1
|
Bedar M, Pulos NA, Shin AY. Dynamic Seeding versus Microinjection of Adipose-Derived Mesenchymal Stem Cells to Acellular Nerve Allograft Reconstructions. Plast Reconstr Surg 2024; 154:114e-125e. [PMID: 37537724 PMCID: PMC10838349 DOI: 10.1097/prs.0000000000010970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Functional recovery after acellular nerve allograft (ANA) reconstruction remains inferior to that after autologous nerve grafting, but improved outcomes have been demonstrated with the addition of adipose-derived mesenchymal stem cells (MSCs). Controversy exists regarding the optimal cell-delivery method to enhance ANA reconstructions. The authors investigated the functional recovery of ANAs after dynamic seeding versus microinjection of MSCs. METHODS Forty Lewis rats underwent reconstruction of a 10-mm sciatic nerve defect. Animals were divided into 4 groups: reversed autograft, ANA alone, dynamically seeded ANA, or ANA injected with MSCs. During the survival period, ultrasound measurements of the tibialis anterior muscle cross-sectional area were performed. At 12 weeks, functional recovery was evaluated using measurements of ankle contracture, compound muscle action potential, maximum isometric tetanic force, muscle mass, histomorphometry, and immunofluorescence. RESULTS The dynamic seeding and microinjection groups demonstrated higher cross-sectional tibialis anterior muscle area recovery than autografts and ANAs alone at week 8 and weeks 4 and 8, respectively. The ankle contracture and compound muscle action potential amplitude recovery were superior in autografts and both seeding methods compared with ANAs alone. The microinjection group demonstrated significantly higher isometric tetanic force, muscle mass, and number of axons compared with ANAs alone. Both seeding methods showed higher CD34 densities compared with ANAs alone. No significant differences between dynamic seeding and microinjection were observed in functional or histologic outcomes. CONCLUSIONS The addition of MSCs to ANAs demonstrated earlier motor regeneration compared with autografts and ANAs alone. Both seeding methods improved functional outcomes in the rat sciatic nerve defect model.
Collapse
Affiliation(s)
- Meiwand Bedar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | | | | |
Collapse
|
2
|
Tseng SL, Kang L, Li ZJ, Wang LQ, Li ZM, Li TH, Xiang JY, Huang JZ, Yu NZ, Long X. Adipose-derived stem cells in diabetic foot care: Bridging clinical trials and practical application. World J Diabetes 2024; 15:1162-1177. [PMID: 38983804 PMCID: PMC11229965 DOI: 10.4239/wjd.v15.i6.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a critical medical challenge, significantly im-pairing the quality of life of patients. Adipose-derived stem cells (ADSCs) have been identified as a promising therapeutic approach for improving wound healing in DFUs. Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU, its clinical applications remain elusive. In this review, we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs. The review begins with a discussion of the classification and clinical management of diabetic foot conditions. It then discusses the current landscape of clinical trials, focusing on their geographic distribution, reported efficacy, safety profiles, treatment timing, administration techniques, and dosing considerations. Finally, the review discusses the preclinical strategies to enhance ADSC efficacy. This review shows that many trials exhibit biases in study design, unclear inclusion criteria, and intervention protocols. In conclusion, this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches, with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care.
Collapse
Affiliation(s)
- Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, Beijing 100021, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Struijk C, Lydon KL, Husen M, Verdonk P, Michielsen J, van Wijnen AJ, Krych AJ, Saris DB. Cellular Enhancement of Frozen Meniscus Allograft Combining Native Meniscus and Mesenchymal Stromal Cell Injections. Cartilage 2024:19476035231224802. [PMID: 38321966 PMCID: PMC11569627 DOI: 10.1177/19476035231224802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE This proof-of-concept study investigated an improved cell-based injection therapy combining mesenchymal stem cells (MSCs) and meniscus cells (MCs) to support superior meniscus allograft repopulation and early revival compared to injecting MSCs alone. DESIGN In this controlled laboratory study, frozen meniscus allograft samples were injected vertically with a cell suspension containing different ratios of MSCs and MCs or control (lactated ringers) and cultured for 28 days. Samples were analyzed weekly for cell viability, migration, and metabolism using histological and biochemical assays. Tissue medium was analyzed for matrix metalloproteinase (MMP) expression using zymography. RESULTS Cellular repopulation of frozen allografts injected with different cell suspensions was validated by immunohistochemistry. Significant higher DNA content was evidenced in grafts treated with suspensions of MCs or MC:MSC (1:4 ratio). Cell metabolic activity was significantly different between all treated groups and control group after 1 week. Allografts injected with MCs showed significantly more cell proliferation than injections with MSCs. MMP2 activity was detected in medium of all grafts cellularized with MCs with or without MSCs. Scanning electron microscopy (SEM) analysis showed resolution of the needle puncture, but not in the control group. Cell labeling of MCs upon injection of mixed MC:MSC suspensions revealed a gradual increase in the cell ratio. CONCLUSIONS The findings of this study establish that injection of MCs with or without MSCs enhances the cellularity of meniscus allograft to support early graft revival and remodeling.
Collapse
Affiliation(s)
- Caroline Struijk
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
| | | | - Martin Husen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopaedic Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Verdonk
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
- Orthoca, Antwerp, Belgium
| | - Jozef Michielsen
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
| | | | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel B.F. Saris
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Optimal Intravenous Administration Procedure for Efficient Delivery of Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314681. [PMID: 36499004 PMCID: PMC9740176 DOI: 10.3390/ijms232314681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) are currently being investigated for their therapeutic applications in a wide range of diseases. Although many studies examined peripheral venous administration of MSC, few have investigated the detailed intravenous administration procedures of MSC from their preparation until they enter the body. The current study therefore aimed to explore the most efficient infusion procedure for MSC delivery by preparing and infusing them under various conditions. Canine adipose-derived mesenchymal stem cells (cADSC) were infused using different infusion apparatuses, suspension solutions, allogenic serum supplementation, infusion time and rates, and cell densities, respectively. Live and dead cell counts were then assessed by manual measurements and flow cytometry. Efficiency of live- and dead-cell infusion and cell viability were calculated from the measured cell counts and compared under each condition. Efficiency of live-cell infusion differed significantly according to the infusion apparatus, infusion rate, and combination of cell density and serum supplementation. Cell viability after infusion differed significantly between the infusion apparatuses. The optimal infusion procedure resulting in the highest cell delivery and viability involved suspending cADSC in normal saline supplemented with 5% allogenic serum at a density of 5 × 105 cells/mL, and infusing them using an automatic infusion device for 15 min. This procedure is therefore recommended as the standard procedure for the intravenous administration of ADSC in terms of cell-delivery efficiency.
Collapse
|
5
|
Dynamic seeding versus microinjection of mesenchymal stem cells for acellular nerve allograft: an in vitro comparison. J Plast Reconstr Aesthet Surg 2022; 75:2821-2830. [PMID: 35570113 PMCID: PMC9391259 DOI: 10.1016/j.bjps.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-supplemented acellular nerve allografts (ANA) are a potential strategy to improve the treatment of segmental nerve defects. Prior to clinical translation, optimal cell delivery methods must be defined. While two techniques, dynamic seeding and microinjection, have been described, the seeding efficiency, cell viability, and distribution of MSCs in ANAs are yet to be compared. METHODS Sciatic nerve segments of Sprague-Dawley rats were decellularized, and MSCs were harvested from the adipose tissue of Lewis rats. Cell viability was evaluated after injection of MSCs through a 27-gauge needle at different flow rates (10, 5, and 1 µL/min). MSCs were dynamically seeded or longitudinally injected into ANAs. Cell viability, seeding efficiency, and distribution were evaluated using LIVE/DEAD and MTS assays, scanning electron microscopy, and Hoechst staining. RESULTS No statistically significant difference in cell viability after injection at different flow rates was seen. After cell delivery, 84.1 ± 3.7% and 87.8 ± 2.8% of MSCs remained viable in the dynamic seeding and microinjection group, respectively (p = 0.41). The seeding efficiency of microinjection (100.4%±5.6) was significantly higher than dynamic seeding (48.1%±8.6) on day 1 (p = 0.001). Dynamic seeding demonstrated a significantly more uniform cell distribution over the course of the ANA compared to microinjection (p = 0.02). CONCLUSION MSCs remain viable after both dynamic seeding and microinjection in ANAs. Higher seeding efficiency was observed with microinjection, but dynamic seeding resulted in a more uniform distribution. In vivo studies are required to assess the effect on gene expression profiles and functional motor outcomes.
Collapse
|
6
|
Struijk C, Van Genechten W, Verdonk P, Krych AJ, Dietz AB, van Wijnen AJ, Saris DBF. Human meniscus allograft augmentation by allogeneic mesenchymal stromal/stem cell injections. J Orthop Res 2022; 40:712-726. [PMID: 33969529 PMCID: PMC8578587 DOI: 10.1002/jor.25074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Meniscus allograft transplantations (MATs) represent established surgical procedures with proven outcomes. Yet, storage as frozen specimens and limited cellular repopulation may impair graft viability. This proof-of-concept study tests the feasibility of injecting allogeneic mesenchymal stromal/stem cells (MSCs) in meniscus allograft tissue. We investigated the injectable cell quantity, survival rate, migration, and proliferation ability of MSCs up to 28 days of incubation. In this controlled laboratory study, seven fresh-frozen human allografts were injected with human allogeneic MSCs. Cells were labeled and histological characteristics were microscopically imaged up to 28 days. Mock-injected menisci were included as negative controls in each experiment. Toluidine blue staining demonstrated that a 100-µl volume can be injected while retracting and rotating the inserted needle. Immediately after injection, labeled MSCs were distributed throughout the injection channel and eventually migrated into the surrounding tissues. Histological assessment revealed that MSCs cluster in disc-like shapes, parallel to the intrinsic lamination of the meniscus and around the vascular network. Quantification showed that more than 60% of cells were present in horizontally injected grafts and more than 30% were observed in vertically injected samples. On Day 14, cells adopted a spindle-shaped morphology and exhibited proliferative and migratory behaviors. On Day 28, live/dead ratio assessment revealed an approximately 80% cell survival. The study demonstrated the feasibility of injecting doses of MSCs (>0.1 million) in meniscus allograft tissue with active cell proliferation, migration, and robust cell survival.
Collapse
Affiliation(s)
- Caroline Struijk
- Orthopedics and Sports MedicineMayo ClinicRochesterMinnesotaUSA,Department of Orthopedic SurgeryAntwerp UniversityAntwerpBelgium
| | - Wouter Van Genechten
- Orthopedics and Sports MedicineMayo ClinicRochesterMinnesotaUSA,Department of Orthopedic SurgeryAntwerp UniversityAntwerpBelgium
| | - Peter Verdonk
- Department of Orthopedic SurgeryAntwerp UniversityAntwerpBelgium,ORTHOCAAntwerpBelgium
| | - Aaron J. Krych
- Orthopedics and Sports MedicineMayo ClinicRochesterMinnesotaUSA
| | - Allan B. Dietz
- Department of Laboratory Medicine and PathologyIMPACT; Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | | | - Daniel B. F. Saris
- Orthopedics and Sports MedicineMayo ClinicRochesterMinnesotaUSA,Orthopaedic SurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands,Reconstructive MedicineUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
7
|
Kubrova E, Su M, Galeano-Garces C, Galvan ML, Jerez S, Dietz AB, Smith J, Qu W, van Wijnen AJ. Differences in Cytotoxicity of Lidocaine, Ropivacaine, and Bupivacaine on the Viability and Metabolic Activity of Human Adipose-Derived Mesenchymal Stem Cells. Am J Phys Med Rehabil 2021; 100:82-91. [PMID: 32657816 PMCID: PMC11784493 DOI: 10.1097/phm.0000000000001529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We evaluated biological effects of distinct local anesthetics on human adipose-derived mesenchymal stem cells when applied to reduce periprocedural pain during mesenchymal stem cell injections. METHODS AND MATERIALS Metabolic activity (MTS assay), viability (Live/Dead stain), and gene expression (quantitative real-time reverse-transcriptase polymerase chain reaction) were measured in mesenchymal stem cells incubated with various concentrations of lidocaine, ropivacaine, or bupivacaine during a 12-hr time course. RESULTS Cell viability and metabolic activity decreased in a dose, time, and substance-specific manner after exposure to lidocaine, ropivacaine, and bupivacaine, with ropivacaine being the least cytotoxic. Cell viability decreases after brief exposure (<1.5 hrs) at clinically relevant concentrations (eg, 8 mg/ml of lidocaine, 2.5 mg/ml of ropivacaine or bupivacaine). Mesenchymal stem cells exposed to local anesthetics change their expression of mRNA biomarkers for stress response (EGR1, EGR2), proliferation (MKI67, HIST2H4A), ECM (COL1A1, COL3A1), and cell surface marker (CD105). CONCLUSIONS Local anesthetics are cytotoxic to clinical-grade human mesenchymal stem cells in a dose-, time-, and agent-dependent manner and change expression of ECM, proliferation, and cell surface markers. Lidocaine and bupivacaine are more cytotoxic than ropivacaine. Single-dose injections of local anesthetics may affect the biological properties of mesenchymal stem cells in vitro but may not affect the effective dose of MSCs in a clinical setting.
Collapse
Affiliation(s)
- Eva Kubrova
- From the Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota (EK, MS, JS, WQ); Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota (EK, MS, CG-G, MLG, SJ, AJvW); Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota (MS, CG-G, SJ, AJvW); Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China (MS); and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (ABD)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mathot F, Rbia N, Thaler R, Bishop AT, van Wijnen AJ, Shin AY. Introducing human adipose-derived mesenchymal stem cells to Avance Ⓡ nerve grafts and NeuraGen Ⓡ nerve guides. J Plast Reconstr Aesthet Surg 2020; 73:1473-1481. [PMID: 32418840 DOI: 10.1016/j.bjps.2020.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND When direct nerve coaptation is impossible after peripheral nerve injury, autografts, processed allografts, or conduits are used to bridge the nerve gap. The purpose of this study was to examine if human adipose-derived Mesenchymal Stromal/Stem Cells (MSCs) could be introduced to commercially available nerve graft substitutes and to determine cell distribution and the seeding efficiency of a dynamic seeding strategy. METHODS MTS assays examined the viability of human MSCs after introduction to the AvanceⓇ Nerve Graft and the NeuraGenⓇ Nerve Guide. MSCs were dynamically seeded on nerve substitutes for either 6, 12, or 24 h. Cell counts, live/dead stains, Hoechst stains, and Scanning Electron Microscopy (SEM) revealed the seeding efficiency and the distribution of MSCs after seeding. RESULTS The viability of MSCs was not affected by nerve substitutes. Dynamic seeding led to uniformly distributed MSCs over the surface of both nerve substitutes and revealed MSCs on the inner surface of the NeuraGenⓇ Nerve Guides. The maximal seeding efficiency of NeuraGenⓇ Nerve Guides (94%), obtained after 12 h was significantly higher than that of AvanceⓇ Nerve Grafts (66%) (p = 0.010). CONCLUSION Human MSCs can be dynamically seeded on AvanceⓇ Nerve Grafts and NeuraGenⓇ Nerve Guides. The optimal seeding duration was 12 h. MSCs were distributed in a uniform fashion on exposed surfaces. This study demonstrates that human MSCs can be effectively and efficiently seeded onto commercially available nerve autograft substitutes in a timely fashion and sets the stage for the clinical application of MSC-seeded nerve graft substitutes clinically.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
9
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
10
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Efficacy of Platelet-Rich Plasma Containing Xenogenic Adipose Tissue-Derived Stromal Cells on Restoring Intervertebral Disc Degeneration: A Preclinical Study in a Rabbit Model. Pain Res Manag 2019; 2019:6372356. [PMID: 31149318 PMCID: PMC6501249 DOI: 10.1155/2019/6372356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Objective Platelet-rich plasma (PRP) containing multiple growth factors is a promising strategy for disc degeneration. Thus, this study hypothesizes that the combination of PRP and adipose tissue-derived stromal cells (ADSCs) may repair degenerative disc more effectively than using each one of them alone. Methods The model of early intervertebral disc degeneration was induced by annular puncture in the New Zealand rabbit. Autologous PRP was extracted from fresh arterial blood by using two centrifugation techniques. ADSC was offered by the Center for Clinic Stem Cell Research. Four weeks after the first experiment, PRP or ADSCs or a combination of PRP and ADSCs was injected into the punctured intervertebral disc. Four weeks later, disc height and signal intensity on T2-weighted magnetic resonance imaging (MRI) were assessed. Results One month after puncture, we detected relatively narrow discs and lower signal intensity in MRI T2-weighted images. At four weeks after injection, the PRP-ADSC group statistically significantly restored discs, compared with PRP, ADSCs, or negative control group. Conclusions The combination of PRP and ADSCs shows an effective potential to restore degenerated intervertebral discs in the rabbit.
Collapse
|
12
|
Mathot F, Shin AY, Van Wijnen AJ. Targeted stimulation of MSCs in peripheral nerve repair. Gene 2019; 710:17-23. [PMID: 30849542 DOI: 10.1016/j.gene.2019.02.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have considerable translational potential in a wide variety of clinical disciplines and are the cellular foundation of individualized treatments of auto-immune, cardiac, neurologic and musculoskeletal diseases and disorders. While the cellular mechanisms by which MSCs exert their biological effects remain to be ascertained, it has been hypothesized that MSCs are supportive of local tissue repair through secretion of essential growth factors. Therapeutic applications of MSCs in peripheral nerve repair have recently been reported. This review focuses on how MSCs can promote nerve regeneration by conversion into Schwann-like cells, and discusses differentiation methods including delivery and dosing of naive or differentiated MSCs, as well as in vitro and in vivo outcomes. While MSC-based therapies for nerve repair are still in early stages of development, current progress in the field provides encouragement that MSCs may have utility in the treatment of patients with peripheral nerve injury.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| |
Collapse
|
13
|
Chen X, Foote A, Thibeault SL. Cell density, dimethylsulfoxide concentration and needle gauge affect hydrogel-induced bone marrow mesenchymal stromal cell viability. Cytotherapy 2017; 19:1522-1528. [PMID: 28986174 PMCID: PMC5723234 DOI: 10.1016/j.jcyt.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown potential therapeutic benefits for a range of medical disorders and continue to be a focus of intense scientific investigation. Transplantation of MSCs into injured tissue can improve wound healing, tissue regeneration and functional recovery. However, implanted cells rapidly lose their viability or fail to integrate into host tissue. Hydrogel-seeded bone marrow (BM)-MSCs offer improved viability in response to mechanical forces caused by syringe needles, cell density and dimethylsulfoxide (DMSO) concentration, which in turn, will help to clarify which factors are important for enhancing biomaterial-induced cell transplantation efficiency and provide much needed guidance for clinical trials. In this study, under the control of cell density (<2 × 107 cells/mL) and final DMSO concentration (<0.5%), hydrogel-induced BM-MSC viability remained >82% following syringe needle passage by 25- or 27-gauge needles, providing improved cell therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin – Madison, 5105 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082654316,
| | - Alexander Foote
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5118 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275,
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5107 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082636751,
| |
Collapse
|