-4.16, p = 0.0001, BI) for the subacute patients, while no significant improvement for the chronic patients. For exoskeleton devices, treadmill-based exoskeletons showed significant superiority for balance (MD = 4.81, 95%CI = 3.10-6.52, p < 0.00001, BBS) and activities of daily living (MD = 2.67, 95%CI = 1.25-4.09, p = 0.00002, BI), while Over-ground exoskeletons was more effective for gait parameters (MD = 0.05, 95%CI = 0.02-0.08, p = 0.0009, Step length; MD = 6.60, 95%CI = 2.06-11.15, p = 0.004, Cadence) and walking independence (MD = 0.29, 95%CI = 0.14-0.44, p = 0.0002, FAC). Depending on the training regimen, better results may be achieved with daily training intensities of 45-60 min and weekly training intensities of 3 h or more. Conclusion These findings offer insights for healthcare professionals to make effective LRET choices based on stroke patient needs though uncertainties remain. Particularly, the assessment of ICF participation levels and the design of time-intensive training deserve further study. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, Unique Identifier: CRD42024501750.
Collapse
Affiliation(s)
- Juncong Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Yongxin Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Haojie Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kun Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Dan Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Qi Qi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Elmas Bodur B, Erdoğanoğlu Y, Asena Sel S. Effects of robotic-assisted gait training on physical capacity, and quality of life among chronic stroke patients: A randomized controlled study. J Clin Neurosci 2024; 120:129-137. [PMID: 38241771 DOI: 10.1016/j.jocn.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Even though robotic therapy is becoming more commonly used in research protocols for lower limb stroke rehabilitation, there still is a significant gap between research evidence and its use in clinical practice. Therefore, the present study was designed assuming that the wearable mobile gait device training for chronic stroke patients might have different effects on functional independence when compared to training with a stationary gait device. The present study aims to examine the effects of gait training with ExoAthlet exoskeleton and Lokomat Free-D on functional independence, functional capacity, and quality of life in chronic stroke patients. METHODS The present study included 32 chronic stroke patients. Participants were randomly divided into two groups. Functional independence of patients was evaluated by using Functional Independence Measure (FIM), physical function was assessed by using the 30-second chair stand test (30-CST), functional capacity was measured by using the 6-Minute Walk Test (6MWT), and quality of life was assessed by using Short Form 36 (SF36). All participants underwent a conventional physiotherapy program for eight weeks, three sessions per week, and each session lasted 60 min. After the physiotherapy program, one group received gait training by using ExoAthlet exoskeleton (ExoAtlet 1 model/2019, Russia), while the other group received training by using Lokomat Free-D (Hocoma, Lokomat Pro Free-D model/2015, Switzerland). Participants were assessed at baseline and post-intervention. RESULTS Results achieved in this study revealed that there was a statistically significant difference between FIM, 30-CST, 6MWT, and SF36 scores before and after the treatment in both groups (p < 0.05).There was no difference in FIM, 30-CST, and 6MWT results between Exoskeleton ExoAthlet and Lokomat Free-D groups (p > 0.05). However, there was a statistically significant difference between Exoskeleton ExoAthlet and Lokomat Free-D groups in terms of SF-36 sub-parameters "vitality", "mental health", "bodily pain", and "general health perception" (p < 0.05). CONCLUSIONS This study demonstrated that the use of ExoAthlet exoskeleton and Lokomat Free-D in addition to conventional physiotherapy, was effective in improving functional independence, physical function, functional capacity, and quality of life among chronic stroke patients. Incorporation of robotic gait aids into rehabilitation for chronic stroke patients might offer significant advantages.
Collapse
Affiliation(s)
| | - Yıldız Erdoğanoğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey.
| | - Sinem Asena Sel
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
3
|
Wu L, Xu G, Wu Q. The effect of the Lokomat ® robotic-orthosis system on lower extremity rehabilitation in patients with stroke: a systematic review and meta-analysis. Front Neurol 2023; 14:1260652. [PMID: 38125828 PMCID: PMC10730677 DOI: 10.3389/fneur.2023.1260652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Background The Lokomat® is a device utilized for gait training in post-stroke patients. Through a systematic review, the objective was to determine whether robot-assisted gait training with the Lokomat® is more effective in enhancing lower extremity rehabilitation in patients with stroke in comparison to conventional physical therapy (CPT). Methods In this study, a systematic search was conducted in various databases, including CINAHL, MEDLINE, PubMed, Embase, Cochrane Library, Scopus, Web of Science, and Physiotherapy Evidence Database (PEDro), as well as bibliographies of previous meta-analyses, to identify all randomized controlled trials that investigated the use of Lokomat® devices in adult stroke patients. The study aimed to derive pooled estimates of standardized mean differences for six outcomes, namely, Fugl-Meyer Assessment lower-extremity subscale (FMA-LE), Berg Balance Scale (BBS), gait speed, functional ambulation category scale (FAC), timed up and go (TUG), and functional independence measure (FIM), through random effects meta-analyses. Results The review analyzed 21 studies with a total of 709 participants and found that the use of Lokomat® in stroke patients resulted in favorable outcomes for the recovery of balance as measured by the BBS (mean difference = 2.71, 95% CI 1.39 to 4.03; p < 0.0001). However, the FAC showed that Lokomat® was less effective than the CPT group (mean difference = -0.28, 95% CI -0.45 to 0.11, P = 0.001). There were no significant differences in FMA-LE (mean difference = 1.27, 95% CI -0.88 to 3.42, P = 0.25), gait speed (mean difference = 0.02, 95% CI -0.03 to 0.07, P = 0.44), TUG (mean difference = -0.12, 95% CI -0.71 to 0.46, P = 0.68), or FIM (mean difference = 2.12, 95% CI -2.92 to 7.16, P = 0.41) between the Lokomat® and CPT groups for stroke patients. Conclusion Our results indicate that, with the exception of more notable improvements in balance, robot-assisted gait training utilizing the Lokomat® was not superior to CPT based on the current literature. Considering its ability to reduce therapists' work intensity and burden, the way in which Lokomat® is applied should be strengthened, or future randomized controlled trial studies should use more sensitive assessment criteria.
Collapse
Affiliation(s)
- Lina Wu
- Department of Rehabilitation, Foresea Life Insurance Nanning Hospital, Nanning, Guangxi Province, China
| | | | | |
Collapse
|
4
|
Yoo SD, Lee HH. The Effect of Robot-Assisted Training on Arm Function, Walking, Balance, and Activities of Daily Living After Stroke: A Systematic Review and Meta-Analysis. BRAIN & NEUROREHABILITATION 2023; 16:e24. [PMID: 38047093 PMCID: PMC10689857 DOI: 10.12786/bn.2023.16.e24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 12/05/2023] Open
Abstract
This meta-analysis aimed to compare the effects of robot-assisted training (RAT) with those of conventional therapy (CT), considering the potential sources of heterogeneity in the previous studies. We searched three international electronic databases (MEDLINE, Embase, and the Cochrane Library) to identify relevant studies. Risk of bias assessment was performed using the Cochrane's Risk of Bias 1.0 tool. The certainty of the evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations method. The meta-analyses for each outcome of the respective domains were performed using 24 randomized controlled trials (RCTs) on robot-assisted arm training (RAAT) for arm function, 7 RCTs on RAAT for activities of daily living (ADL), 12 RCTs on robot-assisted gait training (RAGT) for balance, 6 RCTs on RAGT for walking, and 7 RCTs on RAGT for ADL. The random-effects model for the meta-analysis revealed that RAAT has significant superiority over CT in improving arm function, and ADL. We also showed that RAGT has significant superiority over CT in improving balance. Our study provides high-level evidence for the superiority of RAT over CT in terms of functional recovery after stroke. Therefore, physicians should consider RAT as a therapeutic option for facilitating functional recovery after stroke.
Collapse
Affiliation(s)
- Seung Don Yoo
- Department of Rehabilitation Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Hosoi Y, Kamimoto T, Sakai K, Yamada M, Kawakami M. Estimation of minimal detectable change in the 10-meter walking test for patients with stroke: a study stratified by gait speed. Front Neurol 2023; 14:1219505. [PMID: 37538254 PMCID: PMC10395330 DOI: 10.3389/fneur.2023.1219505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Objective This study aimed to classify and calculate the minimal detectable changes (MDC) in gait time and gait speed in a 10-meter walking test (10MWT) in patients with stroke classified according to their gait speed. Methods The participants were 84 patients with stroke. Their gait times were measured twice each at their comfortable gait speed (CGS) and maximum gait speed (MGS) on a 10-meter straight track, and gait speed was calculated using gait time. Participants were assigned to three speed groups based on their CGS: low-speed (<0.4 m/s; n = 19); moderate-speed (0.4-0.8 m/s; n = 29); and high-speed (>0.8 m/s; n = 36). For each group, first and second retest reliability and MDC of CGS and MGS were calculated using gait time and gait speed in the 10MWT. Results MDCs in the 10MWT at CGS were: low-speed group, gait time 5.25 s, gait speed 0.05 m/s; moderate-speed group, gait time 2.83 s, gait speed 0.11 m/s; and high-speed group, gait time 1.58 s, gait speed 0.21 m/s. MDCs in the 10MWT at MGS were: low-speed group, gait time 7.26 s, gait speed 0.04 m/s; moderate-speed group, gait time 2.48 s, gait speed 0.12 m/s; and high-speed group, gait time 1.28 s, gait speed 0.19 m/s. Conclusion Since the MDC of gait speed and gait time differ depending on the participant's gait speed, it is necessary to interpret the results according to the participant's gait speed when judging the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- Yuichiro Hosoi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Kamimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Sakai
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masanari Yamada
- Department of Rehabilitation, Ukai Rehabilitation Hospital, Aichi, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Zhu YH, Ruan M, Yun RS, Zhong YX, Zhang YX, Wang YJ, Sun YL, Cui JW. Is Leg-Driven Treadmill-Based Exoskeleton Robot Training Beneficial to Poststroke Patients: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil 2023; 102:331-339. [PMID: 36075885 DOI: 10.1097/phm.0000000000002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study is to systematically review the effects of leg-driven treadmill-based exoskeleton robot training on balance and walking ability in poststroke patients. DESIGN The PubMed, Cochrane Library, Embase, Web of Science, Medline, CNKI, VIP, and Wanfang databases were searched from inception to August 2021. The literature quality was evaluated using Cochrane Handbook. Primary outcomes include the Functional Ambulation Category Scale and Berg Balance Scale, and secondary outcomes include the 10 meter walk test, 6 minute walk test, and gait assessment cadence were analyzed. RESULTS Seventeen randomized controlled trials were included in the systematic review, 15 studies in meta-analysis. Primary outcomes showed no significant difference in the Functional Ambulation Category Scale score; subgroup with the exoskeleton robot + conventional therapy of the Berg Balance Scale score was significantly increased; secondary outcomes showed no significance in 6 minute walk test or 10 meter walk test. The cadence score increased for the subgroup with an onset of more than 6 mos in the treatment group. The control group performed better than the subgroup with an onset of less than 6 mos. CONCLUSIONS Leg-driven treadmill-based exoskeleton robot training can improve balance function in poststroke patients and is beneficial for patients with an onset of greater than 6 mos. However, there is no evidence to support the efficacy of walking ability.
Collapse
Affiliation(s)
- Ying-Hui Zhu
- From the School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y-HZ, MR, R-SY, Y-X Zhong, Y-X Zhang, Y-JW, J-WC); and Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y-JW, Y-LS)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yakşi E, Bahadır ES, Yaşar MF, Alışık T, Kurul R, Demirel A. The effect of robot-assisted gait training frequency on walking, functional recovery, and quality of life in patients with stroke. Acta Neurol Belg 2023; 123:583-590. [PMID: 36717532 DOI: 10.1007/s13760-023-02194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
AIM This study aims to investigate the effects of robot-assisted gait training (RAGT) frequency on walking, functional recovery, QoL and mood. METHODS Sixty patients aged 50-75, diagnosed with post-stroke hemiplegia were entered into the retrospective analysis. Participants who scored maximum 3 on the Modified Rankin Scale and were diagnosed with moderate stroke according to The NIH Stroke Scale were included in the study. The participants in group 1 (G1) received only conventional treatment (CT), in group 2 (G2) participants received one session of RAGT per week in addition to the CT program, and group 3 (G3) received two sessions of RAGT per week in addition to the CT program. 6-min walk test (6-MWT), Barthel Index (BI), Stroke-Specific Quality of Life Scale (SSQoL), and Beck Depression Inventory (BDI) were recorded. RESULTS Median change in SSQoL of G3 was significantly higher from median change of G1 (p < 0.05), and median change in BDI of G3 was significantly lower than median change of G1 (p < 0.05). Median change in BDI of G3 was also significantly lower from change of G2 (p < 0.05). CONCLUSION Two weekly sessions of RAGT in addition to CT exhibit positive effects on QoL and mood but no additional contribution to functional status.
Collapse
Affiliation(s)
- Elif Yakşi
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey.
| | - Elif Selim Bahadır
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Mustafa Fatih Yaşar
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Tuğba Alışık
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Ramazan Kurul
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Adnan Demirel
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| |
Collapse
|
8
|
Muacevic A, Adler JR, Musa KI, Hanafi MH, Suliman MA. Comparison of the Modified Barthel Index (MBI) Score Trends Among Workers With Stroke Receiving Robotic and Conventional Rehabilitation Therapy. Cureus 2023; 15:e34207. [PMID: 36843743 PMCID: PMC9957641 DOI: 10.7759/cureus.34207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Stroke is one of the top causes of adult-acquired disabilities and the fifth most prominent cause of death worldwide. Working-age populations contribute about 40% of the stroke cases which occur annually in Malaysia. The modified Barthel Index (MBI) score has been used for self-care assessment to determine if stroke patients can meet their fundamental needs. The study was designed to compare the trend of MBI scores of workers who had a stroke and underwent robotic rehabilitation therapy to those who had conventional therapy. METHODOLOGY A cohort study was conducted among workers who had a stroke in northeastern Malaysia. They were assigned either to undergo robotic or conventional rehabilitation therapy. The robotic therapy is performed three times per day for four weeks. Meanwhile, conventional therapy involved walking exercises five days per week for two weeks. Data were collected for both therapies on the admission, at week 2 and week 4. The MBI, modified Rankin Scale (mRS) and Hospital Anxiety and Depression Scale (HADS) trends were examined one month after the therapies. The R (version 4.2.1) (R Core Team, Vienna, Austria) and RStudio (R Studio PBC, Boston, USA) were applied to perform the descriptive analyses on the respective platforms. Repeated measures of analysis of variance were performed to evaluate the outcomes trend and the effectiveness of the two therapies was also compared. RESULTS A total of 54 stroke patients participated in this study of which 30 (55.6%) of them received robotic therapy. The age of the subjects ranged from 24 to 59 years and the majority (74.1%) were male. Stroke outcomes were evaluated using mRS, HADS, and MBI scores. Except for their age, the individuals' characteristics did not significantly differ between those undergoing conventional therapy and those receiving robotic therapy. After four weeks, it was found that the good mRS had increased, whereas the poor mRS had decreased. Comparing the therapy groups, the MBI scores improved significantly with time, although there were no significant differences between the therapy groups. However, the interaction term between the treatment group (p=0.031) and improvements over time was significant (p=0.001), indicating that robotic was more effective than conventional therapy in improving the MBI scores. For HADS score, there was a significant difference between the therapy groups (p=0.001), with those receiving robotic therapy having higher HADS score. CONCLUSION Functional recovery occurs in acute stroke patients when the mean Barthel Index score rises from the baseline (on admission) to week 2 (during therapy) and subsequently on discharge (week 4). Based on these findings, it appears that there was not one therapy superior to the other; nevertheless, robotic therapy may be better tolerated and more effective in certain individuals.
Collapse
|
9
|
Alatawi SF. A Comparison of Three Common Rehabilitation Interventions Used to Improve Cardiovascular Fitness after Stroke: An Overview of the Literature. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4350851. [PMID: 37082188 PMCID: PMC10113054 DOI: 10.1155/2023/4350851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 04/22/2023]
Abstract
Background One of the most frequent consequences of stroke is a reduction in heart function. After a stroke, one of the main aims of physiotherapy practice is to improve cardiovascular fitness (CVF). This paper is aimed at identifying the best effective intervention of improving the cardiovascular fitness (CVF) after stroke while focusing on body weight-supported treadmill training (BWSTT), over gait training (OGT), and therapeutic exercise. Methods Different electronic databases were searched until July 2022. Controlled randomized trials examining the effects of BWSTT, OGT, and therapeutic exercise to improve CVF on an ambulatory person with stroke, written in English and reporting cardiovascular fitness or at least one of its indicators, such as peak oxygen consumption (VO2), gait speed, gait energy expenditure, and functional independence measure for locomotion (FIM-L), were included. The quality of the methodology was evaluated using the Physiotherapy Evidence Database (PEDro) scale. Results The research yielded 3854 relevant studies, of which 22 met the eligibility criteria. The primary indicators of the CVF, VO2 and energy expenditure, were used to examine the CVF in only three studies, while the rest used other indicators of the CVF. There was a lack of sufficient evidence to establish the superiority of one intervention over another. However, it appears that utilizing BWSTT to improve the CVF after stroke is effective. Conclusion Physiotherapy has the potential to enhance the CVF of stroke patients. However, effective interventions and long-term effects remain debatable.
Collapse
Affiliation(s)
- Salem F. Alatawi
- Department of Physical Therapy, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk City, Saudi Arabia
| |
Collapse
|
10
|
Mazzucchelli M, Mazzoleni D, Campanini I, Merlo A, Mazzoli D, Melegari C, Colombo V, Cerulli S, Piscitelli D, Perin C, Andrenelli E, Bizzarini E, Calabro RS, Carmignano SM, Cassio A, Chisari C, Dalise S, Fundaro C, Gazzotti V, Stampacchia G, Boldrini P, Mazzoleni S, Posteraro F, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Bonaiuti D. Evidence-based improvement of gait in post-stroke patients following robot-assisted training: A systematic review. NeuroRehabilitation 2022; 51:595-608. [PMID: 36502342 DOI: 10.3233/nre-220024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recovery of walking after stroke is a priority goal for recovering autonomy. In the last years robotic systems employed for Robotic Assisted Gait Training (RAGT) were developed. However, literature and clinical practice did not offer standardized RAGT protocol or pattern of evaluation scales. OBJECTIVE This systematic review aimed to summarize the available evidence on the use of RAGT in post-stroke, following the CICERONE Consensus indications. METHODS The literature search was conducted on PubMed, Cochrane Library and PEDro, including studies with the following criteria: 1) adult post-stroke survivors with gait disability in acute/subacute/chronic phase; 2) RAGT as intervention; 3) any comparators; 4) outcome regarding impairment, activity, and participation; 5) both primary studies and reviews. RESULTS Sixty-one articles were selected. Data about characteristics of patients, level of disability, robotic devices used, RAGT protocols, outcome measures, and level of evidence were extracted. CONCLUSION It is possible to identify robotic devices that are more suitable for specific phase disease and level of disability, but we identified significant variability in dose and protocols. RAGT as an add-on treatment seemed to be prevalent. Further studies are needed to investigate the outcomes achieved as a function of RAGT doses delivered.
Collapse
Affiliation(s)
| | - Daniele Mazzoleni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Isabella Campanini
- Department of Neuromotor and Rehabilitation, LAM-Motion Analysis Laboratory, San Sebastiano Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Merlo
- Department of Neuromotor and Rehabilitation, LAM-Motion Analysis Laboratory, San Sebastiano Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | - Davide Mazzoli
- Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | | | | | - Simona Cerulli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Cecilia Perin
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,San Donato Group, Istituti Clinici Zucchi, Monza, Italy
| | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Emiliana Bizzarini
- Department of Rehabilitation Medicine, Spinal Cord Unit, Gervasutta Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | | | | | - Anna Cassio
- Spinal Cord Unit and Intensive Rehabilitation Medicine, Ospedale di Fiorenzuola d'Arda, AUSL Piacenza, Piacenza, Italy
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | - Stefania Dalise
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | - Cira Fundaro
- Neurophysiopathology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Montescano, Pavia, Italy
| | - Valeria Gazzotti
- Centro Protesi Vigorso di Budrio, Istituto Nazionale Assicurazione Infortuni sul Lavoro (INAIL), Bologna, Italy
| | | | - Paolo Boldrini
- Italian Society of Physical Medicine and Rehabilitation (SIMFER), Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital - AUSL12, Viareggio, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (FAIP Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- Rehabilitation Unit, ULSS (Local Health Authority) Euganea, Camposampiero Hospital, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | | | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | |
Collapse
|
11
|
Kolářová B, Šaňák D, Hluštík P, Kolář P. Randomized Controlled Trial of Robot-Assisted Gait Training versus Therapist-Assisted Treadmill Gait Training as Add-on Therapy in Early Subacute Stroke Patients: The GAITFAST Study Protocol. Brain Sci 2022; 12:1661. [PMID: 36552120 PMCID: PMC9775673 DOI: 10.3390/brainsci12121661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The GAITFAST study (gait recovery in patients after acute ischemic stroke) aims to compare the effects of treadmill-based robot-assisted gait training (RTGT) and therapist-assisted treadmill gait training (TTGT) added to conventional physical therapy in first-ever ischemic stroke patients. GAITFAST (Clinicaltrials.gov identifier: NCT04824482) was designed as a single-blind single-center prospective randomized clinical trial with two parallel groups and a primary endpoint of gait speed recovery up to 6 months after ischemic stroke. A total of 120 eligible and enrolled participants will be randomly allocated (1:1) in TTGT or RTGT. All enrolled patients will undergo a 2-week intensive inpatient rehabilitation including TTGT or RTGT followed by four clinical assessments (at the beginning of inpatient rehabilitation 8-15 days after stroke onset, after 2 weeks, and 3 and 6 months after the first assessment). Every clinical assessment will include the assessment of gait speed and walking dependency, fMRI activation measures, neurological and sensorimotor impairments, and gait biomechanics. In a random selection (1:2) of the 120 enrolled patients, multimodal magnetic resonance imaging (MRI) data will be acquired and analyzed. This study will provide insight into the mechanisms behind poststroke gait behavioral changes resulting from intensive rehabilitation including assisted gait training (RTGT or TTGT) in early subacute IS patients.
Collapse
Affiliation(s)
- Barbora Kolářová
- Department of Rehabilitation, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Daniel Šaňák
- Comprehensive Stroke Centre, Department of Neurology, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Petr Kolář
- Department of Rehabilitation, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
12
|
Jiae K, Chun MH, Lee J, Kim JW, Lee JY. Intensity control of robot-assisted gait training based on biometric data: Preliminary study. Medicine (Baltimore) 2022; 101:e30818. [PMID: 36197213 PMCID: PMC9509161 DOI: 10.1097/md.0000000000030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This study is aimed to compare the effect of robot-assisted gait training when the intensity is controlled using patients' biometric data to when controlled by therapist's subjective judgment. DESIGN This is non-blinded, prospective, randomized controlled study. Patients were randomly assigned to one of two groups. In biometric data control group, exercise intensity was controlled through the patient's heart rate or rating of perceived exertion (RPE). The intensity was raised to the next level when the patient's heart rate reserve was less than 40 percent or the RPE was less than 12 points. The exercise intensity of the therapist control group was adjusted according to the judgement of a therapist. All patients were instructed to perform robot (Morning Walk®)-assisted 20-minute gait training session five times a week during 3 weeks. The primary outcome was functional ambulation category (FAC). The secondary outcomes were modified Barthel index (MBI), Berg balance scale (BBS), timed up and go test (TUG) and 10-meter walk test (10MWT) The outcomes were evaluated at baseline and after 3-week gait training. RESULTS A total of 55 patients with stroke were enrolled. After robotic rehabilitation, the primary outcome, FAC improved significantly (P < .05) in both groups. Also, secondary outcomes, including MBI, BBS, TUG, 10MWT, showed significant improvement (P < .05) in all groups. In addition, when comparing the functional change from baseline to week 3 between the two groups, there was no statistically significant difference in FAC (P > .05). The difference of baseline and week 3 of secondary outcome measure, MBI, BBS, TUG, 10MWT, showed no significant difference (P > .05). CONCLUSION In conclusion, when the robot intensity was adjusted using the patient's heart rate or RPE, the treatment effect has no significant difference to when adjusting the intensity according to the know-how of the therapist.
Collapse
Affiliation(s)
- Kim Jiae
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
- *Correspondence: Min Ho Chun, Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea (e-mail: )
| | - Junekyung Lee
- Department of Rehabilitation Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jun Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Ji Yeon Lee
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| |
Collapse
|
13
|
Xie L, Yoon BH, Park C, You J(SH. Optimal Intervention Timing for Robotic-Assisted Gait Training in Hemiplegic Stroke. Brain Sci 2022; 12:brainsci12081058. [PMID: 36009121 PMCID: PMC9405763 DOI: 10.3390/brainsci12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study was designed to determine the best intervention time (acute, subacute, and chronic stages) for Walkbot robot-assisted gait training (RAGT) rehabilitation to improve clinical outcomes, including sensorimotor function, balance, cognition, and activities of daily living, in hemiparetic stroke patients. Thirty-six stroke survivors (acute stage group (ASG), n = 11; subacute stage group (SSG), n = 15; chronic stage group (CSG), n = 10) consistently received Walkbot RAGT for 30 min/session, thrice a week, for 4 weeks. Six clinical outcome variables, including the Fugl–Meyer Assessment (FMA), Berg Balance Scale (BBS), Trunk Impairment Scale (TIS), Modified Barthel Index (MBI), Modified Ashworth Scale (MAS), and Mini-Mental State Examination, were examined before and after the intervention. Significant differences in the FMA, BBS, TIS, and MBI were observed between the ASG and the SSG or CSG. A significant time effect was observed for all variables, except for the MAS, in the ASG and SSG, whereas significant time effects were noted for the FMA, BBS, and TIS in the CSG. Overall, Walkbot RAGT was more favorable for acute stroke patients than for those with subacute or chronic stroke. This provides the first clinical evidence for the optimal intervention timing for RAGT in stroke.
Collapse
Affiliation(s)
- Lingchao Xie
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Bu Hyun Yoon
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Chanhee Park
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Joshua (Sung) H. You
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
- Correspondence: ; Tel.: +82-33-760-2476; Fax: +82-33-760-2496
| |
Collapse
|
14
|
Adjustable Parameters and the Effectiveness of Adjunct Robot-Assisted Gait Training in Individuals with Chronic Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138186. [PMID: 35805845 PMCID: PMC9265951 DOI: 10.3390/ijerph19138186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023]
Abstract
The aims of this study were (1) to compare the effect of robot-assisted gait orthosis (RAGO) plus conventional physiotherapy with the effect of conventional therapy alone on functional outcomes, including balance, walking ability, muscle strength, daily activity, and cognition, in chronic stroke patients, and (2) to determine the association of adjustable parameters of RAGO on functional outcomes. Adjustable parameters of RAGO included guidance force, treadmill speed, and body-weight support. This retrospective cohort study enrolled 32 patients with chronic stroke. Of these, 16 patients received RAGO plus conventional physiotherapy (RAGO group), and 16 patients received conventional physiotherapy alone (control group). Balance was assessed using the Berg Balance Scale, walking ability using the Functional Ambulation Category, muscle strength using the Motricity Index, daily activity using the Barthel Index, and cognition using the Mini-Mental State Examination. The scores were assessed before and after training. The Mini–Mental State Examination and the Berg Balance Scale increased significantly in both groups, whereas improvements in the Motricity Index and the Barthel Index were only observed in the RAGO group after intervention. During RAGO training, reducing guidance force and body-weight support assistance was associated with improvements in the Barthel Index, whereas higher treadmill walking speed was associated with improvements in the Berg Balance Scale. Our study found that RAGO combination therapy resulted in improvements in more functional outcomes than did conventional training alone. The adjustable parameters of the RAGO training were partly associated with training outcomes.
Collapse
|
15
|
George Hornby T. Rethinking the tools in the toolbox. J Neuroeng Rehabil 2022; 19:61. [PMID: 35725474 PMCID: PMC9210722 DOI: 10.1186/s12984-022-01041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
The commentary by Dr. Labruyere on the article by Kuo et al. (J Neuroeng Rehabil. 2021; 18:174) posits that randomized trials evaluating the comparative efficacy of robotic devices for patients with neurological injury may not be needed. The primary argument is that researchers and clinicians do not know how to optimize training parameters to maximize the benefits of this therapy, and studies vary in how they deliver robotic-assisted training. While I concur with the suggestion that additional trials using robotic devices as therapeutic tools are not warranted, an alternative hypothesis is that future studies will yield similar equivocal results regardless of the training parameters used. Attempts are made to detail arguments supporting this premise, including the notion that the original rationale for providing robotic-assisted walking training, particularly with exoskeletal devices, was flawed and that the design of some of the more commonly used devices places inherent limitations on the ability to maximize neuromuscular demands during training. While these devices arrived nearly 20 years ago amid substantial enthusiasm, we have since learned valuable lessons from robotic-assisted and other rehabilitation studies on some of the critical parameters that influence neuromuscular and cardiovascular activity during locomotor training, and different strategies are now needed to optimize rehabilitation outcomes.
Collapse
Affiliation(s)
- T George Hornby
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, 4141 Shore Drive, Indianapolis, IN, 46254, USA. .,Rehabilitation Hospital of Indiana, Indianapolis, IN, USA. .,Departments of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Lissom LO, Lamberti N, Lavezzi S, Basaglia N, Manfredini F, Straudi S. Is robot-assisted gait training intensity a determinant of functional recovery early after stroke? A pragmatic observational study of clinical care. Int J Rehabil Res 2022; 45:189-194. [PMID: 35131979 DOI: 10.1097/mrr.0000000000000518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gait rehabilitation is a critical factor in functional recovery after a stroke. The aim of this pragmatic observational study was to identify the optimal dose and timing of robot-assisted gait training (RAGT) that can lead to a favourable outcome in a sample of subacute stroke survivors. Subacute patients with stroke who underwent a RAGT within a multidisciplinary rehabilitation program were enrolled. A set of clinical (i.e. age, type of stroke and time since stroke) and rehabilitation stay outcomes (length of stay and RAGT number of sessions) were recorded to evaluate their impact on functional outcome measures by functional independence measure (FIM) or functional ambulation category (FAC). We included 236 patients (62.73 ± 11.82 year old); 38.44% were females, and 59.32% were ischaemic stroke patients. Patients that received at least 14 RAGT sessions, had 15.83% more chance to be responders compared to those that receive less sessions (P = 0.006). Similarly, younger patients (≤60 years) were more prone to be responders (+15.1%). Lastly, an early rehabilitation (<6 weeks) was found to be more efficient (+21.09%) in determining responsiveness (P < 0.001). Becoming newly independent for gait, that refers to a FAC score ≥4, was related with age and RAGT sessions (P = 0.001). In conclusion, a younger age (≤60 years), an early rehabilitation (<6 weeks since stroke) and a higher RAGT dose (at least 14 sessions) were related to a favourable outcome in patients with subacute stroke.
Collapse
Affiliation(s)
- Luc Oscar Lissom
- Department of Neuroscience and Rehabilitation, University of Ferrara, Doctoral Program in Translational Neurosciences and Neurotechnologies
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, University of Ferrara
| | - Susanna Lavezzi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Nino Basaglia
- Department of Neuroscience and Rehabilitation, University of Ferrara
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, University of Ferrara
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
17
|
Pilkar R, Veerubhotla A, Ibironke O, Ehrenberg N. A Novel Core Strengthening Intervention for Improving Trunk Function, Balance and Mobility after Stroke. Brain Sci 2022; 12:brainsci12050668. [PMID: 35625054 PMCID: PMC9139817 DOI: 10.3390/brainsci12050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/07/2022] Open
Abstract
This paper a novel core-strengthening intervention (CSI) delivered using the AllCore360°, a device that targets trunk muscles through a systematic, high-intensity rotating-plank exercise. Three individuals (age: 61.7 ± 3.2 years; range: 58–64 years) with post-stroke hemiplegia participated in 12-sessions of the CSI. The participants completed up to 142 rotating planks at inclination angles (IAs) that ranged from 40° to 65°, over 12 sessions. The interventional effects on the functional outcomes of trunk performance, balance and mobility were assessed using the Trunk Impairment Scale (TIS), the Berg Balance Scale (BBS), the Timed-Up and Go (TUG) test, the 10-m walk test (10MWT), and the 6-min walk test (6MWT). Postural outcomes were assessed using the center of pressure (CoP) data recorded during quiet standing on a balance platform, and neuromuscular outcomes were assessed using electromyography (EMG) during AllCore360° rotations. All participants completed the CSI (minimum of 120 rotations), demonstrating the feasibility of the CSI in chronic stroke. The CoP data suggested improved lateral control of posture during standing across participants (averaging an over 30% reduction in lateral sway), while the EMG data revealed the ability of the CSI to systematically modulate trunk muscle responses. In summary, the current investigation presents the feasibility of a novel delivery method for core strengthening to maximize rehabilitation outcomes in the chronic phase of stroke.
Collapse
Affiliation(s)
- Rakesh Pilkar
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ 07052, USA; (O.I.); (N.E.)
- ActiGraph, Pensacola, FL 32502, USA
- Correspondence: ; Tel.: +1-973-324-3545
| | - Akhila Veerubhotla
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Oluwaseun Ibironke
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ 07052, USA; (O.I.); (N.E.)
| | - Naphtaly Ehrenberg
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ 07052, USA; (O.I.); (N.E.)
| |
Collapse
|
18
|
Choi W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105814. [PMID: 35627346 PMCID: PMC9141724 DOI: 10.3390/ijerph19105814] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
This study investigated the effects of robot-assisted gait training with body weight support on gait and balance in stroke patients. The study participants comprised 24 patients diagnosed with stroke. Patients were randomly assigned to four groups of six: robot A, B, C, and non-robot. The body weight support (BWS) for the harness of the robot was set to 30% of the patient’s body weight in robot group A, 50% in robot group B, and 70% in robot group C. All experimental groups received robot-assisted gait training and general physical therapy. The non-robot group underwent gait training using a p-bar, a treadmill, and general physical therapy. The intervention was performed for 30 min a day, five times a week, for 6 weeks. All participants received the intervention after the pre-test. A post-test was performed after all of the interventions were completed. Gait was measured using a 10 m Walking test (10MWT) and the timed up and go (TUG) test. Balance was assessed using the Berg Balance Scale (BBS). Robot groups A, B, and C showed significantly better 10MWT results than did the non-robot group (p < 0.5). TUG was significantly shorter in robot groups A, B, and C than in the non-robot group (p < 0.5). The BBS scores for robot group A improved significantly more than did those for robot groups B and C and the non-robot group (p < 0.5), indicating that robot-assisted gait training with body weight support effectively improved the gait of stroke patients.
Collapse
Affiliation(s)
- Wonho Choi
- Department of Physical Therapy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
19
|
van Dellen F, Labruyère R. Settings matter: a scoping review on parameters in robot-assisted gait therapy identifies the importance of reporting standards. J Neuroeng Rehabil 2022; 19:40. [PMID: 35459246 PMCID: PMC9034544 DOI: 10.1186/s12984-022-01017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Lokomat therapy for gait rehabilitation has become increasingly popular. Most evidence suggests that Lokomat therapy is equally effective as but not superior to standard therapy approaches. One reason might be that the Lokomat parameters to personalize therapy, such as gait speed, body weight support and Guidance Force, are not optimally used. However, there is little evidence available about the influence of Lokomat parameters on the effectiveness of the therapy. Nevertheless, an appropriate reporting of the applied therapy parameters is key to the successful clinical transfer of study results. The aim of this scoping review was therefore to evaluate how the currently available clinical studies report Lokomat parameter settings and map the current literature on Lokomat therapy parameters. Methods and results A systematic literature search was performed in three databases: Pubmed, Scopus and Embase. All primary research articles performing therapy with the Lokomat in neurologic populations in English or German were included. The quality of reporting of all clinical studies was assessed with a framework developed for this particular purpose. We identified 208 studies investigating Lokomat therapy in patients with neurologic diseases. The reporting quality was generally poor. Less than a third of the studies indicate which parameter settings have been applied. The usability of the reporting for a clinical transfer of promising results is therefore limited. Conclusion Although the currently available evidence on Lokomat parameters suggests that therapy parameters might have an influence on the effectiveness, there is currently not enough evidence available to provide detailed recommendations. Nevertheless, clinicians should pay close attention to the reported therapy parameters when translating research findings to their own clinical practice. To this end, we propose that the quality of reporting should be improved and we provide a reporting framework for authors as a quality control before submitting a Lokomat-related article. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01017-3.
Collapse
Affiliation(s)
- Florian van Dellen
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland. .,Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland. .,Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| | - Rob Labruyère
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
20
|
Yoon BH, Park C, You J(SH. Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function. Healthcare (Basel) 2022; 10:691. [PMID: 35455868 PMCID: PMC9025070 DOI: 10.3390/healthcare10040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023] Open
Abstract
Patients with hemiparetic stroke undergo direct, labor-intensive hands-on conventional physical therapy to improve sensorimotor function, spasticity, balance, trunk stability, and activities of daily living (ADLs). Currently, direct, intensive hands-on therapeutic modalities have increased concerns during the coronavirus (COVID-19) global pandemic. We developed an innovative Walkbot to mitigate the issues surrounding conventional hands-on physical therapy. We aimed to compare the effects of minimal-contact robotic rehabilitation (MRR) and full-contact conventional rehabilitation (FCR) on static and dynamic balance, trunk stability, ADLs, spasticity, and cognition changes in patients with hemiparetic stroke. A total of 64 patients with hemiparetic stroke (mean age = 66.38 ± 13.17; 27 women) underwent either MRR or FCR three times/week for 6 weeks. Clinical outcome measurements included the Trunk Impairment Scale (TIS), the Berg Balance Scale (BBS), the modified Ashworth Scale (MAS), the Fugl—Meyer Assessment (FMA), and the modified Barthel Index (MBI) scores. A 2 × 2 repeated analysis of variance (ANOVA) was performed, and an independent t-test was used to determine statistical differences in the physiotherapists’ work efficiency and COVID-19 transmission risk. The ANOVA showed that MRR had effects superior to those of FCR on the TIS, the BBS, the FMA, and the MBI (p < 0.05), but not on the MAS (p = 0.230). MRR showed a greater decrease on the physiotherapist’s work efficiency and COVID-19 transmission risk (p < 0.05). Our results provide clinical evidence that robot-assisted locomotor training helps maximize the recovery of sensorimotor function, abnormal synergy, balance, ADLs, and trunk stability, and facilitates a safer environment and less labor demand than conventional stroke rehabilitation.
Collapse
Affiliation(s)
- Bu Hyun Yoon
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (B.H.Y.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Chanhee Park
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (B.H.Y.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Joshua (Sung) Hyun You
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (B.H.Y.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
21
|
Rahman Z, Murray NWG, Sala-Padró J, Bartley M, Dexter M, Fung VSC, Mahant N, Bleasel AF, Wong CH. Investigating the Precise Localization of the Grasping Action in the Mid-Cingulate Cortex and Future Directions. Front Hum Neurosci 2022; 16:815749. [PMID: 35280209 PMCID: PMC8909638 DOI: 10.3389/fnhum.2022.815749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To prospectively study the cingulate cortex for the localization and role of the grasping action in humans during electrical stimulation of depth electrodes. Methods All the patients (n = 23) with intractable focal epilepsy and a depth electrode stereotactically placed in the cingulate cortex, as part of their pre-surgical epilepsy evaluation from 2015 to 2017, were included. Cortical stimulation was performed and examined for grasping actions. Post-implantation volumetric T1 MRIs were co-registered to determine the exact electrode position. Results Five patients (male: female 4:1; median age 31) exhibited contralateral grasping actions during electrical stimulation. All patients had electrodes implanted in the ventral bank of the right cingulate sulcus adjacent to the vertical anterior commissure (VAC) line. Stimulation of other electrodes in adjacent regions did not elicit grasping. Conclusion Grasping action elicited from a localized region in the mid-cingulate cortex (MCC) directly supports the concept of the cingulate cortex being crucially involved in the grasping network. This opens an opportunity to explore this region with deep brain stimulation as a motor neuromodulation target for treatment in specific movement disorders or neurorehabilitation.
Collapse
Affiliation(s)
- Zebunnessa Rahman
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Zebunnessa Rahman,
| | | | | | - Melissa Bartley
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Mark Dexter
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Victor S. C. Fung
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Neil Mahant
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Andrew Fabian Bleasel
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Chong H. Wong
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Calafiore D, Negrini F, Tottoli N, Ferraro F, Ozyemisci-Taskiran O, de Sire A. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke : a systematic review. Eur J Phys Rehabil Med 2022; 58:1-8. [PMID: 34247470 PMCID: PMC9980569 DOI: 10.23736/s1973-9087.21.06846-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Stroke is the most common cause of disability in Western Countries. It can lead to loss of mobility, capability to walk and ultimately loss of independence in activities of daily living (ADL). Several rehabilitative approaches have been proposed in these years. Robot-assisted gait rehabilitation (RAGT) plays a crucial role to perform a repetitive, intensive, and task-oriented treatment in stroke survivors. However, there are still few data on its role in subacute stroke patients. AIM The aim of the present study was to assess the efficacy of RAGT for gait recovery in subacute stroke survivors. DESIGN Systematic review with meta-analysis. SETTING The setting of the study included Units of Rehabilitation. POPULATION The analyzed population was represented by subacute stroke patients. METHODS PubMed, Scopus, Web of Science, CENTRAL, and PEDro were systematically searched until January 18, 2021, to identify randomized controlled trials (RCTs) presenting: stroke survivors in subacute phase (≤6 months) as participants; exoskeleton robots devices as intervention; conventional rehabilitation as a comparator; gait assessment, through qualitative scales, quantitative gait scales or quantitative parameters, as outcome measures. We also performed a meta-analysis of the mean difference in the functional ambulation category (FAC) via the random effect method. RESULTS Out of 3188 records, 14 RCTs were analyzed in this systematic review. The 14 studies have been published in the last 14 years (from 2006 to 2021) and included 576 stroke survivors, of which 306 received RAGT, and 270 underwent conventional rehabilitation. Lokomat robotic system was the most investigated robotic exoskeleton by the RCTs included (N.=9), albeit the meta-analysis demonstrated a non-significant difference of -0.09 in FAC (95% CI: -0.22.0.03) between Lokomat and conventional therapy. According to the PEDro scale, 11 (78.5%) were classified as good-quality studies, two as fair-quality studies (14.3%), and one as poor-quality study (7.1%). CONCLUSIONS Taken together, these findings showed that RAGT might have a potential role in gait recovery in subacute stroke survivors. However, further RCTs comparing the efficacy of RAGT with conventional physical therapy are still warranted in the neurorehabilitation field. CLINICAL REHABILITATION IMPACT This systematic review provides information on the efficacy of RAGT in allowing subacute stroke patients to perform high-intensity gait training with a lower physical burden on PRM professionals.
Collapse
Affiliation(s)
- Dario Calafiore
- Section of Neuromotor Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
| | | | - Nicola Tottoli
- School of Medicine, Department of Physiotherapy, University of Brescia, Brescia, Italy
| | - Francesco Ferraro
- Section of Neuromotor Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
| | | | - Alessandro de Sire
- Unit of Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia, " Catanzaro, Italy -
| |
Collapse
|
23
|
Kuo CY, Liu CW, Lai CH, Kang JH, Tseng SH, Su ECY. Prediction of robotic neurorehabilitation functional ambulatory outcome in patients with neurological disorders. J Neuroeng Rehabil 2021; 18:174. [PMID: 34922571 PMCID: PMC8684617 DOI: 10.1186/s12984-021-00965-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction Conflicting results persist regarding the effectiveness of robotic-assisted gait training (RAGT) for functional gait recovery in post-stroke survivors. We used several machine learning algorithms to construct prediction models for the functional outcomes of robotic neurorehabilitation in adult patients. Methods and materials Data of 139 patients who underwent Lokomat training at Taipei Medical University Hospital were retrospectively collected. After screening for data completeness, records of 91 adult patients with acute or chronic neurological disorders were included in this study. Patient characteristics and quantitative data from Lokomat were incorporated as features to construct prediction models to explore early responses and factors associated with patient recovery. Results Experimental results using the random forest algorithm achieved the best area under the receiver operating characteristic curve of 0.9813 with data extracted from all sessions. Body weight (BW) support played a key role in influencing the progress of functional ambulation categories. The analysis identified negative correlations of BW support, guidance force, and days required to complete 12 Lokomat sessions with the occurrence of progress, while a positive correlation was observed with regard to speed. Conclusions We developed a predictive model for ambulatory outcomes based on patient characteristics and quantitative data on impairment reduction with early-stage robotic neurorehabilitation. RAGT is a customized approach for patients with different conditions to regain walking ability. To obtain a more-precise and clearer predictive model, collecting more RAGT training parameters and analyzing them for each individual disorder is a possible approach to help clinicians achieve a better understanding of the most efficient RAGT parameters for different patients. Trial registration: Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00965-6.
Collapse
Affiliation(s)
- Chao-Yang Kuo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 172-1, Sec. 2, Keelung Rd., 10675, Taipei City, Taiwan
| | - Chia-Wei Liu
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing St, Xinyi District, 11031, Taipei City, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing St, Xinyi District, 11031, Taipei City, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei City, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing St, Xinyi District, 11031, Taipei City, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei City, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing St, Xinyi District, 11031, Taipei City, Taiwan. .,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei City, Taiwan.
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 172-1, Sec. 2, Keelung Rd., 10675, Taipei City, Taiwan. .,Clinical Big Data Research Center, Taipei Medical University Hospital, 252 Wuxing St, Xinyi District, 11031, Taipei City, Taiwan. .,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan.
| |
Collapse
|
24
|
Zhang SH, Wang YL, Zhang CX, Zhang CP, Xiao P, Li QF, Liang WR, Pan XH, Zhou MC. Effects of Interactive Dynamic Scalp Acupuncture on Motor Function and Gait of Lower Limbs after Stroke: A Multicenter, Randomized, Controlled Clinical Trial. Chin J Integr Med 2021; 28:483-491. [PMID: 34913147 DOI: 10.1007/s11655-021-3525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the effects of interactive dynamic scalp acupuncture (IDSA), simple combination therapy (SCT), and traditional scalp acupuncture (TSA) on motor function and gait of the lower limbs in post-stroke hemiplegia patients. METHODS A total of 231 patients with post-stroke hemiplegia was randomly divided into IDSA (78 cases), SCT (78 cases), and TSA (75 cases) groups by a random number table. Scalp acupuncture (SA) and lower-limb robot training (LLRT) were both performed in the IDSA and SCT groups. The patients in the TSA group underwent SA and did not receive LLRT. The treatment was administered once daily and 6 times weekly for 8 continuous weeks, each session lasted for 30 min. The primary outcome measures included Fugl-Meyer assessment of the lower extremity (FMA-LE), berg balance scale (BBS), modified barthel index (MBI), and 6-min walking test (6MWT). The secondary outcome measures included stride frequency (SF), stride length (SL), stride width (SW), affected side foot angle (ASFA), passive range of motion (PROM) of the affected hip (PROM-H), knee (PROM-K) and ankle (PROM-A) joints. The patients were evaluated before treatment, at 1- and 2-month treatment, and 1-, and 2-month follow-up visits, respectively. Adverse events during 2-month treatment were observed. RESULTS Nineteen patients withdrew from the trial, with 8 in the IDSA and 5 in the SCT groups, 6 in the TSA group. The FMA-LE, BBS, 6MWT and MBI scores in the IDSA group were significantly increased after 8-week treatment and 2 follow-up visits compared with the SCT and TSA groups (P<0.05 or P<0.01). Compared with pre-treatment, the grade distribution of BBS and MBI scores in the 3 groups were significantly improved at 1, 2-month treatment and 2 follow-up visits (P<0.05 or P<0.01). The SF, PROM-H, PROM-K and PROM-A in the IDSA group was significantly increased compared with the SCT and TSA groups after 8-week of treatment (P<0.05 or P<0.01). Compared with the SCT group, ASFA of the IDSA group was significantly reduced after 8-week of treatment (P<0.05). SF, SL, PROM-K and PROM-A were significantly increased at the 2nd follow-up visit whereas the ASFA was significantly reduced in the IDSA group compared with the SCT groups at 1st follow-up visit (P<0.05 or P<0.01). The SF was significantly increased in the SCT group compared with the TSA group after 8-week treatment (P<0.05). Compared with the TSA group, PROM-K, PROM-A were significantly increased at the 2nd follow-up visit (P<0.05). CONCLUSIONS The effects of IDSA on lower-limb motor function and walking ability of post-stroke patients were superior to SCT and TSA. The SCT was comparable to TSA treatment, and appeared to be superior in improving the motion range of the lower extremities. (Registration No. ChiCTR1900027206).
Collapse
Affiliation(s)
- Shao-Hua Zhang
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Yu-Long Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518037, China.
| | - Chun-Xia Zhang
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Chun-Ping Zhang
- Department of Rehabilitation Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Peng Xiao
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Qian-Feng Li
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Wei-Rong Liang
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Xiao-Hua Pan
- Department of Rehabilitation, Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong Province, 518121, China
| | - Ming-Chao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518037, China
| |
Collapse
|
25
|
Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J Clin Med 2021; 10:jcm10235715. [PMID: 34884417 PMCID: PMC8658177 DOI: 10.3390/jcm10235715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to compare the effects of robotic-assisted gait training (RAGT) in patients with FAC < 2 (low initial functional ambulation category [LFAC]) and FAC ≥ 2 (high initial functional ambulation category [HFAC]) on sensorimotor and spasticity, balance and trunk stability, the number of steps and walking distance in subacute hemiparetic stroke. Fifty-seven patients with subacute hemiparetic stroke (mean age, 63.86 ± 12.72 years; 23 women) were assigned to two groups. All patients received a 30-min Walkbot-assisted gait training session, 3 times/week, for 6 weeks. Clinical outcomes included scores obtained on the Fugl-Meyer Assessment (FMA) scale, Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), trunk impairment scale (TIS), and the number of walking steps and walking distance. Analysis of covariance and analysis of variance were conducted at p < 0.05. Significant main effects of time in both groups on number of walking steps and distance (p < 0.05) were observed, but not in MAS (p> 0.05). Significant changes in FMA, BBS, and TIS scores between groups (p < 0.05) were observed. Significant main effects of time on BBS and TIS were demonstrated (p < 0.05). Our study shows that RAGT can maximize improvement in the functional score of FMA, BBS, TIS, steps, and distance during neurorehabilitation of subacute stroke patients regardless of their FAC level.
Collapse
|
26
|
Varas-Diaz G, Cordo P, Dusane S, Bhatt T. Effect of robotic-assisted ankle training on gait in stroke participants: A case series study. Physiother Theory Pract 2021; 38:2973-2982. [PMID: 34424126 DOI: 10.1080/09593985.2021.1964658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Robotic rehabilitation therapy has grown rapidly during the last two decades allowing researchers and clinicians to deliver high-intensity training to persons with sensorimotor disorders caused by neurological injuries and diseases. METHODS This case series reports the effect of robot-assisted, impairment-oriented training for persons recovering from stroke on impairment of the paretic ankle as well as on the kinematic and spatiotemporal parameters of gait. Five persons with chronic stroke (>6 months post-stroke) participated in a 10-week training protocol, receiving three, 30-min sessions per week of a robot-assisted therapy. The robot-assisted intervention cyclically induced dorsiflexion and plantarflexion to the ankle at 5 degrees/s through ±15 degrees while the participants assisted with the imposed movement. Concurrently, participants received visual feedback of their active, assistive torque as well as targeted mechanical vibration of the ankle tendons when lengthened by the applied motion. Walking speed, cadence, step length of the non-paretic leg, percentage of paretic single limb support during the gait cycle, and ankle strength were assessed just before training began (baseline), after the last training session (post-training), and 3 months post-training (follow-up). DISCUSSION Robot-assisted training that provided assisted movement, biofeedback, and proprioceptive stimulation reduced ankle impairment and improved kinematic and spatiotemporal gait parameters, suggesting that impairment-oriented therapy applied to the paretic ankle may provide a valuable adjunct to locomotor therapies in persons with chronic gait disorders due to stroke.
Collapse
Affiliation(s)
- Gonzalo Varas-Diaz
- Department of Physical Therapy. University of Illinois at Chicago. Chicago, IL United States
| | - Paul Cordo
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States.,AMES Technology, Inc, Portland, OR, United States
| | - Shamali Dusane
- Department of Physical Therapy. University of Illinois at Chicago. Chicago, IL United States
| | - Tanvi Bhatt
- Department of Physical Therapy. University of Illinois at Chicago. Chicago, IL United States
| |
Collapse
|
27
|
Ueno T, Marushima A, Kawamoto H, Shimizu Y, Watanabe H, Kadone H, Hiruta K, Yamauchi S, Endo A, Hada Y, Tsurushima H, Ishikawa E, Matsumaru Y, Sankai Y, Yamazaki M, Matsumura A. Staged treatment protocol for gait with hybrid assistive limb in the acute phase of patients with stroke. Assist Technol 2021; 34:437-443. [PMID: 33465002 DOI: 10.1080/10400435.2020.1862361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Hybrid Assistive Limb (HAL) is a wearable human assistant cyborg-type robot that helps lower-leg movement based on bioelectrical signals detected from the voluntary movement of the person wearing it. In this study, we developed a novel staged HAL treatment protocol for patients with acute stroke. The Regain Program for Gait with HAL (RPG-HAL) was formulated in four steps, based on the severity of limb paralysis. Twenty-one patients with acute stroke received a combination treatment of RPG-HAL and conventional rehabilitation. The feasibility and safety of RPG-HAL were evaluated based on changes in physical function and activities of daily living (ADL). RPG-HAL yielded improvement in gait speed, cadence, step length, and functional ambulation category (FAC). The effect size was >0.8 in all measurements. FAC (1.90) and Barthel Index (BI) (1.92) exhibited the highest scores. Twelve out of 14 patients with FAC 0 before RPG-HAL reached the upper FAC. Thus, earlier intervention using RPG-HAL as improving physical function, ADL, and gait ability in patients with stroke.
Collapse
Affiliation(s)
- Tomoyuki Ueno
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aiki Marushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroaki Kawamoto
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Yukiyo Shimizu
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Hideki Kadone
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Kayo Hiruta
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Shunsuke Yamauchi
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Ayumu Endo
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideo Tsurushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Jung C, Kim DY, Kwon S, Chun MH, Kim J, Kim SH. Morning Walk ®-Assisted Gait Training Improves Walking Ability and Balance in Patients with Ataxia: a Randomized Controlled Trial. BRAIN & NEUROREHABILITATION 2020; 13:e23. [PMID: 36741796 PMCID: PMC9879369 DOI: 10.12786/bn.2020.13.e23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022] Open
Abstract
This study aimed to investigate walking ability and balance improvement of patients with ataxia caused by brain lesions after end-effector type robot (Morning Walk®)-assisted gait training. This study randomly assigned 19 patients to one of two groups: 30 minutes of Morning Walk® training with 1 hour of conventional physiotherapy (Morning Walk® group; n = 10) or 1.5 hours of conventional physiotherapy (Control group; n = 9). Five treatment sessions per week were given for 3 weeks. The primary outcomes were walking ability and balance, which were assessed by the functional ambulation category (FAC) and Berg Balance Scale (BBS), respectively. The secondary outcomes included 10-meter Walk Test (10mWT), Rivermead Mobility Index (RMI), Motricity Index (MI), and Modified Barthel Index (MBI). At baseline, there was no statistically significant difference between the two groups except MBI. After the treatment, the Morning Walk® group showed significant improvement in the FAC, BBS, 10mWT, RMI and MBI. The control group showed significant improvement in the BBS, 10mWT, RMI and MBI. Inter-group comparison demonstrated that the ∆FAC, ∆10mWT and ∆RMI of the Morning Walk® group were significantly higher than those of the control group. Our results suggest that the patients with ataxia receiving Morning Walk®-assisted gait training might improve greater in walking ability and balance than those trained with conventional physiotherapy.
Collapse
Affiliation(s)
- Chul Jung
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sara Kwon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - JaYoung Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Hyun Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Assessing Stiffness, Joint Torque and ROM for Paretic and Non-Paretic Lower Limbs during the Subacute Phase of Stroke Using Lokomat Tools. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficacy of Lokomat on motor recovery in stroke patients is well known. However, few studies have examined Lokomat tools to assess stiffness, joint torque and range of motion (ROM) during the subacute phase of stroke. The purpose of this retrospective observational study is to assess the changes of joint torque, ROM and stiffness that were estimated with Lokomat tools, namely L-FORCE (lower limb-force), L-ROM (lower limb-range of motion)and L-STIFF (lower limb-stiff), for paretic and non-paretic lower limbs in the subacute phase of stroke, assuming that the tools were able to measure these changes. The data come from 10 subjects in the subacute phase who had their first ever-stroke and followed a treatment that included Lokomat. The measurements came from basal assessments (T0) and one-month follow-up (T1). The measures were compared between paretic and non-paretic legs, and between T0 and T1. Significant differences in stiffness, joint torque and ROM were obtained between the paretic and non-paretic limbs at both T0 and T1. A non-significant trend was obtained for reduced stiffness and increased torque and ROM between T0 and T1 of the paretic limbs. The Lokomat tools were able to measure the changes between paretic and non-paretic legs and the small changes between T0 and T1 measurements.
Collapse
|
30
|
Wang Y, Mukaino M, Hirano S, Tanikawa H, Yamada J, Ohtsuka K, Ii T, Saitoh E, Otaka Y. Persistent Effect of Gait Exercise Assist Robot Training on Gait Ability and Lower Limb Function of Patients With Subacute Stroke: A Matched Case-Control Study With Three-Dimensional Gait Analysis. Front Neurorobot 2020; 14:42. [PMID: 32848691 PMCID: PMC7396555 DOI: 10.3389/fnbot.2020.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Gait exercise assist robot (GEAR), a gait rehabilitation robot developed for poststroke gait disorder, has been shown to improve walking speed and to improve the poststroke gait pattern. However, the persistence of its beneficial effect has not been clarified. In this matched case–control study, we assessed the durability of the effectiveness of GEAR training in patients with subacute stroke on the basis of clinical evaluation and three-dimensional (3D) gait analysis. Methods Gait data of 10 patients who underwent GEAR intervention program and 10 patients matched for age, height, sex, affected side, type of stroke, and initial gait ability who underwent conventional therapy were extracted from database. The outcome measures were walk score of Functional Independence Measure (FIM-walk), Stroke Impairment Assessment Set total lower limb motor function score (SIAS-L/E), and 3D gait analysis data (spatiotemporal factors and abnormal gait patter indices) at three time points: baseline, at the end of intervention, and within 1 week before discharge. Results In the GEAR group, the FIM-walk score, SIAS-L/E score, cadence, and single stance time of paretic side at discharge were significantly higher than those at post-training (p < 0.05), whereas the stance time and double support time of the unaffected side, knee extensor thrust, insufficient knee flexion, and external rotated hip of the affected side were significantly lower (p < 005). However, no significant differences in these respects were observed in the control group between the corresponding evaluation time points. Conclusion The results indicated significant improvement in the GEAR group after the training period, with respect to both clinical parameters and the gait pattern indices. This improvement was not evident in the control group after the training period. The results possibly support the effectiveness of GEAR training in conferring persistently efficient gait patterns in patients with poststroke gait disorder. Further studies should investigate the long-term effects of GEAR training in a larger sample.
Collapse
Affiliation(s)
- Yiji Wang
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan.,Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Masahiko Mukaino
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Satoshi Hirano
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Junya Yamada
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Kei Ohtsuka
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takuma Ii
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
31
|
Zhang F, Li K, Wu D, Chen P, Dou Z. Therapeutic effect of AiWalker on balance and walking ability in patients with stroke: A pilot study. Top Stroke Rehabil 2020; 28:236-240. [PMID: 32772812 DOI: 10.1080/10749357.2020.1802969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AiWalker is a newly developed robot-assisted gait training system, which features over-ground walking paradigm and somatosensory stimulation during training compared to commonly-used robot-assisted gait training devices (e.g. Lokomat). However, no study has examined its true therapeutic effect and possible mechanism or mediating factor(s). OBJECTIVES To investigate 1) the therapeutic effect of AiWalker on the balance and walking ability in patients with stroke, and 2) whether the improvement in somatosensory function represents one of the possible mediating factors for such effect. METHODS Three patients with impaired balance and walking ability due to stroke were recruited. Two patients received AiWalker training plus conventional training; while the other one only experienced conventional training. Standing balance and walking ability were assessed before and after all the training, which were represented by 6 variables. Lower limb somatosensory function was examined using Fugl-Meyer Assessment Scale. RESULTS Five out of the 6 variables showed greater changes in patients who received AiWalker training compared to the one who only experienced conventional training. Greater improvement in lower limb somatosensory function was observed in one patient who received AiWalker training compared to the one who only experienced conventional training. CONCLUSION The novel robot-assisted gait training system may elicit greater improvement of balance and walking ability in patients with stroke compared to conventional interventions. Lower limb somatosensory function may be improved by AiWalker, and its improvement might represent one of the possible mediating factors for the therapeutic effect of AiWalker on balance and walking ability.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kui Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Danli Wu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peirong Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
32
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
33
|
Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot 2020; 14:19. [PMID: 32351377 PMCID: PMC7174593 DOI: 10.3389/fnbot.2020.00019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023] Open
Abstract
Stroke affects one out of every six people on Earth. Approximately 90% of stroke survivors have some functional disability with mobility being a major impairment, which not only affects important daily activities but also increases the likelihood of falling. Originally intended to supplement traditional post-stroke gait rehabilitation, robotic systems have gained remarkable attention in recent years as a tool to decrease the strain on physical therapists while increasing the precision and repeatability of the therapy. While some of the current methods for robot-assisted rehabilitation have had many positive and promising outcomes, there is moderate evidence of improvement in walking and motor recovery using robotic devices compared to traditional practice. In order to better understand how and where robot-assisted rehabilitation has been effective, it is imperative to identify the main schools of thought that have prevailed. This review intends to observe those perspectives through three different lenses: the goal and type of interaction, the physical implementation, and the sensorimotor pathways targeted by robotic devices. The ways that researchers approach the problem of restoring gait function are grouped together in an intuitive way. Seeing robot-assisted rehabilitation in this unique light can naturally provoke the development of new directions to potentially fill the current research gaps and eventually discover more effective ways to provide therapy. In particular, the idea of utilizing the human inter-limb coordination mechanisms is brought up as an especially promising area for rehabilitation and is extensively discussed.
Collapse
Affiliation(s)
| | - Panagiotis Artemiadis
- Human-Oriented Robotics and Control Laboratory, Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
34
|
Mustafaoglu R, Erhan B, Yeldan I, Gunduz B, Tarakci E. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial. Acta Neurol Belg 2020; 120:335-344. [PMID: 31989505 DOI: 10.1007/s13760-020-01276-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/07/2020] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the effects of robot-assisted gait training (RAGT) on mobility, activities of daily living (ADLs), and quality of life (QoL) in stroke rehabilitation. Fifty-one stroke patients randomly assigned to Group 1, Group 2, and Group 3 received conventional training (CT) plus RAGT, CT, and RAGT, respectively. The training duration was for 6 weeks. The primary outcome measures were the Barthel Index (BI), Stroke Specific Quality of Life Scale (SS-QOL), 6-Minute Walk Test (6-MWT), and Stair Climbing Test (SCT). The secondary outcomes were Fugl Meyer Assessment-Lower Extremity (FMA-LE), Comfortable 10-m Walk Test (CWT), Fast 10-m Walk Test (FWT), and Rate of Perceived Exertion (RPE). The mean change in all the primary [BI (p = 0.001), 6-MWT (p = 0.001), SS-QOL (p < 0.0001), and SCT (p = 0.004)] and except the FWT (p = 0.354) all the other secondary outcomes [FMA-LE (p = 0.049), CWT (p = 0.025) and RPE (p = 0.023)] improved significantly between the three groups. In the subgroup analysis, BI, 6-MWT, SS-QOL, and SCT improved significantly in Group 1 compared to Group 2 and Group 3 (p < 0.016). However, FMA-LE, CWT, and the RPE significantly improved in Group 1 compared to Group 2 and, also, only CWT improved significantly in Group 1 compared to Group 3 (p = 0.011). In a subgroup analysis of the primary and secondary outcome measures, there were no significant differences in Group 2 compared to Group 3 (p > 0.05). While combined training leads to more improvement in mobility, ADLs, and QoL, CT showed a similar improvement compared to the RAGT in stroke patients.
Collapse
Affiliation(s)
- Rustem Mustafaoglu
- Department of Physiotherapy and Rehabilitation, Division of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Belgin Erhan
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ipek Yeldan
- Department of Physiotherapy and Rehabilitation, Division of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Berrin Gunduz
- Istanbul Physical Medicine and Rehabilitation Training Hospital, Istanbul, Turkey
| | - Ela Tarakci
- Department of Physiotherapy and Rehabilitation, Division of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
35
|
The effectiveness of a novel cable-driven gait trainer (Robowalk) combined with conventional physiotherapy compared to conventional physiotherapy alone following stroke: a randomised controlled trial. Int J Rehabil Res 2020; 42:377-384. [PMID: 31567605 DOI: 10.1097/mrr.0000000000000375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is increasing interest in gait training devices to improve walking ability in people following stroke. This randomised controlled trial aimed to compare the effectiveness of the Robowalk, a novel cable-driven gait trainer combined with conventional physiotherapy to conventional physiotherapy alone in improving walking speed, endurance, balance, functional outcomes, and quality of life in people following stroke. Rehabilitation inpatients within 3 months following stroke (n = 40) were randomised to standard care with conventional physiotherapy ('control,' n = 20) and cable-driven gait trainer combined with conventional physiotherapy ('intervention,' n = 20). All participants received 1 hour of physiotherapy a day, 5 days a week. The control group received conventional physiotherapy only; the intervention group received a combination of 30 minutes of conventional physiotherapy and 30 minutes of cable-driven gait trainer consecutively. Outcome measures were 10-metre walk test (primary outcome), 6-minute walk test, timed up and go, step test, Functional Independence Measure, and EuroQol five-dimension scale. Evaluation timepoints were on admission (T0), discharge (T1), and 4 weeks post discharge (T2). There were no differences between groups at T0, T1, and T2 in all outcome measures although there was a trend towards a larger and more sustained improvement in 10-metre walk test in favour of the intervention group and in Functional Independence Measure motor and self-care in favour of the control group, both at T2. The combination of cable-driven gait trainer with conventional physiotherapy appears as effective as conventional physiotherapy alone in improving gait outcomes in people following a recent stroke. Further studies are required to confirm these findings and determine optimal dosing regimens and long-term outcomes.
Collapse
|
36
|
Wall A, Borg J, Vreede K, Palmcrantz S. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS One 2020; 15:e0229707. [PMID: 32109255 PMCID: PMC7048283 DOI: 10.1371/journal.pone.0229707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
Early onset, intensive and repetitive, gait training may improve outcome after stroke but for patients with severe limitations in walking, rehabilitation is a challenge. The Hybrid Assistive Limb (HAL) is a gait machine that captures voluntary actions and support gait motions. Previous studies of HAL indicate beneficial effects on walking, but these results need to be confirmed in blinded, randomized controlled studies. This study aimed to explore effects of incorporating gait training with HAL as part of an inpatient rehabilitation program after stroke. Thirty-two subacute stroke patients with severe limitations in walking were randomized to incorporated HAL training (4 days/week for 4 weeks) or conventional gait training only. Blinded assessments were carried out at baseline, after the intervention, and at 6 months post stroke. The primary outcome was walking independence according to the Functional Ambulation Categories. Secondary outcomes were the Fugl-Meyer Assessment, 2-Minute Walk Test, Berg Balance Scale, and the Barthel Index. No significant between-group differences were found regarding any primary or secondary outcomes. At 6 months, two thirds of all patients were independent in walking. Prediction of independent walking at 6 months was not influenced by treatment group, but by age (OR 0.848, CI 0.719-0.998, p = 0.048). This study found no difference between groups for any outcomes despite the extra resources required for the HAL training, but highlights the substantial improvements in walking seen when evidence-based rehabilitation is provided to patients, with severe limitations in walking in the subacute stage after stroke. In future studies potential subgroups of patients who will benefit the most from electromechanically-assisted gait training should be explored.
Collapse
Affiliation(s)
- Anneli Wall
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jörgen Borg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Vreede
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Palmcrantz
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Lin J, Hu G, Ran J, Chen L, Zhang X, Zhang Y. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study. J Neuroeng Rehabil 2020; 17:5. [PMID: 31931825 PMCID: PMC6958616 DOI: 10.1186/s12984-020-0641-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Locomat is a robotic exoskeleton providing guidance force and bodyweight support to facilitate intensive walking training for people with stroke. Although the Locomat has been reported to be effective in improving walking performance, the effects of training parameters on the neuromuscular control remain unclear. This study aimed to compare the muscle activities between Locomat walking and treadmill walking at a normal speed, as well as to investigate the effects of varying bodyweight support and guidance force on muscle activation patterns during Locomat walking in people with stroke. METHODS A cross-sectional study design was employed. Participants first performed an unrestrained walking on a treadmill and then walked in the Locomat with different levels of bodyweight support (30% or 50%) and guidance force (40% or 70%) at the same speed (1.2 m/s). Surface electromyography (sEMG) of seven muscles of the affected leg was recorded. The sEMG envelope was time-normalised and averaged over gait cycles. Mean sEMG amplitude was then calculated by normalising the sEMG amplitude with respect to the peak amplitude during treadmill walking for statistical analysis. A series of Non-parametric test and post hoc analysis were performed with a significance level of 0.05. RESULTS Fourteen participants with stroke were recruited at the Yangzhi Affiliated Rehabilitation Hospital of Tongji University (female n = 1; mean age 46.1 ± 11.1 years). Only the mean sEMG amplitude of vastus medialis oblique during Locomat walking (50% bodyweight support and 70% guidance force) was significantly lower than that during treadmill walking. Reducing both bodyweight and guidance increased muscle activity of gluteus medius and tibialis anterior. Activity of vastus medialis oblique muscle increased as bodyweight support reduced, while that of rectus femoris increased as guidance force decreased. CONCLUSIONS The effects of Locomat on reducing muscle activity in people with stroke were minimized when walking at a normal speed. Reducing bodyweight support and guidance force increased the activity of specific muscles during Locomat walking. Effects of bodyweight support, guidance force and speed should be taken into account when developing individualized Locomat training protocols for clients with stroke.
Collapse
Affiliation(s)
- Jianhua Lin
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China.
- Faculty of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Guojiong Hu
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Jun Ran
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Linyu Chen
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Xian Zhang
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Yanxin Zhang
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Hsu CY, Cheng YH, Lai CH, Lin YN. Clinical non-superiority of technology-assisted gait training with body weight support in patients with subacute stroke: A meta-analysis. Ann Phys Rehabil Med 2019; 63:535-542. [PMID: 31676456 DOI: 10.1016/j.rehab.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Technology-assisted gait training (TAGT) with body weight support (BWS) has been designed to provide high numbers of repetitions during stepping practice, but its benefits have been inconclusive. OBJECTIVE We evaluated the superiority of TAGT over conventional overground training (COT) to judge the clinical benefits. METHODS We searched PubMed, Embase and Web of Science databases from their earliest record to July 1, 2019 and included randomized controlled trials of TAGT with BWS, such as robot-assisted gait training and body weight-supported treadmill training, for treating walking disability in patients within 6months after stroke. We conducted a meta-analysis of the outcomes motor impairment, mobility capacity, walking speed, endurance and fitness, balance, and activities of daily living as well as subgroup analyses of initial ambulatory ability and stroke duration. RESULTS Among 14robotics and 10body weight-supported treadmill studies included for review, 23studies involving 1452participants contributed to the meta-analysis. We found no significant standardized mean differences between TAGT and COT (P>0.05) across all outcome categories in the robotics subgroup, the body weight-supported treadmill subgroup, or both subgroups combined, for both the short and long term. Further subgroup analyses also revealed non-significant standardized mean differences (P>0.05) across all outcomes in the subgroups initially ambulatory, non-ambulatory, or stroke duration less than 3 months. CONCLUSIONS TAGT with BWS was not superior to COT in improving post-stroke recovery in patients with subacute stroke. Strategies other than simply increasing the repetitions by external assistance may be considered to augment the treatment effects of TAGT.
Collapse
Affiliation(s)
- Chih-Yang Hsu
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nung Lin
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
39
|
Lee HJ, Lee SH, Seo K, Lee M, Chang WH, Choi BO, Ryu GH, Kim YH. Training for Walking Efficiency With a Wearable Hip-Assist Robot in Patients With Stroke: A Pilot Randomized Controlled Trial. Stroke 2019; 50:3545-3552. [PMID: 31623545 DOI: 10.1161/strokeaha.119.025950] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- The purpose of this study was to investigate the effects of gait training with a newly developed wearable hip-assist robot on locomotor function and efficiency in patients with chronic stroke. Methods- Twenty-eight patients with stroke with hemiparesis were initially enrolled, and 26 patients completed the randomized controlled trial (14 in the experimental and 12 in the control groups). The experimental group participated in a gait training program over a total of 10 sessions, including 5 treadmill sessions and 5 over-ground gait training sessions while wearing a hip-assist robot, the Gait Enhancing and Motivating System (GEMS, Samsung Advanced Institute of Technology, Suwon, Republic of Korea). The control group received gait training without Gait Enhancing and Motivating System. Primary outcome measured locomotor function and cardiopulmonary metabolic energy efficiency. Also, secondary outcome measured motor function and balance parameter. Results- Compared with the control group, the experimental group had significantly greater improvement in spatiotemporal gait parameters and muscle efforts after the training intervention (P<0.05). The net cardiopulmonary metabolic energy cost (mL·kg-1·min-1) was also reduced by 14.71% in the experimental group after the intervention (P<0.01). Significant group×time interactions were observed for all parameters (P<0.05). Cardiopulmonary metabolic efficiency was strongly correlated with gait symmetry ratio in the experimental group (P<0.01). Conclusions- Gait training with Gait Enhancing and Motivating System was effective for improving locomotor function and cardiopulmonary metabolic energy efficiency during walking in patients with stroke. These findings suggest that robotic locomotor training can be adopted for rehabilitation of patients with stroke with gait disorders. Clinical Trial Registration- URL: https://clinicaltrials.gov. Unique identifier: NCT02843828.
Collapse
Affiliation(s)
- Hwang-Jae Lee
- From the Department of Physical and Rehabilitation Medicine (H.-J.L., S.-H.L., W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology (H.-J.L.), SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Su-Hyun Lee
- From the Department of Physical and Rehabilitation Medicine (H.-J.L., S.-H.L., W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keehong Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Republic of Korea (K.S., M.L.)
| | - Minhyung Lee
- Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do, Republic of Korea (K.S., M.L.)
| | - Won Hyuk Chang
- From the Department of Physical and Rehabilitation Medicine (H.-J.L., S.-H.L., W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Neuroscience Center (B.-O.C.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyu-Ha Ryu
- Department of Medical Device Management and Research, SAIHST (G.-H.R.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun-Hee Kim
- From the Department of Physical and Rehabilitation Medicine (H.-J.L., S.-H.L., W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health (Y.-H.K.), SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Kim YH. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2019.00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Katoh D, Tanikawa H, Hirano S, Mukaino M, Yamada J, Sasaki S, Ohtsuka K, Katoh M, Saitoh E. The effect of using Gait Exercise Assist Robot (GEAR) on gait pattern in stroke patients: a cross-sectional pilot study. Top Stroke Rehabil 2019; 27:103-109. [PMID: 31483736 DOI: 10.1080/10749357.2019.1660080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: The Gait Exercise Assist Robot (GEAR) has been developed to support gait training for stroke patients. The GEAR can assist paretic lower limb swing and stance stability, which make it possible to practice walking without excessive compensation movements. However, there are no studies to-date that investigate the effect of the GEAR on gait pattern.Objectives: The purpose of this study was to clarify the effect of gait training on gait pattern using the GEAR for rehabilitation in stroke patients.Methods: Fifteen hemiplegic patients who received gait training using the GEAR were recruited (GEAR group). As a control group, hemiplegic patients who did not receive gait training using the GEAR were selected for each patient in the GEAR group from 114 cases in our hospital database. Primary outcomes were index values indicating the degree of 10 abnormal gait patterns. Secondary outcomes were spatiotemporal factors and comfortable overground gait velocity.Results: Index values for abnormal gait patterns were significantly lower in the GEAR group compared to the control group for insufficient knee flexion during the swing phase, hip hiking, and excessive lateral shift of the trunk over the unaffected-side (p < .05). The comfortable overground gait velocity, stride length, and unaffected-step length in the GEAR group were significantly better than in the control group (p < .05).Conclusions: Gait training using the GEAR had effects on reducing abnormal gait patterns and improving gait velocity, stride, and unaffected-side step length compared to conventional gait training alone in individuals recovering from stroke-induced hemiplegia.
Collapse
Affiliation(s)
- Daisuke Katoh
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Satoshi Hirano
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahiko Mukaino
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Junya Yamada
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Shinya Sasaki
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Kei Ohtsuka
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Masaki Katoh
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
42
|
Backward walking observational training improves gait ability in patients with chronic stroke: randomised controlled pilot study. Int J Rehabil Res 2019; 42:217-222. [DOI: 10.1097/mrr.0000000000000352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Uivarosan D, Tit DM, Iovan C, Nistor-Cseppento DC, Endres L, Lazar L, Sava C, Sabau AM, Buhas C, Moleriu LC, Bungau S, Aleya L. Effects of combining modern recovery techniques with neurotrophic medication and standard treatment in stroke patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:80-87. [PMID: 31100563 DOI: 10.1016/j.scitotenv.2019.05.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Stroke is the main cause of disability after age 65, leaving survivors with sequels that require care and recovery treatment lasting years. It is estimated that by the year 2030 this pathology will be leading cause of mortality. To determine the efficacy of Lokomat training combined with neurotrophic medication and balneo-physiotherapeutic treatment in rehabilitation of post-stroke patients, a prospective study of 3 parallel groups was conducted: Group I (n = 22) - Lokomat, balneo-physiotherapy, and Cerebrolysin; Group II (n = 18) - Lokomat associated with balneo-physiotherapy; and Group III (n = 30) - balneo-physiotherapy alone (Control group). Patients were evaluated physically, neurologically, and functionally, according to the evolution of their motor deficiency, spasticity, functional independence and health-related quality of life. Patient improvement is significantly better (p < 0.05) in the group with associated therapies, especially during the first 6 months. Evolution was significantly better in all groups at 12 months than initially (p < 0.05), for all studied parameters and with the best effects in Group I (the three therapies combined). Association of Lokomat training with neurotrophic factors and classic recovery techniques improves the rehabilitation process in stroke patients.
Collapse
Affiliation(s)
- Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Laura Endres
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Liviu Lazar
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Anca Maria Sabau
- Department of Physical Education, Sport and Physical Therapy, Faculty of Geography, Tourism and Sport, University of Oradea, Oradea 410028, Romania
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Lavinia Cristina Moleriu
- Department III Functional Sciences, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| |
Collapse
|
44
|
Tomida K, Sonoda S, Hirano S, Suzuki A, Tanino G, Kawakami K, Saitoh E, Kagaya H. Randomized Controlled Trial of Gait Training Using Gait Exercise Assist Robot (GEAR) in Stroke Patients with Hemiplegia. J Stroke Cerebrovasc Dis 2019; 28:2421-2428. [PMID: 31307899 DOI: 10.1016/j.jstrokecerebrovasdis.2019.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This trial aimed to validate the effectiveness of using the Gait Exercise Assist Robot (GEAR) in patients with hemiplegia after primary stroke. METHODS The study design was open-label randomized controlled trial. Twenty-six patients with hemiplegia after primary stroke admitted to the comprehensive inpatient rehabilitation wards were enrolled and randomized to a group using GEAR in gait training and a control group. The intervention period was 4 weeks. Evaluations were conducted at admission, during intervention period, 8 weeks from start of intervention, and at discharge. Primary outcome measure was improvement efficiency of Functional Independence Measure (FIM)-walk score (FIM-walk improvement efficiency) that was calculated at the time of achieving FIM-walk score 5 (supervision level) during the intervention period or as weekly gain in FIM-walk score during 4 weeks for those who did not achieve score 5. RESULTS FIM-walk improvement efficiency was .7 ± .4 in GEAR group and .4 ± .3 in control group, and was significantly higher in GEAR group (P = .01). The FIM-walk score gain after 4 weeks was significantly higher in the GEAR group (P = .01), but there were no significant differences between 2 groups after 8 weeks and at discharge. CONCLUSIONS Gait training using GEAR for 4 weeks improved walking ability of subacute stroke patients. GEAR contributes to early improvement of walking ability probably by the knee flexion assist during swing phase on the paralyzed side thereby increasing the volume of training, and by the finely adjustable stance/swing assist mechanism for the paralyzed limb which optimizes the training difficulty level.
Collapse
Affiliation(s)
- Ken Tomida
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan.
| | - Shigeru Sonoda
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan; Department of Rehabilitation Medicine II, School of Medicine, Fujita Health University, Tsu, Mie, Japan
| | - Satoshi Hirano
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Akira Suzuki
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
| | - Genichi Tanino
- Joint Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Kenji Kawakami
- Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hitoshi Kagaya
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
45
|
Abstract
OBJECTIVE Advancements in robot-assisted gait rehabilitation and brain-machine interfaces may enhance stroke physiotherapy by engaging patients while providing information about robot-induced cortical adaptations. We investigate the feasibility of decoding walking from brain activity in stroke survivors during therapy using a powered exoskeleton integrated with an electroencephalography-based brain-machine interface. DESIGN The H2 powered exoskeleton was designed for overground gait training with actuated hip, knee, and ankle joints. It was integrated with active-electrode electroencephalography and evaluated in hemiparetic stroke survivors for 12 sessions per 4 wks. A continuous-time Kalman decoder operating on delta-band electroencephalography was designed to estimate gait kinematics. RESULTS Five chronic stroke patients completed the study with improvements in walking distance and speed training for 4 wks, correlating with increased offline decoding accuracy. Accuracies of predicted joint angles improved with session and gait speed, suggesting an improved neural representation for gait, and the feasibility to design an electroencephalography-based brain-machine interface to monitor brain activity or control a rehabilitative exoskeleton. CONCLUSIONS The Kalman decoder showed increased accuracies as the longitudinal training intervention progressed in the stroke participants. These results demonstrate the feasibility of studying changes in patterns of neuroelectric cortical activity during poststroke rehabilitation and represent the first step in developing a brain-machine interface for controlling powered exoskeletons.
Collapse
|
46
|
Edwards N, Dulai J, Rahman A. A Scoping Review of Epidemiological, Ergonomic, and Longitudinal Cohort Studies Examining the Links between Stair and Bathroom Falls and the Built Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091598. [PMID: 31067692 PMCID: PMC6540131 DOI: 10.3390/ijerph16091598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
Stair and bathroom falls contribute to injuries among older adults. This review examined which features of stairs and bathrooms have been assessed in epidemiological, ergonomic, and national aging studies on falls or their risk factors. Epidemiological and ergonomic studies were eligible if published from 2006-2017, written in English, included older persons, and reported built environment measures. The data extracted included the following: study population and design, outcome measures, and stair and bathroom features. National aging studies were eligible if English questionnaires were available, and if data were collected within the last 10 years. Sample characteristics; data collection methods; and data about falls, the environment, and assistive device use were extracted. There were 114 eligible articles assessed-38 epidemiologic and 76 ergonomic. Among epidemiological studies, 2 assessed stair falls only, 4 assessed bathroom falls only, and 32 assessed falls in both locations. Among ergonomic studies, 67 simulated stairs and 9 simulated bathrooms. Specific environmental features were described in 14 (36.8%) epidemiological studies and 73 (96%) ergonomic studies. Thirteen national aging studies were identified-four had stair data and six had bathroom data. Most epidemiologic and national aging studies did not include specific measures of stairs or bathrooms; the built environment descriptions in ergonomic studies were more detailed. More consistent and detailed environmental measures in epidemiologic and national aging studies would better inform fall prevention approaches targeting the built environment.
Collapse
Affiliation(s)
- Nancy Edwards
- School of Nursing, University of Ottawa, Ottawa, ON K1S 5L5, Canada.
| | - Joshun Dulai
- School of Nursing, University of Ottawa, Ottawa, ON K1S 5L5, Canada.
| | - Alvi Rahman
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
47
|
Alingh JF, Weerdesteyn V, Nienhuis B, van Asseldonk EHF, Geurts ACH, Groen BE. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects. J Neuroeng Rehabil 2019; 16:40. [PMID: 30876445 PMCID: PMC6420738 DOI: 10.1186/s12984-019-0506-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Recovery of walking is a primary rehabilitation goal of most stroke survivors. Control of pelvic movements is one of the essential determinants of gait, yet surprisingly, conventional robot-assisted gait trainers constrain pelvic movements. Novel robot-assisted gait trainers, such as LOPES II, are able to support pelvic movements during gait. The aim of this cross-over study was to investigate the immediate after-effects of pelvic support (PS) or pelvic constraint (PC) gait training with LOPES II on overground walking in healthy subjects. Methods Thirteen able-bodied subjects (22.8 ± 2.1 years) participated in two 20-min gait training sessions with LOPES II; one with PS and one with PC. During the PS-training, the LOPES II actively guided the lateral displacement of the pelvis, while pelvic rotations were free. During the PC-condition, both lateral displacement and pelvic rotations were constrained and reduced to a minimum. The training sessions were separated by a 30-min resting period. Lateral displacement of the pelvis, hip and knee kinematics, and spatiotemporal parameters during overground walking were determined at baseline and immediately following the training using 3D gait analysis. Results During the PS-condition in LOPES II the lateral pelvic displacement was significantly greater (105.6 ± 0 .5 mm) than during the PC-condition (10.8 ± 0 .7 mm; p < 0.001). Analysis of the first five steps of overground walking immediately following PC-condition showed significantly smaller lateral displacements of the pelvis (32.3 ± 12.0 mm) compared to PS-condition (40.1 ± 9 .8 mm; p < 0.01). During the first five steps, step width was significantly smaller after PC-condition (0.17 ± 0. 04 m) compared to PS-condition (0.20 ± 0.04 m; p = 0.01) and baseline (0.19 ± 0. 03 m; p = 0.01). Lateral displacement of the pelvis and step width post training returned to baseline levels within 10 steps. PC- nor PS-condition affected kinematics, gait velocity, cadence, stride length or stance time. Conclusions In healthy subjects, robot-assisted gait training with pelvic constraint had immediate negative after-effects on the overground walking pattern, as compared to robot-assisted gait training with pelvic support. Gait training including support of the lateral displacement of the pelvis better resembles the natural gait pattern. It remains to be identified whether pelvic support during robot-assisted gait training is superior to pelvic constraint to promote gait recovery in individuals with neurological disorders.
Collapse
Affiliation(s)
- J F Alingh
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands. .,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - V Weerdesteyn
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Nienhuis
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - A C H Geurts
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B E Groen
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Kim J, Kim DY, Chun MH, Kim SW, Jeon HR, Hwang CH, Choi JK, Bae S. Effects of robot-(Morning Walk®) assisted gait training for patients after stroke: a randomized controlled trial. Clin Rehabil 2018; 33:516-523. [DOI: 10.1177/0269215518806563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the effects of Morning Walk®–assisted gait training for patients with stroke. Design: Prospective randomized controlled trial. Setting: Three hospital rehabilitation departments (two tertiary and one secondary). Patients: We enrolled 58 patients with hemiparesis following a first-time stroke within the preceding year and with Functional Ambulation Category scores ⩾2. Intervention: The patients were randomly assigned to one of two treatment groups: 30 minutes of training with Morning Walk®, a lower limb rehabilitation robot, plus 1 hour of conventional physiotherapy (Morning Walk® group; n = 28); or 1.5 hour of conventional physiotherapy (control group; n = 30). All received treatment five times per week for three weeks. Main outcome measurements: The primary outcomes were walking ability, assessed using the Functional Ambulation Category scale, and lower limb function, assessed using the Motricity Index-Lower. Secondary outcomes included the 10 Meter Walk Test, Modified Barthel Index, Rivermead Mobility Index, and Berg Balance Scale scores. Results: A total of 10 patients were lost to follow-up, leaving a cohort of 48 for the final analyses. After training, all outcome measures significantly improved in both groups. In Motricity Index-Lower of the affected limb, the Morning Walk® group (∆mean ± SD; 19.68 ± 14.06) showed greater improvement ( p = .034) than the control group (∆mean ± SD; 11.70 ± 10.65). And Berg Balance Scale scores improved more ( p = .047) in the Morning Walk® group (∆mean ± SD; 14.36 ± 9.01) than the control group (∆mean ± SD; 9.65 ± 8.14). Conclusion: Compared with conventional physiotherapy alone, our results suggest that voluntary strength and balance of stroke patients with hemiparesis might be improved with Morning Walk®–assisted gait training combined with conventional physiotherapy.
Collapse
Affiliation(s)
- JaYoung Kim
- Department of Rehabilitation medicine, Asan medical center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Rehabilitation medicine, Asan medical center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Rehabilitation medicine, Asan medical center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Woo Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Ha Ra Jeon
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Chang Ho Hwang
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jong Kyoung Choi
- Department of Rehabilitation medicine, Asan medical center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Bae
- Department of Rehabilitation medicine, Asan medical center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Ferrarin M, Rabuffetti M, Geda E, Sirolli S, Marzegan A, Bruno V, Sacco K. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance. Proc Inst Mech Eng H 2018; 232:619-627. [PMID: 29890931 DOI: 10.1177/0954411918776682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several robotic devices have been developed for the rehabilitation of treadmill walking in patients with movement disorders due to injuries or diseases of the central nervous system. These robots induce coordinated multi-joint movements aimed at reproducing the physiological walking or stepping patterns. Control strategies developed for robotic locomotor training need a set of predefined lower limb joint angular trajectories as reference input for the control algorithm. Such trajectories are typically taken from normative database of overground unassisted walking. However, it has been demonstrated that gait speed and the amount of body weight support significantly influence joint trajectories during walking. Moreover, both the speed and the level of body weight support must be individually adjusted according to the rehabilitation phase and the residual locomotor abilities of the patient. In this work, 10 healthy participants (age range: 23-48 years) were asked to walk in movement analysis laboratory on a treadmill at five different speeds and four different levels of body weight support; besides, a trial with full body weight support, that is, with the subject suspended on air, was performed at two different cadences. The results confirm that lower limb kinematics during walking is affected by gait speed and by the amount of body weight support, and that on-air stepping is radically different from treadmill walking. Importantly, the results provide normative data in a numerical form to be used as reference trajectories for controlling robot-assisted body weight support walking training. An electronic addendum is provided to easily access to such reference data for different combinations of gait speeds and body weight support levels.
Collapse
Affiliation(s)
- Maurizio Ferrarin
- 1 IRCCS Fondazione Don Carlo Gnocchi Onlus, Polo Tecnologico, Milano, Italy
| | - Marco Rabuffetti
- 1 IRCCS Fondazione Don Carlo Gnocchi Onlus, Polo Tecnologico, Milano, Italy
| | - Elisabetta Geda
- 2 Dipartimento di Psicologia, Università di Torino, Torino, Italy
| | - Silvia Sirolli
- 3 Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Torino, Italy
| | - Alberto Marzegan
- 1 IRCCS Fondazione Don Carlo Gnocchi Onlus, Polo Tecnologico, Milano, Italy
| | - Valentina Bruno
- 2 Dipartimento di Psicologia, Università di Torino, Torino, Italy
| | - Katiuscia Sacco
- 2 Dipartimento di Psicologia, Università di Torino, Torino, Italy
| |
Collapse
|
50
|
The effects of body weight-supported treadmill training on static and dynamic balance in stroke patients: A pilot, single-blind, randomized trial. Turk J Phys Med Rehabil 2018; 64:344-352. [PMID: 31453532 DOI: 10.5606/tftrd.2018.2672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to compare effectiveness of isolated body weight-supported treadmill training (BWSTT) with conventional and combined training on balance, mobility, and fear of falling in stroke patients. Patients and methods Between November 2014 and November 2015, a total of 45 post-stroke patients (32 males, 13 females; mean age 53.1±13.2 years; range, 19 to 73 years) were randomly assigned to combined training group (CombTG), conventional training group (CTG), and BWSTT group (BWSTTG). The CombTG received 45 min conventional therapy for five days a week along with 45 min of BWSTT twice a week. The CTG received only conventional therapy for five days a week. The BWSTTG received only BWSTT twice a week. Training duration was six weeks for all groups. Primary outcome measures were the Berg Balance Scale (BBS), affected and non-affected side Single Leg Stance Test (e-SLST/n-SLST), and Timed Up and Go Test (TUG) results. Secondary outcomes were the Falls Efficacy Scale-International (FES-I), Rivermead Mobility Index (RMI), Comfortable 10-m Walk Test (CWT), and Stair Climbing Test (SCT) results. Results The mean change of outcome measures demonstrated that the improvements between groups were significantly different among the three groups, except for the CWT (p=0.135). In subgroup analysis, except for the RMI and CWT, all primary and secondary outcome measures improved significantly in favor of the CombTG, compared to the CTG and BWSTTG (p<0.016). However, no statistically significant difference was found in the mean change of the CTG and BWSTTG (p>0.05). Conclusion This study demonstrates that combined training has considerable effects on balance, mobility, and fear of falling parameters, while lower frequency of isolated BWSTT is as much effective as higher frequency of conventional training in ambulatory post-stroke patients.
Collapse
|