1
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Dou D, Aiken J, Holzbaur EL. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. J Cell Biol 2024; 223:e202307092. [PMID: 38512027 PMCID: PMC10959120 DOI: 10.1083/jcb.202307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Smith IR, Hendricks EL, Latcheva NK, Marenda DR, Liebl FLW. The CHD Protein Kismet Restricts the Synaptic Localization of Cell Adhesion Molecules at the Drosophila Neuromuscular Junction. Int J Mol Sci 2024; 25:3074. [PMID: 38474321 PMCID: PMC10931923 DOI: 10.3390/ijms25053074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling enzymes CHD7 and CHD8, Kismet, represses the synaptic levels of several cell adhesion molecules. Neuroligins 1 and 3 and the integrins αPS2 and βPS are increased at kismet mutant synapses but Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic CAMs indirectly by activating transcription of gene products that promote intracellular vesicle trafficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons increases synaptic FasII while knock down of EndoB in kis mutants does not produce an additive increase in FasII. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads to a further increase in synaptic FasII in kis mutants. These data support the hypothesis that Kis influences the synaptic localization of FasII by promoting intracellular vesicle trafficking through the early endosome.
Collapse
Affiliation(s)
- Ireland R. Smith
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62025, USA
| | - Emily L. Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62025, USA
| | - Nina K. Latcheva
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA (D.R.M.)
- Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Daniel R. Marenda
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA (D.R.M.)
- Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Division of Biological Infrastructure, National Science Foundation, Alexandria, VA 22314, USA
| | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62025, USA
| |
Collapse
|
4
|
Dou D, Aiken J, Holzbaur ELF. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550521. [PMID: 37546777 PMCID: PMC10402060 DOI: 10.1101/2023.07.25.550521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adapter MADD, potentially preventing formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Jähne S, Mikulasch F, Heuer HGH, Truckenbrodt S, Agüi-Gonzalez P, Grewe K, Vogts A, Rizzoli SO, Priesemann V. Presynaptic activity and protein turnover are correlated at the single-synapse level. Cell Rep 2021; 34:108841. [PMID: 33730575 DOI: 10.1016/j.celrep.2021.108841] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
Synaptic transmission relies on the continual exocytosis and recycling of synaptic vesicles. Aged vesicle proteins are prevented from recycling and are eventually degraded. This implies that active synapses would lose vesicles and vesicle-associated proteins over time, unless the supply correlates to activity, to balance the losses. To test this hypothesis, we first model the quantitative relation between presynaptic spike rate and vesicle turnover. The model predicts that the vesicle supply needs to increase with the spike rate. To follow up this prediction, we measure protein turnover in individual synapses of cultured hippocampal neurons by combining nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence microscopy. We find that turnover correlates with activity at the single-synapse level, but not with other parameters such as the abundance of synaptic vesicles or postsynaptic density proteins. We therefore suggest that the supply of newly synthesized proteins to synapses is closely connected to synaptic activity.
Collapse
Affiliation(s)
- Sebastian Jähne
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Fabian Mikulasch
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Helge G H Heuer
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Katharina Grewe
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Angela Vogts
- NanoSIMS lab, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), von Siebold Str. 3a, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany.
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; Bernstein-Center for Computational Neuroscience, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| |
Collapse
|
6
|
Rebiai R, Givogri MI, Gowrishankar S, Cologna SM, Alford ST, Bongarzone ER. Synaptic Function and Dysfunction in Lysosomal Storage Diseases. Front Cell Neurosci 2021; 15:619777. [PMID: 33746713 PMCID: PMC7978225 DOI: 10.3389/fncel.2021.619777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Stephania M. Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Simon T. Alford
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Trikash I, Kasatkina L, Lykhmus O, Skok M. Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 2020; 138:104779. [PMID: 32474177 PMCID: PMC7256623 DOI: 10.1016/j.neuint.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.
Collapse
Affiliation(s)
- Irene Trikash
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
8
|
Tao-Cheng JH. Immunogold labeling of synaptic vesicle proteins in developing hippocampal neurons. Mol Brain 2020; 13:9. [PMID: 31959215 PMCID: PMC6971973 DOI: 10.1186/s13041-020-0549-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023] Open
Abstract
Synaptic vesicles (SV) contain high concentrations of specific proteins. How these proteins are transported from soma to synapses, and how they become concentrated at SV clusters at presynaptic terminals were examined by immunogold electron microscopy in dissociated rat hippocampal neurons at 3-6 days in culture, a developmental stage when axonal transport of SV proteins is robust. In neuronal somas, labels for the SV integral membrane proteins (synaptophysin, SV2, VAMP/synaptobrevin, and synaptotagmin) were localized at Golgi complexes and other membranous structures that were dispersed in the cytoplasm as individual vesicle/vacuoles. These vesicles/vacuoles became aggregated in axons, with the size of aggregates ranging from 0.2 to 2 μm in length. Pleomorphic vesicle/vacuoles within the aggregate were typically larger (50-300 nm) than SVs, which were uniform in size at ~ 40 nm. These pleomorphic vesicles/vacuoles are probably transport cargos carrying SV integral membrane proteins from the soma, and then are preferentially sorted into axons at early developmental stages. Serial thin sections of young axons indicated that many labeled aggregates were not synaptic, and in fact, some of these axons were without dendritic contacts. In contrast, labels for two SV-associated proteins, synapsin I and α-synuclein, were not localized at the Golgi complexes or associated with membranous structures in the soma, but were dispersed in the cytoplasm. However, these SV-associated proteins became highly concentrated on clusters of SV-like vesicles in axons, and such clusters were already distinctive in axons as early as 3 days in culture. These clusters consisted of ~ 4-30 vesicles in single thin sections, and the vesicles were of a uniform size (~ 40 nm). Serial sectioning analysis showed that these clusters could be part of nascent synapses or exist in axons without any dendritic contact. Importantly, the vesicles were intensely labeled for SV integral membrane proteins as well as SV-associated proteins. Thus, these EM observations reveal that the two groups of proteins, SV integral membrane and SV-associated, proceed through different routes of biosynthesis and axon transport, and are only sorted into the same final compartment, SV clusters, when they are in the axons.
Collapse
Affiliation(s)
- Jung-Hwa Tao-Cheng
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2018; 25:4703-4716. [PMID: 28173138 DOI: 10.1093/hmg/ddw297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of infant mortality. The disease is characterized by progressive muscle weakness and paralysis of axial and proximal limb muscles. It is caused by homozygous loss or mutation of the SMN1 gene, which codes for the Survival Motor Neuron (SMN) protein. In mouse models of the disease, neurotransmitter release is greatly impaired, but the molecular mechanisms of the synaptic dysfunction and the basis of the selective muscle vulnerability are unknown. In the present study, we investigated these open questions by comparing the molecular and functional properties of nerve terminals in severely and mildly affected muscles in the SMNΔ7 mouse model. We discovered that synaptotagmin-1 (Syt1) was developmentally downregulated in nerve terminals of highly affected muscles but not in low vulnerable muscles. Additionally, the expression levels of synaptotagmin-2 (Syt2), and its interacting protein, synaptic vesicle protein 2 (SV2) B, were reduced in proportion to the degree of muscle vulnerability while other synaptic proteins, such as syntaxin-1B (Stx1B) and synaptotagmin-7 (Syt7), were not affected. Consistently with the extremely low levels of both Syt-isoforms, and SV2B, in most affected neuromuscular synapses, the functional analysis of neurotransmission revealed highly reduced evoked release, altered short-term plasticity, low release probability, and inability to modulate normally the number of functional release sites. Together, we propose that the strong reduction of Syt2 and SV2B are key factors of the functional synaptic alteration and that the physiological downregulation of Syt1 plays a determinant role in muscle vulnerability in SMA.
Collapse
Affiliation(s)
- Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Mario Lopez-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| |
Collapse
|
11
|
Li H, Santos MS, Park CK, Dobry Y, Voglmaier SM. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3. Front Cell Neurosci 2017; 11:324. [PMID: 29123471 PMCID: PMC5662623 DOI: 10.3389/fncel.2017.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Magda S Santos
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chihyung K Park
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Yuriy Dobry
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Voglmaier
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Rampérez A, Sánchez-Prieto J, Torres M. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells. J Neurochem 2017; 141:662-675. [PMID: 28295320 DOI: 10.1111/jnc.14017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/26/2022]
Abstract
The recycling of synaptic vesicle (SV) proteins and transmitter release occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the adaptor protein 1 and 3 complex (AP-1/AP-3). As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 min after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. Cover Image for this issue: doi. 10.1111/jnc.13801.
Collapse
Affiliation(s)
- Alberto Rampérez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
13
|
Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect Immun 2016; 85:IAI.00795-16. [PMID: 27795365 DOI: 10.1128/iai.00795-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (HN) and a receptor binding domain (HC). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured HCA1 and HCA2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. HCA1 and HCA2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that HCA2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, HCA2 and HCA1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of HCA1 and HCA2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models.
Collapse
|
14
|
Diseases of the Synaptic Vesicle: A Potential New Group of Neurometabolic Disorders Affecting Neurotransmission. Semin Pediatr Neurol 2016; 23:306-320. [PMID: 28284392 DOI: 10.1016/j.spen.2016.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The general concept of inborn error of metabolism is currently evolving into the interface between classical biochemistry and cellular biology. Basic neuroscience is providing increasing knowledge about the mechanisms of neurotransmission and novel related disorders are being described. There is a necessity of updating the classic concept of "inborn error of neurotransmitters (NT)" that considers mainly defects of synthesis and catabolism and transport of low weight NT molecules. Monogenic defects of the synaptic vesicle (SV), and especially those affecting the SV cycle are a potential new group of NT disorders since they end up in abnormal NT turnover and release. The most common clinical manifestations include epilepsy, intellectual disability, autism and movement disorders, and are in the continuum symptoms of synaptopathies. Interestingly, brain malformations and neurodegenerative conditions are also present within SV diseases. Metabolomics, proteomics, and other -omic techniques probably will provide biomarkers and contribute to therapeutic targets in the future.
Collapse
|
15
|
The structure and function of presynaptic endosomes. Exp Cell Res 2015; 335:172-9. [DOI: 10.1016/j.yexcr.2015.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022]
|
16
|
Calabrese B, Halpain S. Differential targeting of dynamin-1 and dynamin-3 to nerve terminals during chronic suppression of neuronal activity. Mol Cell Neurosci 2015; 68:36-45. [PMID: 25827095 DOI: 10.1016/j.mcn.2015.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Neurons express three closely related dynamin genes. Dynamin 1 has long been implicated in the regulation of synaptic vesicle recycling in nerve terminals, and dynamins 2 and 3 were more recently shown also to contribute to synaptic vesicle recycling in specific and distinguishable ways. In cultured hippocampal neurons we found that chronic suppression of spontaneous network activity differentially regulated the targeting of endogenous dynamins 1 and 3 to nerve terminals, while dynamin 2 was unaffected. Specifically, when neural activity was chronically silenced for 1-2weeks by tetrodotoxin (TTX), the clustering of dynamin 1 at nerve terminals was reduced, while the clustering of dynamin 3 significantly increased. Moreover, dynamin 3 clustering was induced within hours by the sustained blockade of AMPA receptors, suggesting that AMPA receptors may function to prevent Dyn3 accumulation within nerve terminals. Clustering of dynamin 3 was induced by an antagonist of the calcium-dependent protein phosphatase calcineurin, but was not dependent upon intact actin filaments. TTX-induced clustering of Dyn3 occurred with a markedly slower time-course than the previously described clustering of synapsin 1. Potassium-induced depolarization rapidly de-clustered dynamin 3 from nerve terminals within minutes. These results, which have implications for homeostatic synapse restructuring, indicate that the three dynamins have evolved different regulatory mechanisms for trafficking to and from nerve terminals in response to changes in neural activity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States.
| | - Shelley Halpain
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
17
|
de Ceglia R, Chaabane L, Biffi E, Bergamaschi A, Ferrigno G, Amadio S, Del Carro U, Mazzocchi N, Comi G, Bianchi V, Taverna S, Forti L, D'Adamo P, Martino G, Menegon A, Muzio L. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate. Brain Behav Immun 2015; 45:263-76. [PMID: 25499583 DOI: 10.1016/j.bbi.2014.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Linda Chaabane
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy; Department of Neurology, Institute of Experimental Neurology (INSPE), Vita Salute San Raffaele University, Milan, Italy
| | - Emilia Biffi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Bergamaschi
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Giancarlo Ferrigno
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Stefano Amadio
- Neurophysiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Ubaldo Del Carro
- Neurophysiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Nausicaa Mazzocchi
- Advanced Light and Electron Microscopy Bio-Imaging Centre, Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology (INSPE), Vita Salute San Raffaele University, Milan, Italy
| | - Veronica Bianchi
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| | - Stefano Taverna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lia Forti
- Center for Neuroscience and Dept. of Theoretical and Applied Sciences, Biomedical Division, University of Insubria, 21052 Busto Arsizio, Italy
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy.
| | - Andrea Menegon
- Advanced Light and Electron Microscopy Bio-Imaging Centre, Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Muzio
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy.
| |
Collapse
|
18
|
Truckenbrodt S, Rizzoli SO. Spontaneous vesicle recycling in the synaptic bouton. Front Cell Neurosci 2014; 8:409. [PMID: 25538561 PMCID: PMC4259163 DOI: 10.3389/fncel.2014.00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Abstract
The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.
Collapse
Affiliation(s)
- Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany ; International Max Planck Research School for Molecular Biology Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| |
Collapse
|
19
|
Abstract
Ca(2+)/calmodulin-dependent Kinase II (CaMKII) is a calcium-regulated serine threonine kinase whose functions include regulation of synaptic activity (Coultrap and Bayer 2012). A postsynaptic role for CaMKII in triggering long-lasting changes in synaptic activity at some synapses has been established, although the relevant downstream targets remain to be defined (Nicoll and Roche 2013). A presynaptic role for CaMKII in regulating synaptic activity is less clear with evidence for CaMKII either increasing or decreasing release of neurotransmitter from synaptic vesicles (SVs) (Wang 2008). In this issue Hoover et al. (2014) further expand upon the role of CaMKII in presynaptic cells by demonstrating a role in regulating another form of neuronal signaling, that of dense core vesicles (DCVs), whose contents can include neuropeptides and insulin-related peptides, as well as other neuromodulators such as serotonin and dopamine (Michael et al. 2006). Intriguingly, Hoover et al. (2014) demonstrate that active CaMKII is required cell autonomously to prevent premature release of DCVs after they bud from the Golgi in the soma and before they are trafficked to their release sites in the axon. This role of CaMKII requires it to have kinase activity as well as an activating calcium signal released from internal ER stores via the ryanodine receptor. Not only does this represent a novel function for CaMKII but also it offers new insights into how DCVs are regulated. Compared to SVs we know much less about how DCVs are trafficked, docked, and primed for release. This is despite the fact that neuropeptides are major regulators of human brain function, including mood, anxiety, and social interactions (Garrison et al. 2012; Kormos and Gaszner 2013; Walker and Mcglone 2013). This is supported by studies showing mutations in genes for DCV regulators or cargoes are associated with human mental disorders (Sadakata and Furuichi 2009; Alldredge 2010; Quinn 2013; Quinn et al. 2013). We lack even a basic understanding of DCV function, such as, are there defined DCV docking sites and, if so, how are DCVs delivered to these release sites? These results from Hoover et al. (2014) promise to be a starting point in answering some of these questions.
Collapse
|
20
|
Abstract
To maintain communication, neurons must recycle their synaptic vesicles with high efficiency. This process places a huge burden on the clathrin-mediated endocytic machinery, but the consequences of this are poorly understood. We found that the amount of clathrin in a presynaptic terminal is not fixed. During stimulation, clathrin moves out of synapses as a function of stimulus strength and neurotransmitter release probability, which, together with membrane coat formation, transiently reduces the available pool of free clathrin triskelia. Correlative functional and morphological experiments in cholinergic autapses established by superior cervical ganglion neurons in culture show that presynaptic terminal function is compromised if clathrin levels fall by 20% after clathrin heavy chain knock down using RNAi. Synaptic transmission is depressed due to a reduction of cytoplasmic and readily releasable pools of vesicles. However, synaptic depression reverts after dialysis of exogenous clathrin, thus compensating RNAi-induced depletion. Lowering clathrin levels also reduces quantal size, which occurs concomitantly with a decrease in the size of synaptic vesicles. Large dense-core vesicles are unaffected by clathrin knock down. Together, our results show that clathrin levels are a dynamic property of presynaptic terminals that can influence short-term plasticity in a stimulus-dependent manner.
Collapse
|
21
|
Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 2014; 5:4509. [PMID: 25060237 PMCID: PMC4124874 DOI: 10.1038/ncomms5509] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023] Open
Abstract
Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity. Although many proteins adopt uneven distributions in the plasma membrane, it is not clear how these nanoscale heterogeneities relate to the general protein patterning of the membrane. Saka et al. use click chemistry to reveal the mesoscale organization of membrane proteins into multi-protein assemblies.
Collapse
Affiliation(s)
- Sinem K Saka
- 1] Department of Neuro- and Sensory Physiology, University of Göttingen Medical Centre, and Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany [2] International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Alf Honigmann
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Centre, and Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| |
Collapse
|
22
|
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 2014; 344:1023-8. [PMID: 24876496 DOI: 10.1126/science.1252884] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an "average" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.
Collapse
Affiliation(s)
- Benjamin G Wilhelm
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany. International Max Planck Research School Neurosciences, 37077 Göttingen, Germany
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany. International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Katharina Kröhnert
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Christina Schäfer
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Seong Joo Koo
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gala A Claßen
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michael Krauss
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany. Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
23
|
Martinelli D, Dionisi-Vici C. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci 2014; 1314:55-63. [DOI: 10.1111/nyas.12426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Diego Martinelli
- Unit of Metabolism; Department of Pediatrics; Bambino Gesu Children's Hospital; Rome Italy
- Section on Translational Neuroscience; Molecular Medicine Program; NICHD/NIH; Bethesda Maryland
| | - Carlo Dionisi-Vici
- Unit of Metabolism; Department of Pediatrics; Bambino Gesu Children's Hospital; Rome Italy
| |
Collapse
|
24
|
Abstract
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.
Collapse
Affiliation(s)
- Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen European Neuroscience Institute, Göttingen, Germany
| |
Collapse
|
25
|
An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment. Genetics 2013; 194:143-61. [PMID: 23633144 DOI: 10.1534/genetics.112.147348] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neurons must cope with extreme membrane trafficking demands to produce axons with organelle compositions that differ dramatically from those of the cell soma and dendrites; however, the mechanism by which they accomplish this is not understood. Here we use electron microscopy and quantitative imaging of tagged organelles to show that Caenorhabditis elegans axons lacking UNC-16 (JIP3/Sunday Driver) accumulate Golgi, endosomes, and lysosomes at levels up to 10-fold higher than wild type, while ER membranes are largely unaffected. Time lapse microscopy of tagged lysosomes in living animals and an analysis of lysosome distributions in various regions of unc-16 mutant axons revealed that UNC-16 inhibits organelles from escaping the axon initial segment (AIS) and moving to the distal synaptic part of the axon. Immunostaining of native UNC-16 in C. elegans neurons revealed a localized concentration of UNC-16 at the initial segment, although UNC-16 is also sparsely distributed in distal regions of axons, including the synaptic region. Organelles that escape the AIS in unc-16 mutants show bidirectional active transport within the axon commissure that occasionally deposits them in the synaptic region, where their mobility decreases and they accumulate. These results argue against the long-standing, untested hypothesis that JIP3/Sunday Driver promotes anterograde organelle transport in axons and instead suggest an organelle gatekeeper model in which UNC-16 (JIP3/Sunday Driver) selectively inhibits the escape of Golgi and endosomal organelles from the AIS. This is the first evidence for an organelle gatekeeper function at the AIS, which could provide a regulatory node for controlling axon organelle composition.
Collapse
|
26
|
Shetty A, Sytnyk V, Leshchyns'ka I, Puchkov D, Haucke V, Schachner M. The neural cell adhesion molecule promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from adaptor protein 3 (AP-3)- to AP-2-dependent mechanisms. J Neurosci 2013; 33:16828-45. [PMID: 24133283 PMCID: PMC6618524 DOI: 10.1523/jneurosci.2192-13.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.
Collapse
Affiliation(s)
- Aparna Shetty
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dmytro Puchkov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, 13125 Berlin, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, and
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
27
|
Study on the dynamic changes in synaptic vesicle-associated protein and axonal transport protein combined with LPS neuroinflammation model. ISRN NEUROLOGY 2013; 2013:496079. [PMID: 24205442 PMCID: PMC3800604 DOI: 10.1155/2013/496079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/14/2013] [Indexed: 11/17/2022]
Abstract
Microglia activation is the major component of inflammation that constitutes the characteristic of neurodegenerative disease. A large amount of researches have demonstrated that inflammation involved in the pathogenesis of PD process activated microglia acting on the neurons through the release of a variety of inflammatory factors. However, the molecular mechanism underlying how it does work on neurons is still unclear. Here, we show that intracerebral injections of LPS induced Parkinson's disease pathology in C57BL/6J mice. Furthermore, study on the dynamic changes in Synaptic vesicle-associated protein and axonal transport Protein in this process. The results indicated that after administration of LPS in the brain, the inflammatory levels of TNF-α and IL-1β both are elevated, and have a time-dependent.
Collapse
|
28
|
Abstract
The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.
Collapse
|
29
|
Kotani T, Toyono T, Seta Y, Kitou A, Kataoka S, Toyoshima K. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds. Cell Tissue Res 2013; 353:391-8. [DOI: 10.1007/s00441-013-1629-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
|
30
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
31
|
Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles. J Biol Chem 2012; 287:35658-35668. [PMID: 22908222 PMCID: PMC3471705 DOI: 10.1074/jbc.m112.398883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins.
Collapse
Affiliation(s)
- Sung E Kwon
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
32
|
Lloyd TE, Machamer J, O'Hara K, Kim JH, Collins SE, Wong MY, Sahin B, Imlach W, Yang Y, Levitan ES, McCabe BD, Kolodkin AL. The p150(Glued) CAP-Gly domain regulates initiation of retrograde transport at synaptic termini. Neuron 2012; 74:344-60. [PMID: 22542187 DOI: 10.1016/j.neuron.2012.02.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor neuron disease.
Collapse
Affiliation(s)
- Thomas E Lloyd
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 2012; 80:1662-9. [PMID: 22392932 DOI: 10.1128/iai.00057-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most toxic proteins for humans. While BoNTs cause flaccid paralysis, TeNT causes spastic paralysis. Characterized BoNT serotypes enter neurons upon binding dual receptors, a ganglioside and a neuron-specific protein, either synaptic vesicle protein 2 (SV2) or synaptotagmin, while TeNT enters upon binding gangliosides as dual receptors. Recently, TeNT was reported to enter central nervous system (CNS) neurons upon synaptic vesicle cycling that was mediated by the direct binding to SV2, implying that TeNT and BoNT utilize common mechanisms to enter CNS neurons. This prompted an assessment of TeNT entry into CNS neurons, using the prototypic BoNT serotype A as a reference for SV2-mediated entry into synaptic vesicles, analyzing the heavy-chain receptor binding domain (HCR) of each toxin. Synaptic vesicle cycling stimulated the entry of HCR/A into neurons, while HCR/T entered neurons with similar levels of efficiency in depolarized and nondepolarized neurons. ImageJ analysis identified two populations of cell-associated HCR/T in synaptic vesicle cycling neurons, a major population which segregated from HCR/A and a minor population which colocalized with HCR/A. HCR/T did not inhibit HCR/A entry into neurons in competition experiments and did not bind SV2, the protein receptor for BoNT/A. Intoxication experiments showed that TeNT efficiently cleaved VAMP2 in depolarized neurons and neurons blocked for synaptic vesicle cycling. These experiments demonstrate that TeNT enters neurons by two pathways, one independent of stimulated synaptic vesicle cycling and one by synaptic vesicles independent of SV2, showing that TeNT and BoNT/A enter neurons by unique mechanisms.
Collapse
|
34
|
Rezaï X, Faget L, Bednarek E, Schwab Y, Kieffer BL, Massotte D. Mouse δ opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells. Cell Mol Neurobiol 2012; 32:509-16. [PMID: 22252784 DOI: 10.1007/s10571-011-9791-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/22/2011] [Indexed: 11/28/2022]
Abstract
Delta opioid receptors participate in the control of chronic pain and emotional responses. Recent data have also identified their implication in drug-context associations pointing to a modulatory role on hippocampal activity. We used fluorescent knock-in mice that express a functional delta opioid receptor fused at its carboxy terminus with the green fluorescent protein in place of the native receptor to investigate the receptor neuroanatomical distribution in this structure. Fine mapping of the pyramidal layer was performed in hippocampal acute brain slices and organotypic cultures using fluorescence confocal imaging, co-localization with pre- and postsynaptic markers and correlative light-electron microscopy. The different approaches concurred to identify delta opioid receptors on presynaptic afferents to glutamatergic principal cells. In the latter, only scarce receptors were detected that were confined within the Golgi or vesicular intracellular compartments with no receptor present at the cell surface. In the mouse hippocampus, expression of functional delta opioid receptors is therefore mostly associated with interneurons emphasizing a presynaptic modulatory effect on the pyramidal cell firing rate.
Collapse
Affiliation(s)
- Xavier Rezaï
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS, Illkirch, France
| | | | | | | | | | | |
Collapse
|
35
|
Kroken AR, Karalewitz APA, Fu Z, Kim JJP, Barbieri JT. Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons. J Biol Chem 2011; 286:26828-37. [PMID: 21632541 PMCID: PMC3143643 DOI: 10.1074/jbc.m111.254086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/17/2011] [Indexed: 11/06/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.
Collapse
Affiliation(s)
- Abby R. Kroken
- From the Departments of Microbiology and Molecular Genetics and
| | | | - Zhuji Fu
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jung-Ja P. Kim
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | |
Collapse
|
36
|
Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E. The regulation of synaptic function by alpha-synuclein. Commun Integr Biol 2011; 3:106-9. [PMID: 20585500 DOI: 10.4161/cib.3.2.10964] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022] Open
Abstract
The cytosolic protein alpha-synuclein is enriched at the pre-synaptic terminals of almost all types of neurons in the central nervous system. alpha-Synuclein overexpression and the expression of three different mutants have been shown to sustain the pathogenesis of selected forms of Parkinson's disease. The localization of the protein and the defects found in knocked out or transgenic animals suggest a role of alpha-synuclein in the regulation of synaptic efficiency. However, the precise function of the protein and the molecular mechanisms of its action are still unclear. At synapses the synaptic vesicle release cycle is a finely tuned process composed of sequential steps that require the interconnected participation of several proteins and cytoskeletal elements. Actin microfilaments are required for the regulation of synaptic vesicle mobilization between different functional pools, for their organization at the active zone and influence the exocytotic process. We recently identified actin as a possible target of alpha-synuclein function. Through its binding to actin and the regulation of actin dynamics, alpha-synuclein could participate in the tuning of the vesicle release process, thereby modulating synaptic function and plasticity.
Collapse
|
37
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
38
|
Ginsberg SD, Mufson EJ, Alldred MJ, Counts SE, Wuu J, Nixon RA, Che S. Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. J Chem Neuroanat 2011; 42:102-10. [PMID: 21669283 DOI: 10.1016/j.jchemneu.2011.05.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 02/02/2023]
Abstract
Endocytic system dysfunction is one of the earliest disturbances that occur in Alzheimer's disease (AD), and may underlie the selective vulnerability of cholinergic basal forebrain (CBF) neurons during the progression of dementia. Herein we report that genes regulating early and late endosomes are selectively upregulated within CBF neurons in mild cognitive impairment (MCI) and AD. Specifically, upregulation of rab4, rab5, rab7, and rab27 was observed in CBF neurons microdissected from postmortem brains of individuals with MCI and AD compared to age-matched control subjects with no cognitive impairment (NCI). Upregulated expression of rab4, rab5, rab7, and rab27 correlated with antemortem measures of cognitive decline in individuals with MCI and AD. qPCR validated upregulation of these select rab GTPases within microdissected samples of the basal forebrain. Moreover, quantitative immunoblot analysis demonstrated upregulation of rab5 protein expression in the basal forebrain of subjects with MCI and AD. The elevation of rab4, rab5, and rab7 expression is consistent with our recent observations in CA1 pyramidal neurons in MCI and AD. These findings provide further support that endosomal pathology accelerates endocytosis and endosome recycling, which may promote aberrant endosomal signaling and neurodegeneration throughout the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S. Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011; 22:631-9. [PMID: 20847427 DOI: 10.3233/jad-2010-101080] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endocytic alterations are one of the earliest changes to occur in Alzheimer's disease (AD), and are hypothesized to be involved in the selective vulnerability of specific neuronal populations during the progression of AD. Previous microarray and real-time quantitative PCR experiments revealed an upregulation of the early endosomal effector rab5 and the late endosome constituent rab7 in the hippocampus of people with mild cognitive impairment (MCI) and AD. To assess whether these select rab GTPase gene expression changes are reflected in protein levels within selectively vulnerable brain regions (basal forebrain, frontal cortex, and hippocampus) and relatively spared areas (cerebellum and striatum), we performed immunoblot analysis using antibodies directed against rab5 and rab7 on postmortem human brain tissue harvested from cases with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, and AD. Results indicate selective upregulation of both rab5 and rab7 levels within basal forebrain, frontal cortex, and hippocampus in MCI and AD, which also correlated with Braak staging. In contrast, no differences in protein levels were found in the less vulnerable cerebellum and striatum. These regional immunoblot assays are consistent with single cell gene expression data, and provide protein-based evidence for endosomal markers contributing to the vulnerability of cell types within selective brain regions during the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Neuropeptide gene families in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 692:98-137. [PMID: 21189676 DOI: 10.1007/978-1-4419-6902-6_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptides are short sequences ofamino acids that function in all multicellular organisms to communicate information between cells. The first sequence ofa neuropeptide was reported in 1970' and the number of identified neuropeptides remained relatively small until the 1990s when the DNA sequence of multiple genomes revealed treasure troves ofinformation. Byblasting away at the genome, gene families, the sizes ofwhich were previously unknown, could now be determined. This information has led to an exponential increase in the number of putative neuropeptides and their respective gene families. The molecular biology age greatly benefited the neuropeptide field in the nematode Caenorhabditis elegans. Its genome was among the first to be sequenced and this allowed us the opportunity to screen the genome for neuropeptide genes. Initially, the screeningwas slow, as the Genefinder and BLAST programs had difficulty identifying small genes and peptides. However, as the bioinformatics programs improved, the extent of the neuropeptide gene families in C. elegans gradually emerged.
Collapse
|
41
|
Beug ST, Parks RJ, McBride HM, Wallace VA. Processing-dependent trafficking of Sonic hedgehog to the regulated secretory pathway in neurons. Mol Cell Neurosci 2010; 46:583-96. [PMID: 21182949 DOI: 10.1016/j.mcn.2010.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/25/2010] [Accepted: 12/09/2010] [Indexed: 01/22/2023] Open
Abstract
Neurons are an important source of the secreted morphogen Sonic hedgehog (Shh), however, little is known about neuron-specific regulation of Shh transport and secretion. To study this process, we investigated the subcellular distribution of Shh in primary neurons and differentiated cells of a neuroendocrine cell line by fluorescence microscopy and biochemical fractionation. In retinal ganglion cells, endogenous Shh was distributed as intra- and extracellular puncta at the soma, dendrites, axons and neurite terminals. Shh(+) puncta move bidirectionally and colocalize with markers of synaptic vesicles (SVs) and dense core granules. Lipid modification and proteolysis were required for Shh sorting to SVs and cell surface association. Finally, consistent with its association with regulated secretory vesicles, Shh secretion could be induced under depolarizing conditions. Taken together, these observations suggest that long-range Shh transport and signalling in neurons involves trafficking to the regulated secretory pathway and cell surface accumulation of Shh on axons and suggests a link between neuronal activity and Shh release.
Collapse
Affiliation(s)
- Shawn T Beug
- Vision Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Murthy K, Bhat JM, Koushika SP. In vivo imaging of retrogradely transported synaptic vesicle proteins in Caenorhabditis elegans neurons. Traffic 2010; 12:89-101. [PMID: 21029289 DOI: 10.1111/j.1600-0854.2010.01127.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Axonal transport is an essential process that carries cargoes in the anterograde direction to the synapse and in the retrograde direction back to the cell body. We have developed a novel in vivo method to exclusively mark and dynamically track retrogradely moving compartments carrying specific endogenous synaptic vesicle proteins in the Caenorhabditis elegans model. Our method is based on the uptake of a fluorescently labeled anti-green fluorescent protein (GFP) antibody delivered in an animal expressing the synaptic vesicle protein synaptobrevin-1::GFP in neurons. We show that this method largely labels retrogradely moving compartments. Very little labeling is observed upon blocking vesicle exocytosis or if the synapse is physically separated from the cell body. The extent of labeling is also dependent on the dyenin-dynactin complex. These data support the interpretation that the labeling of synaptobrevin-1::GFP largely occurs after vesicle fusion and the major labeling likely takes place at the synapse. Further, we observe that the retrograde compartment carrying synaptobrevin contains synaptotagmin but lacks the endosomal marker RAB-5. This labeling method is very general and can be readily adapted to any transmembrane protein on synaptic vesicles with a GFP tag inside the vesicle and can also be extended to other model systems.
Collapse
Affiliation(s)
- Kausalya Murthy
- Neurobiology, NCBS-TIFR, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
43
|
Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG, Lehrman EK, Tada M, Gengyo-Ando K, Wang GJ, Goodman M, Mitani S, Kontani K, Katada T, Shen K. An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron 2010; 66:710-23. [PMID: 20547129 DOI: 10.1016/j.neuron.2010.04.033] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2010] [Indexed: 12/24/2022]
Abstract
Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.
Collapse
Affiliation(s)
- Matthew P Klassen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meldolesi J. Neurite outgrowth: this process, first discovered by Santiago Ramon y Cajal, is sustained by the exocytosis of two distinct types of vesicles. ACTA ACUST UNITED AC 2010; 66:246-55. [PMID: 20600308 DOI: 10.1016/j.brainresrev.2010.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/26/2023]
Abstract
Neurite outgrowth is a fundamental process in the differentiation of neurons. The first, seminal study documenting the generation of "appendages" (now known as filopodia and lamellipodia) on the "cones d'accroissement," the specialized growth cones at the tips of neurites, was reported by Cajal still in the XIXth century, investigating chicken neurons embryos stained by the Golgi's reazione nera. Since then, studies have continued using, in addition to brain tissues, powerful in vitro models, i.e. primary cultures of pyramidal neurons from the hippocampus and neurosecretory cell lines, in particular PC12 cells. These studies have documented that neuronal neurites, upon sprouting from the cell body, give rise to both axons and dendrites. The specificity of these differentiated neurites depends on the diffusion barrier established at the initial segment of the axon and on the specialized domains, spines and presynaptic boutons, assembled around complexes of scaffold proteins. The two main, coordinate mechanisms that support neurite outgrowth are (a) the rearrangement of the cytoskeleton and (b) the expansion of the plasma membrane due to the exo/endocytosis of specific vesicles, distinct from those filled with neurotransmitters (clear and dense-core vesicles). The latter process is the main task of this review. In axons the surface-expanding exocytoses are concentrated at the growth cones; in dendrites they may be more distributed along the shaft. At least two types of exocytic vesicles appear to be involved, the enlargeosomes, positive for VAMP4, during early phases of development, and Ti-VAMP-positive vesicles later on. Outgrowth studies, that are now intensely pursued, have already yielded results of great importance in brain cell biology and function, and are playing an increasing role in pathology and medicine.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and San Raffaele Institute, IIT Section of Molecular Neuroscience, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
45
|
Chua JJE, Kindler S, Boyken J, Jahn R. The architecture of an excitatory synapse. J Cell Sci 2010; 123:819-23. [PMID: 20200227 DOI: 10.1242/jcs.052696] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- John J E Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
46
|
Shupliakov O, Brodin L. Recent insights into the building and cycling of synaptic vesicles. Exp Cell Res 2010; 316:1344-50. [PMID: 20211177 DOI: 10.1016/j.yexcr.2010.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
The synaptic vesicle is currently the most well-characterized cellular organelle. During neurotransmitter release it undergoes multiple cycles of exo- and endocytosis. Despite this the vesicle manages to retain its protein and lipid composition. How does this happen? Here we provide a brief overview of the molecular architecture of the synaptic vesicle, and discuss recent studies investigating single vesicle behavior and the mechanisms controlling the vesicle's molecular contents.
Collapse
Affiliation(s)
- Oleg Shupliakov
- Department of Neuroscience, DBRM, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
47
|
Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release. Neurochem Int 2009; 55:724-31. [PMID: 19631248 DOI: 10.1016/j.neuint.2009.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO ( approximately 10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[(14)C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca(2+) or Mg(2+)/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.
Collapse
|
48
|
Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, Wastling JM, Tomley FM, Sinden RE. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 2009; 9:1142-51. [PMID: 19206106 DOI: 10.1002/pmic.200800404] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14-fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC-MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion.
Collapse
Affiliation(s)
- Kalpana Lal
- Division of Cell and Molecular Biology, Imperial College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Brown HM, Van Epps HA, Goncharov A, Grant BD, Jin Y. The JIP3 scaffold protein UNC-16 regulates RAB-5 dependent membrane trafficking at C. elegans synapses. Dev Neurobiol 2009; 69:174-90. [PMID: 19105215 DOI: 10.1002/dneu.20690] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
How endosomes contribute to the maintenance of vesicular structures at presynaptic terminals remains controversial and poorly understood. Here, we have investigated synaptic endosomal compartments in the presynaptic terminals of C. elegans GABAergic motor neurons. Using RAB reporters, we find that several subsynaptic compartments reside in, or near, presynaptic regions. Loss of function in the C. elegans JIP3 protein, UNC-16, causes a RAB-5-containing compartment to accumulate abnormally at presynaptic terminals. Ultrastructural analysis shows that synapses in unc-16 mutants contain reduced number of synaptic vesicles, accompanied by an increase in the size and number of cisternae. FRAP analysis revealed a slow recovery of RAB-5 in unc-16 mutants, suggestive of an impairment of RAB-5 activity state and local vesicular trafficking. Overexpression of RAB-5:GDP partially suppresses, whereas overexpression of RAB-5:GTP enhances, the synaptic defects of unc-16 mutants. Our data demonstrate a novel function of UNC-16 in the regulation of synaptic membrane trafficking and suggest that the synaptic RAB-5 compartment contributes to synaptic vesicle biogenesis or maintenance.
Collapse
Affiliation(s)
- Heather M Brown
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
50
|
Jang DJ, Park SW, Kaang BK. The role of lipid binding for the targeting of synaptic proteins into synaptic vesicles. BMB Rep 2009; 42:1-5. [DOI: 10.5483/bmbrep.2009.42.1.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|