1
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
2
|
Yang H, Han F, Wang Q. A large-scale neuronal network modelling study: Stimulus size modulates gamma oscillations in the primary visual cortex by long-range connections. Eur J Neurosci 2024; 60:4224-4243. [PMID: 38812400 DOI: 10.1111/ejn.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Stimulus size modulation of neuronal firing activity is a fundamental property of the primary visual cortex. Numerous biological experiments have shown that stimulus size modulation is affected by multiple factors at different spatiotemporal scales, but the exact pathways and mechanisms remain incompletely understood. In this paper, we establish a large-scale neuronal network model of primary visual cortex with layer 2/3 to study how gamma oscillation properties are modulated by stimulus size and especially how long-range connections affect the modulation as realistic neuronal properties and spatial distributions of synaptic connections are considered. It is shown that long-range horizontal synaptic connections are sufficient to produce dimensional modulation of firing rates and gamma oscillations. In particular, with increasing grating stimulus size, the firing rate increases and then decreases, the peak frequency of gamma oscillations decreases and the spectral power increases. These are consistent with biological experimental observations. Furthermore, we explain in detail how the number and spatial distribution of long-range connections affect the size modulation of gamma oscillations by using the analysis of neuronal firing activity and synaptic current fluctuations. Our results provide a mechanism explanation for size modulation of gamma oscillations in the primary visual cortex and reveal the important and unique role played by long-range connections, which contributes to a deeper understanding of the cognitive function of gamma oscillations in visual cortex.
Collapse
Affiliation(s)
- Hao Yang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
3
|
Clusella P, Manubens-Gil L, Garcia-Ojalvo J, Dierssen M. Modeling the impact of neuromorphological alterations in Down syndrome on fast neural oscillations. PLoS Comput Biol 2024; 20:e1012259. [PMID: 38968294 PMCID: PMC11253980 DOI: 10.1371/journal.pcbi.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Mathematics, Universitat Politècnica de Catalunya, Manresa, Spain
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Systems Neurology and Neurotherapies, Hospital del Mar Research Institute, Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
4
|
Holt CJ, Miller KD, Ahmadian Y. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations. PLoS Comput Biol 2024; 20:e1012190. [PMID: 38935792 PMCID: PMC11236182 DOI: 10.1371/journal.pcbi.1012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/10/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus contrast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the gamma peak frequency in each cortical column is controlled by the local contrast in that column's receptive field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retinotopy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic explanation for this effect based on the observed non-saturating and supralinear input-output function of V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-range horizontal connections in V1 are in fact strong, and underlie contextual modulation effects such as surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence of gamma peak frequency. We found that retinotopic SSNs can account for both effects, but only when the horizontal excitatory projections are composed of two components with different patterns of spatial fall-off with distance: a short-range component that only targets the source column, combined with a long-range component that targets columns neighboring the source column. We thus make a specific qualitative prediction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar structure of cortex.
Collapse
Affiliation(s)
- Caleb J Holt
- Department of Physics, Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Kenneth D Miller
- Deptartment of Neuroscience, Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Yashar Ahmadian
- Department of Engineering, Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
6
|
Ledderose JMT, Zolnik TA, Toumazou M, Trimbuch T, Rosenmund C, Eickholt BJ, Jaeger D, Larkum ME, Sachdev RNS. Layer 1 of somatosensory cortex: an important site for input to a tiny cortical compartment. Cereb Cortex 2023; 33:11354-11372. [PMID: 37851709 PMCID: PMC10690867 DOI: 10.1093/cercor/bhad371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Timothy A Zolnik
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Maria Toumazou
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | | | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Matthew E Larkum
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Robert N S Sachdev
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
7
|
Baek S, Park Y, Paik SB. Species-specific wiring of cortical circuits for small-world networks in the primary visual cortex. PLoS Comput Biol 2023; 19:e1011343. [PMID: 37540638 PMCID: PMC10403141 DOI: 10.1371/journal.pcbi.1011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Long-range horizontal connections (LRCs) are conspicuous anatomical structures in the primary visual cortex (V1) of mammals, yet their detailed functions in relation to visual processing are not fully understood. Here, we show that LRCs are key components to organize a "small-world network" optimized for each size of the visual cortex, enabling the cost-efficient integration of visual information. Using computational simulations of a biologically inspired model neural network, we found that sparse LRCs added to networks, combined with dense local connections, compose a small-world network and significantly enhance image classification performance. We confirmed that the performance of the network appeared to be strongly correlated with the small-world coefficient of the model network under various conditions. Our theoretical model demonstrates that the amount of LRCs to build a small-world network depends on each size of cortex and that LRCs are beneficial only when the size of the network exceeds a certain threshold. Our model simulation of various sizes of cortices validates this prediction and provides an explanation of the species-specific existence of LRCs in animal data. Our results provide insight into a biological strategy of the brain to balance functional performance and resource cost.
Collapse
Affiliation(s)
- Seungdae Baek
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Youngjin Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Se-Bum Paik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Holt CJ, Miller KD, Ahmadian Y. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540442. [PMID: 37214812 PMCID: PMC10197697 DOI: 10.1101/2023.05.11.540442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus contrast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the gamma peak frequency in each cortical column is controlled by the local contrast in that column's receptive field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retinotopy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic explanation for this effect based on the observed non-saturating and supralinear input-output function of V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-range horizontal connections in V1 are in fact strong, and underlie contextual modulation effects such as surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence of gamma peak frequency. We found that retinotopic SSNs can account for both effects, but only when the horizontal excitatory projections are composed of two components with different patterns of spatial fall-off with distance: a short-range component that only targets the source column, combined with a long-range component that targets columns neighboring the source column. We thus make a specific qualitative prediction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar structure of cortex.
Collapse
Affiliation(s)
- Caleb J Holt
- Institute of Neuroscience, Department of Physics, University of Oregon, OR, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, and Dept. of Neuroscience, College of Physicians and Surgeons and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Yashar Ahmadian
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
10
|
van Albada SJ, Morales-Gregorio A, Dickscheid T, Goulas A, Bakker R, Bludau S, Palm G, Hilgetag CC, Diesmann M. Bringing Anatomical Information into Neuronal Network Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:201-234. [DOI: 10.1007/978-3-030-89439-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Martínez-Cañada P, Ness TV, Einevoll GT, Fellin T, Panzeri S. Computation of the electroencephalogram (EEG) from network models of point neurons. PLoS Comput Biol 2021; 17:e1008893. [PMID: 33798190 PMCID: PMC8046357 DOI: 10.1371/journal.pcbi.1008893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/14/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
The electroencephalogram (EEG) is a major tool for non-invasively studying brain function and dysfunction. Comparing experimentally recorded EEGs with neural network models is important to better interpret EEGs in terms of neural mechanisms. Most current neural network models use networks of simple point neurons. They capture important properties of cortical dynamics, and are numerically or analytically tractable. However, point neurons cannot generate an EEG, as EEG generation requires spatially separated transmembrane currents. Here, we explored how to compute an accurate approximation of a rodent's EEG with quantities defined in point-neuron network models. We constructed different approximations (or proxies) of the EEG signal that can be computed from networks of leaky integrate-and-fire (LIF) point neurons, such as firing rates, membrane potentials, and combinations of synaptic currents. We then evaluated how well each proxy reconstructed a ground-truth EEG obtained when the synaptic currents of the LIF model network were fed into a three-dimensional network model of multicompartmental neurons with realistic morphologies. Proxies based on linear combinations of AMPA and GABA currents performed better than proxies based on firing rates or membrane potentials. A new class of proxies, based on an optimized linear combination of time-shifted AMPA and GABA currents, provided the most accurate estimate of the EEG over a wide range of network states. The new linear proxies explained 85-95% of the variance of the ground-truth EEG for a wide range of network configurations including different cell morphologies, distributions of presynaptic inputs, positions of the recording electrode, and spatial extensions of the network. Non-linear EEG proxies using a convolutional neural network (CNN) on synaptic currents increased proxy performance by a further 2-8%. Our proxies can be used to easily calculate a biologically realistic EEG signal directly from point-neuron simulations thus facilitating a quantitative comparison between computational models and experimental EEG recordings.
Collapse
Affiliation(s)
- Pablo Martínez-Cañada
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Torbjørn V. Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| |
Collapse
|
12
|
Naze S, Proix T, Atasoy S, Kozloski JR. Robustness of connectome harmonics to local gray matter and long-range white matter connectivity changes. Neuroimage 2021; 224:117364. [PMID: 32947015 PMCID: PMC7779370 DOI: 10.1016/j.neuroimage.2020.117364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, it has been proposed that the harmonic patterns emerging from the brain's structural connectivity underlie the resting state networks of the human brain. These harmonic patterns, termed connectome harmonics, are estimated as the Laplace eigenfunctions of the combined gray and white matters connectivity matrices and yield a connectome-specific extension of the well-known Fourier basis. However, it remains unclear how topological properties of the combined connectomes constrain the precise shape of the connectome harmonics and their relationships to the resting state networks. Here, we systematically study how alterations of the local and long-range connectivity matrices affect the spatial patterns of connectome harmonics. Specifically, the proportion of local gray matter homogeneous connectivity versus long-range white-matter heterogeneous connectivity is varied by means of weight-based matrix thresholding, distance-based matrix trimming, and several types of matrix randomizations. We demonstrate that the proportion of local gray matter connections plays a crucial role for the emergence of wide-spread, functionally meaningful, and originally published connectome harmonic patterns. This finding is robust for several different cortical surface templates, mesh resolutions, or widths of the local diffusion kernel. Finally, using the connectome harmonic framework, we also provide a proof-of-concept for how targeted structural changes such as the atrophy of inter-hemispheric callosal fibers and gray matter alterations may predict functional deficits associated with neurodegenerative conditions.
Collapse
Affiliation(s)
- Sébastien Naze
- IBM T.J. Watson Research Center, Yorktown Heights, New York, USA; IBM Research Australia, Melbourne, Victoria, Australia.
| | - Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, UK
| | - James R Kozloski
- IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
| |
Collapse
|
13
|
A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks. Neural Netw 2020; 134:76-85. [PMID: 33291018 DOI: 10.1016/j.neunet.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
The brain successfully performs visual object recognition with a limited number of hierarchical networks that are much shallower than artificial deep neural networks (DNNs) that perform similar tasks. Here, we show that long-range horizontal connections (LRCs), often observed in the visual cortex of mammalian species, enable such a cost-efficient visual object recognition in shallow neural networks. Using simulations of a model hierarchical network with convergent feedforward connections and LRCs, we found that the addition of LRCs to the shallow feedforward network significantly enhances the performance of networks for image classification, to a degree that is comparable to much deeper networks. We found that a combination of sparse LRCs and dense local connections dramatically increases performance per wiring cost. From network pruning with gradient-based optimization, we also confirmed that LRCs could emerge spontaneously by minimizing the total connection length while maintaining performance. Ablation of emerged LRCs led to a significant reduction of classification performance, which implies these LRCs are crucial for performing image classification. Taken together, our findings suggest a brain-inspired strategy for constructing a cost-efficient network architecture to implement parsimonious object recognition under physical constraints such as shallow hierarchical depth.
Collapse
|
14
|
Sato TK. Long-range connections enrich cortical computations. Neurosci Res 2020; 162:1-12. [PMID: 32470355 DOI: 10.1016/j.neures.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
The cerebral cortex can perform powerful computations, including those involved in higher cognitive functions. Cortical processing for such computations is executed by local circuits and is further enriched by long-range connectivity. This connectivity is activated under specific conditions and modulates local processing, providing flexibility in the computational performance of the cortex. For instance, long-range connectivity in the primary visual cortex exerts facilitatory impacts when the cortex is silent but suppressive impacts when the cortex is strongly sensory-stimulated. These dual impacts can be captured by a divisive gain control model. Recent methodological advances such as optogenetics, anatomical tracing, and two-photon microscopy have enabled neuroscientists to probe the circuit and synaptic bases of long-range connectivity in detail. Here, I review a series of evidence indicating essential roles of long-range connectivity in visual and hierarchical processing involving numerous cortical areas. I also describe an overview of the challenges encountered in investigating underlying synaptic mechanisms and highlight recent technical approaches that may overcome these difficulties and provide new insights into synaptic mechanisms for cortical processing involving long-range connectivity.
Collapse
Affiliation(s)
- Tatsuo K Sato
- Dept. of Physiology, Neuroscience Program, Biomedicine Discovery Inst., Monash University, Clayton, VIC 3800, Australia; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
15
|
Okujeni S, Egert U. Self-organization of modular network architecture by activity-dependent neuronal migration and outgrowth. eLife 2019; 8:47996. [PMID: 31526478 PMCID: PMC6783273 DOI: 10.7554/elife.47996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
The spatial distribution of neurons and activity-dependent neurite outgrowth shape long-range interaction, recurrent local connectivity and the modularity in neuronal networks. We investigated how this mesoscale architecture develops by interaction of neurite outgrowth, cell migration and activity in cultured networks of rat cortical neurons and show that simple rules can explain variations of network modularity. In contrast to theoretical studies on activity-dependent outgrowth but consistent with predictions for modular networks, spontaneous activity and the rate of synchronized bursts increased with clustering, whereas peak firing rates in bursts increased in highly interconnected homogeneous networks. As Ca2+ influx increased exponentially with increasing network recruitment during bursts, its modulation was highly correlated to peak firing rates. During network maturation, long-term estimates of Ca2+ influx showed convergence, even for highly different mesoscale architectures, neurite extent, connectivity, modularity and average activity levels, indicating homeostatic regulation towards a common set-point of Ca2+ influx.
Collapse
Affiliation(s)
- Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Standage D, Paré M. Slot-like capacity and resource-like coding in a neural model of multiple-item working memory. J Neurophysiol 2018; 120:1945-1961. [PMID: 29947585 DOI: 10.1152/jn.00778.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of "slots," each with a fixed resolution. On the other hand, any number of items may be stored but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data or speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity, and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioral data from human and nonhuman primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks. NEW & NOTEWORTHY Working memory is the ability to keep information in mind and is fundamental to cognition. It is actively debated whether the storage limitations of working memory reflect a small number of storage units (slots) or a decrease in coding resolution as a limited resource is allocated to more items. In a cortical model, we found that slot-like capacity and resource-like neural coding resulted from the same mechanism, offering an integrated explanation for storage limitations.
Collapse
Affiliation(s)
- Dominic Standage
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Martin Paré
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
17
|
Safavi S, Dwarakanath A, Kapoor V, Werner J, Hatsopoulos NG, Logothetis NK, Panagiotaropoulos TI. Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits. Proc Natl Acad Sci U S A 2018; 115:E3539-E3548. [PMID: 29588415 PMCID: PMC5899496 DOI: 10.1073/pnas.1802356115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes.
Collapse
Affiliation(s)
- Shervin Safavi
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Abhilash Dwarakanath
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Vishal Kapoor
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Joachim Werner
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | | | - Nikos K Logothetis
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany;
- Division of Imaging Science and Biomedical Engineering, University of Manchester, 72074 Manchester, United Kingdom
| | - Theofanis I Panagiotaropoulos
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany;
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique, Division Sciences de la Vie (DSV), Institut d'imagerie Biomédicale (I2BM), INSERM, Université Paris-Sud, Université Paris-Saclay, Neurospin Center, 91191 Gif/Yvette, France
| |
Collapse
|
18
|
Cittern D, Edalat A. A Neural Model of Empathic States in Attachment-Based Psychotherapy. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2017; 1:132-167. [PMID: 30090856 PMCID: PMC6067830 DOI: 10.1162/cpsy_a_00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
We build on a neuroanatomical model of how empathic states can motivate caregiving behavior, via empathy circuit-driven activation of regions in the hypothalamus and amygdala, which in turn stimulate a mesolimbic-ventral pallidum pathway, by integrating findings related to the perception of pain in self and others. On this basis, we propose a network to capture states of personal distress and (weak and strong forms of) empathic concern, which are particularly relevant for psychotherapists conducting attachment-based interventions. This model is then extended for the case of self-attachment therapy, in which conceptualized components of the self serve as both the source of and target for empathic resonance. In particular, we consider how states of empathic concern involving an other that is perceived as being closely related to the self might enhance the motivation for self-directed bonding (which in turn is proposed to lead the individual toward more compassionate states) in terms of medial prefrontal cortex-mediated activation of these caregiving pathways. We simulate our model computationally and discuss the interplay between the bonding and empathy protocols of the therapy.
Collapse
Affiliation(s)
- David Cittern
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| | - Abbas Edalat
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Rankin J, Chavane F. Neural field model to reconcile structure with function in primary visual cortex. PLoS Comput Biol 2017; 13:e1005821. [PMID: 29065120 PMCID: PMC5669491 DOI: 10.1371/journal.pcbi.1005821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/03/2017] [Accepted: 10/14/2017] [Indexed: 11/19/2022] Open
Abstract
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
Collapse
Affiliation(s)
- James Rankin
- Department of Mathematics, University of Exeter, Exeter, United Kingdom
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, Faculté de Médecine, Marseille, France
| |
Collapse
|
20
|
Lea-Carnall CA, Trujillo-Barreto NJ, Montemurro MA, El-Deredy W, Parkes LM. Evidence for frequency-dependent cortical plasticity in the human brain. Proc Natl Acad Sci U S A 2017; 114:8871-8876. [PMID: 28765375 PMCID: PMC5565407 DOI: 10.1073/pnas.1620988114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, and connectivity of the primary somatosensory cortex using psychophysics and functional imaging (fMRI). We costimulated two digits on the hand synchronously at, above, or below the resonance frequency of the somatosensory cortex, and tested subjects' accuracy and speed on tactile localization before and after costimulation. More errors and slower response times followed costimulation at above- or below-resonance, respectively. Response times were faster after at-resonance costimulation. In the fMRI, the cortical representations of the two digits costimulated above-resonance shifted closer, potentially accounting for the poorer performance. Costimulation at-resonance did not shift the digit regions, but increased the functional coupling between them, potentially accounting for the improved response time. To relate these results to synaptic plasticity, we simulated a network of oscillators incorporating Hebbian learning. Two neighboring patches embedded in a cortical sheet, mimicking the two digit regions, were costimulated at different frequencies. Network activation outside the stimulated patches was greatest at above-resonance frequencies, reproducing the spread of digit representations seen with fMRI. Connection strengths within the patches increased following at-resonance costimulation, reproducing the increased fMRI connectivity. We show that FDP extends to the cortical level and is influenced by cortical resonance.
Collapse
Affiliation(s)
- Caroline A Lea-Carnall
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom;
| | - Nelson J Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marcelo A Montemurro
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Wael El-Deredy
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
- School of Biomedical Engineering, University of Valparaiso, Valparaiso 2366103, Chile
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Plasticity in the Structure of Visual Space. eNeuro 2017; 4:eN-NWR-0080-17. [PMID: 28660245 PMCID: PMC5482114 DOI: 10.1523/eneuro.0080-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 11/21/2022] Open
Abstract
Visual space embodies all visual experiences, yet what determines the topographical structure of visual space remains unclear. Here we test a novel theoretical framework that proposes intrinsic lateral connections in the visual cortex as the mechanism underlying the structure of visual space. The framework suggests that the strength of lateral connections between neurons in the visual cortex shapes the experience of spatial relatedness between locations in the visual field. As such, an increase in lateral connection strength shall lead to an increase in perceived relatedness and a contraction in perceived distance. To test this framework through human psychophysics experiments, we used a Hebbian training protocol in which two-point stimuli were flashed in synchrony at separate locations in the visual field, to strengthen the lateral connections between two separate groups of neurons in the visual cortex. After training, participants experienced a contraction in perceived distance. Intriguingly, the perceptual contraction occurred not only between the two training locations that were linked directly by the changed connections, but also between the outward untrained locations that were linked indirectly through the changed connections. Moreover, the effect of training greatly decreased if the two training locations were too close together or too far apart and went beyond the extent of lateral connections. These findings suggest that a local change in the strength of lateral connections is sufficient to alter the topographical structure of visual space.
Collapse
|
22
|
Hahne J, Dahmen D, Schuecker J, Frommer A, Bolten M, Helias M, Diesmann M. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator. Front Neuroinform 2017; 11:34. [PMID: 28596730 PMCID: PMC5442232 DOI: 10.3389/fninf.2017.00034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Collapse
Affiliation(s)
- Jan Hahne
- School of Mathematics and Natural Sciences, Bergische Universität WuppertalWuppertal, Germany
| | - David Dahmen
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research CentreJülich, Germany
| | - Jannis Schuecker
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research CentreJülich, Germany
| | - Andreas Frommer
- School of Mathematics and Natural Sciences, Bergische Universität WuppertalWuppertal, Germany
| | - Matthias Bolten
- School of Mathematics and Natural Sciences, Bergische Universität WuppertalWuppertal, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research CentreJülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen UniversityAachen, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Jülich Research CentreJülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen UniversityAachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
23
|
Wang Y, Trevelyan AJ, Valentin A, Alarcon G, Taylor PN, Kaiser M. Mechanisms underlying different onset patterns of focal seizures. PLoS Comput Biol 2017; 13:e1005475. [PMID: 28472032 PMCID: PMC5417416 DOI: 10.1371/journal.pcbi.1005475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types-low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the "healthy" surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome.
Collapse
Affiliation(s)
- Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Gonzalo Alarcon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Comprehensive Epilepsy Center, Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Within brain area tractography suggests local modularity using high resolution connectomics. Sci Rep 2017; 7:39859. [PMID: 28054634 PMCID: PMC5213837 DOI: 10.1038/srep39859] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Previous structural brain connectivity studies have mainly focussed on the macroscopic scale of around 1,000 or fewer brain areas (network nodes). However, it has recently been demonstrated that high resolution structural connectomes of around 50,000 nodes can be generated reproducibly. In this study, we infer high resolution brain connectivity matrices using diffusion imaging data from the Human Connectome Project. With such high resolution we are able to analyse networks within brain areas in a single subject. We show that the global network has a scale invariant topological organisation, which means there is a hierarchical organisation of the modular architecture. Specifically, modules within brain areas are spatially localised. We find that long range connections terminate between specific modules, whilst short range connections via highly curved association fibers terminate within modules. We suggest that spatial locations of white matter modules overlap with cytoarchitecturally distinct grey matter areas and may serve as the structural basis for function specialisation within brain areas. Future studies might elucidate how brain diseases change this modular architecture within brain areas.
Collapse
|
25
|
Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? Neuroimage 2016; 142:135-149. [PMID: 27480624 DOI: 10.1016/j.neuroimage.2016.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/25/2023] Open
Abstract
Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered.
Collapse
Affiliation(s)
- Timothée Proix
- Aix-Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Andreas Spiegler
- Aix-Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michael Schirner
- Department of Neurology, Charité University Medicine Berlin, Germany
| | - Simon Rothmeier
- Department of Neurology, Charité University Medicine Berlin, Germany
| | - Petra Ritter
- Department of Neurology, Charité University Medicine Berlin, Germany; BrainModes Research Group, Max-Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Viktor K Jirsa
- Aix-Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
26
|
Hass J, Hertäg L, Durstewitz D. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity. PLoS Comput Biol 2016; 12:e1004930. [PMID: 27203563 PMCID: PMC4874603 DOI: 10.1371/journal.pcbi.1004930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022] Open
Abstract
The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. Computational network models are an important tool for linking physiological and neuro-dynamical processes to cognition. However, harvesting network models for this purpose may less depend on how much biophysical detail is included, but more on how well the model can capture the functional network physiology. Here, we present the first network model of the prefrontal cortex which has not only its single neuron properties and anatomical layout tightly constrained by experimental data, but is also able to quantitatively reproduce a large range of spiking, field potential, and membrane voltage statistics obtained from in vivo data, without need of specific parameter tuning. It thus represents a novel computational tool for addressing questions about the neuro-dynamics of cognition in health and disease.
Collapse
Affiliation(s)
- Joachim Hass
- Department of Theoretical Neuroscience, Bernstein-Center for Computational Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- * E-mail: (JH); (DD)
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Berlin Institute of Technology and Bernstein Center for Computational Neuroscience Berlin, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Bernstein-Center for Computational Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- * E-mail: (JH); (DD)
| |
Collapse
|
27
|
Tomov P, Pena RFO, Roque AC, Zaks MA. Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types. Front Comput Neurosci 2016; 10:23. [PMID: 27047367 PMCID: PMC4803744 DOI: 10.3389/fncom.2016.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
In a network with a mixture of different electrophysiological types of neurons linked by excitatory and inhibitory connections, temporal evolution leads through repeated epochs of intensive global activity separated by intervals with low activity level. This behavior mimics “up” and “down” states, experimentally observed in cortical tissues in absence of external stimuli. We interpret global dynamical features in terms of individual dynamics of the neurons. In particular, we observe that the crucial role both in interruption and in resumption of global activity is played by distributions of the membrane recovery variable within the network. We also demonstrate that the behavior of neurons is more influenced by their presynaptic environment in the network than by their formal types, assigned in accordance with their response to constant current.
Collapse
Affiliation(s)
- Petar Tomov
- Institute of Mathematics, Humboldt University of Berlin Berlin, Germany
| | - Rodrigo F O Pena
- Laboratório de Sistemas Neurais, Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São PauloSão Paulo, Brazil; Institute of Physics, Humboldt University of BerlinBerlin, Germany
| | - Antonio C Roque
- Laboratório de Sistemas Neurais, Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Michael A Zaks
- Institute of Physics and Astronomy, University of Potsdam Potsdam, Germany
| |
Collapse
|
28
|
Lea-Carnall CA, Montemurro MA, Trujillo-Barreto NJ, Parkes LM, El-Deredy W. Cortical Resonance Frequencies Emerge from Network Size and Connectivity. PLoS Comput Biol 2016; 12:e1004740. [PMID: 26914905 PMCID: PMC4767278 DOI: 10.1371/journal.pcbi.1004740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks. When entrained using repetitive stimulation, sensory cortices appear to respond maximally, or resonate, at different driving frequencies: 10Hz in visual cortex; 20Hz and 40Hz in somatosensory and auditory cortices, respectively. The resonance frequencies are inversely correlated to the cortical volume of the respective regions, but it is unclear what drives this relationship. Here we used both computational and empirical data to demonstrate that resonance frequencies are emergent properties of the connectivity parameters of the underlying networks. The experimental paradigm stimulated large and small areas of visual cortex with different size objects made of flickering dots, and varied the driving frequency. Larger cortical areas exhibited maximum response at lower frequency than smaller areas, suggesting the inverse relationship between cortical size and resonance frequency holds, even within the same sensory modality. Computationally, we simulated cortical patches of different sizes and varied their connectivity parameters. We demonstrate that the size of the activated network is inversely related to its resonance frequency and that this change is due to the increased transmission delay and greater node degree within the larger network. The results are important for understanding the functional significance of oscillatory processes, and as a tool for probing changes in functional connectivity.
Collapse
Affiliation(s)
- Caroline A. Lea-Carnall
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | | | | | - Laura M. Parkes
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Wael El-Deredy
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- School of Biomedical Engineering, University of Valparaiso, Valparaiso, Chile
| |
Collapse
|
29
|
Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry. Sci Rep 2016; 6:21468. [PMID: 26902707 PMCID: PMC4763267 DOI: 10.1038/srep21468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/22/2016] [Indexed: 11/16/2022] Open
Abstract
The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (GLM) with L1-norm penalty was used to investigate 10 datasets. These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-trained rats demonstrated significant small-world features. It is found that the connectivity structure generated by distance-dependent models is responsible for the observed small-world features of the reconstructed networks. The models are utilized to simulate a subset of units recorded from a large biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness both suggest that the reconstructed network from the sampled nodes estimates a more prominent small-world-ness feature than that of the original unknown network when the number of recorded neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness results based on the number of neurons recorded to provide a more accurate reference of the network property.
Collapse
|
30
|
Krishnamurthy P, Silberberg G, Lansner A. Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model. Front Neural Circuits 2015; 9:60. [PMID: 26528143 PMCID: PMC4604243 DOI: 10.3389/fncir.2015.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/23/2015] [Indexed: 11/13/2022] Open
Abstract
Although the importance of long-range connections for cortical information processing has been acknowledged for a long time, most studies focused on the long-range interactions between excitatory cortical neurons. Inhibitory interneurons play an important role in cortical computation and have thus far been studied mainly with respect to their local synaptic interactions within the cortical microcircuitry. A recent study showed that long-range excitatory connections onto Martinotti cells (MC) mediate surround suppression. Here we have extended our previously reported attractor network of pyramidal cells (PC) and MC by introducing long-range connections targeting MC. We have demonstrated how the network with Martinotti cell-mediated long-range inhibition gives rise to surround suppression and also promotes saliency of locations at which simple non-uniformities in the stimulus field are introduced. Furthermore, our analysis suggests that the presynaptic dynamics of MC is only ancillary to its orientation tuning property in enabling the network with saliency detection. Lastly, we have also implemented a disinhibitory pathway mediated by another interneuron type (VIP interneurons), which inhibits MC and abolishes surround suppression.
Collapse
Affiliation(s)
- Pradeep Krishnamurthy
- Department of Numerical Analysis and Computer Science, Stockholm University Stockholm, Sweden ; Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology (KTH) Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Anders Lansner
- Department of Numerical Analysis and Computer Science, Stockholm University Stockholm, Sweden ; Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology (KTH) Stockholm, Sweden
| |
Collapse
|
31
|
Effenberger F, Jost J, Levina A. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity. PLoS Comput Biol 2015; 11:e1004420. [PMID: 26335425 PMCID: PMC4559467 DOI: 10.1371/journal.pcbi.1004420] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. It is widely believed that the structure of neuronal circuits plays a major role in brain functioning. Although the full synaptic connectivity for larger populations is not yet assessable even by current experimental techniques, available data show that neither synaptic strengths nor the number of synapses per neuron are homogeneously distributed. Several studies have found long-tailed distributions of synaptic weights with many weak and a few exceptionally strong synaptic connections, as well as strongly connected cells and subnetworks that may play a decisive role for data processing in neural circuits. Little is known about how inhomogeneities could arise in the developing brain and we hypothesize that there is a self-organizing principle behind their appearance. In this study we show how structural inhomogeneities can emerge by simple synaptic plasticity mechanisms from an initially homogeneous network. We perform numerical simulations and show analytically how a small imbalance in the initial structure is amplified by the synaptic plasticities and their interplay. Our network can simultaneously explain several experimental observations that were previously not linked.
Collapse
Affiliation(s)
- Felix Effenberger
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
- * E-mail:
| | - Jürgen Jost
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Anna Levina
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Grydeland H, Westlye LT, Walhovd KB, Fjell AM. Intracortical Posterior Cingulate Myelin Content Relates to Error Processing: Results fromT1- andT2-Weighted MRI Myelin Mapping and Electrophysiology in Healthy Adults. Cereb Cortex 2015; 26:2402-10. [DOI: 10.1093/cercor/bhv065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Miner DC, Triesch J. Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures. Front Neuroanat 2014; 8:125. [PMID: 25414647 PMCID: PMC4220704 DOI: 10.3389/fnana.2014.00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/19/2014] [Indexed: 11/13/2022] Open
Abstract
The neuroanatomical connectivity of cortical circuits is believed to follow certain rules, the exact origins of which are still poorly understood. In particular, numerous nonrandom features, such as common neighbor clustering, overrepresentation of reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been experimentally observed in cortical slice data. Some of these data, particularly regarding bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear. Here we present a simple static geometric network model with distance-dependent connectivity on a realistic scale that naturally gives rise to certain elements of these observed behaviors, and may provide plausible explanations for some of the conflicting findings. Specifically, investigation of the model shows that experimentally measured nonrandom effects, especially bidirectional connectivity, may depend sensitively on experimental parameters such as slice thickness and sampling area, suggesting potential explanations for the seemingly conflicting experimental results.
Collapse
Affiliation(s)
- Daniel C Miner
- Department of Neuroscience, Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany
| | - Jochen Triesch
- Department of Neuroscience, Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany
| |
Collapse
|
34
|
Palm G, Knoblauch A, Hauser F, Schüz A. Cell assemblies in the cerebral cortex. BIOLOGICAL CYBERNETICS 2014; 108:559-572. [PMID: 24692024 DOI: 10.1007/s00422-014-0596-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Donald Hebb's concept of cell assemblies is a physiology-based idea for a distributed neural representation of behaviorally relevant objects, concepts, or constellations. In the late 70s Valentino Braitenberg started the endeavor to spell out the hypothesis that the cerebral cortex is the structure where cell assemblies are formed, maintained and used, in terms of neuroanatomy (which was his main concern) and also neurophysiology. This endeavor has been carried on over the last 30 years corroborating most of his findings and interpretations. This paper summarizes the present state of cell assembly theory, realized in a network of associative memories, and of the anatomical evidence for its location in the cerebral cortex.
Collapse
Affiliation(s)
- Günther Palm
- Institute of Neural Information Processing, University of Ulm, 89069 , Ulm, Germany,
| | | | | | | |
Collapse
|
35
|
Dynamic mechanisms of neocortical focal seizure onset. PLoS Comput Biol 2014; 10:e1003787. [PMID: 25122455 PMCID: PMC4133160 DOI: 10.1371/journal.pcbi.1003787] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/23/2014] [Indexed: 01/20/2023] Open
Abstract
Recent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings. According to the WHO fact sheet, epilepsy is a neurological disorder affecting about 50 million people worldwide. Even today 30% of epilepsy patients do not respond well to drug therapies. Neocortical focal epilepsy is a particular type of epilepsy in which drug treatments fail and surgical success rate is low. Hence, research is essential to improve the treatment of this type of epilepsy. Recent advances in brain recording methods have led to new observations regarding the nature of neocortical focal epilepsy. However, some of the observations appear to be contradictory. Here, we develop a computational modelling framework that can explain the different observations as different aspects of possible mechanisms that can all lead to seizure onset. Specifically, we classify three main conditions under which focal seizure onset can happen. This classification is clinically important, as our model predicts different treatment strategies for each class. We conclude that focal seizures are diverse, not only in their electrographic appearance and aetiology, but also in their onset mechanism. Combined multiscale recordings as well as stimulation studies are required to elucidate the onset mechanism in each patient. Our work provides the first classification of possible onset mechanism.
Collapse
|
36
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
37
|
Taylor G, Hipp D, Moser A, Dickerson K, Gerhardstein P. The development of contour processing: evidence from physiology and psychophysics. Front Psychol 2014; 5:719. [PMID: 25071681 PMCID: PMC4085732 DOI: 10.3389/fpsyg.2014.00719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.
Collapse
Affiliation(s)
- Gemma Taylor
- Department of Psychology, Binghamton University, State University of New York Binghamton, NY, USA
| | - Daniel Hipp
- Department of Psychology, Binghamton University, State University of New York Binghamton, NY, USA
| | - Alecia Moser
- Department of Psychology, Binghamton University, State University of New York Binghamton, NY, USA
| | - Kelly Dickerson
- US Army Research Laboratory, Department of the Army, RDRL-HRS-D, Aberdeen Proving Grounds MD, USA
| | - Peter Gerhardstein
- Department of Psychology, Binghamton University, State University of New York Binghamton, NY, USA
| |
Collapse
|
38
|
Tomsett RJ, Ainsworth M, Thiele A, Sanayei M, Chen X, Gieselmann MA, Whittington MA, Cunningham MO, Kaiser M. Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue. Brain Struct Funct 2014; 220:2333-53. [PMID: 24863422 PMCID: PMC4481302 DOI: 10.1007/s00429-014-0793-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100,000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease.
Collapse
Affiliation(s)
- Richard J Tomsett
- School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne, NE1 7RU, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sancristóbal B, Vicente R, Garcia-Ojalvo J. Role of frequency mismatch in neuronal communication through coherence. J Comput Neurosci 2014; 37:193-208. [PMID: 24519733 DOI: 10.1007/s10827-014-0495-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/15/2013] [Accepted: 01/02/2014] [Indexed: 11/24/2022]
Abstract
Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ∼6 Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.
Collapse
Affiliation(s)
- Belén Sancristóbal
- Departament of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain,
| | | | | |
Collapse
|
40
|
The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. PLoS Comput Biol 2014; 10:e1003428. [PMID: 24453955 PMCID: PMC3894226 DOI: 10.1371/journal.pcbi.1003428] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Correlated neuronal activity is a natural consequence of network connectivity and shared inputs to pairs of neurons, but the task-dependent modulation of correlations in relation to behavior also hints at a functional role. Correlations influence the gain of postsynaptic neurons, the amount of information encoded in the population activity and decoded by readout neurons, and synaptic plasticity. Further, it affects the power and spatial reach of extracellular signals like the local-field potential. A theory of correlated neuronal activity accounting for recurrent connectivity as well as fluctuating external sources is currently lacking. In particular, it is unclear how the recently found mechanism of active decorrelation by negative feedback on the population level affects the network response to externally applied correlated stimuli. Here, we present such an extension of the theory of correlations in stochastic binary networks. We show that (1) for homogeneous external input, the structure of correlations is mainly determined by the local recurrent connectivity, (2) homogeneous external inputs provide an additive, unspecific contribution to the correlations, (3) inhibitory feedback effectively decorrelates neuronal activity, even if neurons receive identical external inputs, and (4) identical synaptic input statistics to excitatory and to inhibitory cells increases intrinsically generated fluctuations and pairwise correlations. We further demonstrate how the accuracy of mean-field predictions can be improved by self-consistently including correlations. As a byproduct, we show that the cancellation of correlations between the summed inputs to pairs of neurons does not originate from the fast tracking of external input, but from the suppression of fluctuations on the population level by the local network. This suppression is a necessary constraint, but not sufficient to determine the structure of correlations; specifically, the structure observed at finite network size differs from the prediction based on perfect tracking, even though perfect tracking implies suppression of population fluctuations. The co-occurrence of action potentials of pairs of neurons within short time intervals has been known for a long time. Such synchronous events can appear time-locked to the behavior of an animal, and also theoretical considerations argue for a functional role of synchrony. Early theoretical work tried to explain correlated activity by neurons transmitting common fluctuations due to shared inputs. This, however, overestimates correlations. Recently, the recurrent connectivity of cortical networks was shown responsible for the observed low baseline correlations. Two different explanations were given: One argues that excitatory and inhibitory population activities closely follow the external inputs to the network, so that their effects on a pair of cells mutually cancel. Another explanation relies on negative recurrent feedback to suppress fluctuations in the population activity, equivalent to small correlations. In a biological neuronal network one expects both, external inputs and recurrence, to affect correlated activity. The present work extends the theoretical framework of correlations to include both contributions and explains their qualitative differences. Moreover, the study shows that the arguments of fast tracking and recurrent feedback are not equivalent, only the latter correctly predicts the cell-type specific correlations.
Collapse
|
41
|
Shipp S, Adams RA, Friston KJ. Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci 2013; 36:706-16. [PMID: 24157198 PMCID: PMC3858810 DOI: 10.1016/j.tins.2013.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/23/2013] [Accepted: 09/18/2013] [Indexed: 12/30/2022]
Abstract
Predictive coding explains the recursive hierarchical structure of cortical processes. Granular layer 4, which relays ascending cortical pathways, is absent from motor cortex. Perceptual inference results if ascending sensory data modify sensory predictions action, if spinal reflexes enact descending motor and/or proprioceptive predictions. Motor layer 4 regresses as motor predictions inherently require less modification.
The agranular architecture of motor cortex lacks a functional interpretation. Here, we consider a ‘predictive coding’ account of this unique feature based on asymmetries in hierarchical cortical connections. In sensory cortex, layer 4 (the granular layer) is the target of ascending pathways. We theorise that the operation of predictive coding in the motor system (a process termed ‘active inference’) provides a principled rationale for the apparent recession of the ascending pathway in motor cortex. The extension of this theory to interlaminar circuitry also accounts for a sub-class of ‘mirror neuron’ in motor cortex – whose activity is suppressed when observing an action –explaining how predictive coding can gate hierarchical processing to switch between perception and action.
Collapse
Affiliation(s)
- Stewart Shipp
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, University College London, Bath Street, London, EC1V 9EL, UK.
| | | | | |
Collapse
|
42
|
|
43
|
Standage D, You H, Wang DH, Dorris MC. Trading speed and accuracy by coding time: a coupled-circuit cortical model. PLoS Comput Biol 2013; 9:e1003021. [PMID: 23592967 PMCID: PMC3617027 DOI: 10.1371/journal.pcbi.1003021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. Studies in neuroscience have characterized how the brain represents objects in space and how these objects are selected for detailed perceptual processing. The selection process entails a decision about which object is favoured by the available evidence over time. This period of time is typically in the range of hundreds of milliseconds and is widely believed to be crucial for decisions, allowing neurons to filter noise in the evidence. Despite the widespread belief that time plays this role in decisions and the growing recognition that the brain estimates elapsed time during perceptual tasks, few studies have considered how the encoding of time effects decision making. We propose that neurons encode time in this range by the same general mechanisms used to select objects for detailed processing, and that these temporal representations determine how long evidence is filtered. To this end, we simulate a perceptual decision by coupling two instances of a neural network widely used to simulate localized regions of the cerebral cortex. One network encodes the passage of time and the other makes decisions based on noisy evidence. The former influences the performance of the latter, reproducing signature characteristics of temporal estimates and perceptual decisions.
Collapse
Affiliation(s)
- Dominic Standage
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- * E-mail: (DS); (DHW)
| | - Hongzhi You
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Da-Hui Wang
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (DS); (DHW)
| | - Michael C. Dorris
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Voges N, Perrinet L. Complex dynamics in recurrent cortical networks based on spatially realistic connectivities. Front Comput Neurosci 2012; 6:41. [PMID: 22787446 PMCID: PMC3392693 DOI: 10.3389/fncom.2012.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/09/2012] [Indexed: 11/13/2022] Open
Abstract
Most studies on the dynamics of recurrent cortical networks are either based on purely random wiring or neighborhood couplings. Neuronal cortical connectivity, however, shows a complex spatial pattern composed of local and remote patchy connections. We ask to what extent such geometric traits influence the “idle” dynamics of two-dimensional (2d) cortical network models composed of conductance-based integrate-and-fire (iaf) neurons. In contrast to the typical 1 mm2 used in most studies, we employ an enlarged spatial set-up of 25 mm2 to provide for long-range connections. Our models range from purely random to distance-dependent connectivities including patchy projections, i.e., spatially clustered synapses. Analyzing the characteristic measures for synchronicity and regularity in neuronal spiking, we explore and compare the phase spaces and activity patterns of our simulation results. Depending on the input parameters, different dynamical states appear, similar to the known synchronous regular “SR” or asynchronous irregular “AI” firing in random networks. Our structured networks, however, exhibit shifted and sharper transitions, as well as more complex activity patterns. Distance-dependent connectivity structures induce a spatio-temporal spread of activity, e.g., propagating waves, that random networks cannot account for. Spatially and temporally restricted activity injections reveal that a high amount of local coupling induces rather unstable AI dynamics. We find that the amount of local versus long-range connections is an important parameter, whereas the structurally advantageous wiring cost optimization of patchy networks has little bearing on the phase space.
Collapse
Affiliation(s)
- N Voges
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS (UMR 7289) Marseille, France
| | | |
Collapse
|
45
|
Gao X, Xu W, Wang Z, Takagaki K, Li B, Wu JY. Interactions between two propagating waves in rat visual cortex. Neuroscience 2012; 216:57-69. [PMID: 22561730 DOI: 10.1016/j.neuroscience.2012.04.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
46
|
Hennequin G, Vogels T, Gerstner W. Fast and richly structured activity in cortical networks with local inhibition. BMC Neurosci 2011. [PMCID: PMC3240214 DOI: 10.1186/1471-2202-12-s1-p121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Voges N, Perrinet L. The relationship between cortical network structure and the corresponding state space dynamics. BMC Neurosci 2011. [PMCID: PMC3240462 DOI: 10.1186/1471-2202-12-s1-p345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Modeling of the Neurovascular Coupling in Epileptic Discharges. Brain Topogr 2011; 25:136-56. [DOI: 10.1007/s10548-011-0190-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
49
|
Feldt S, Bonifazi P, Cossart R. Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci 2011; 34:225-36. [PMID: 21459463 DOI: 10.1016/j.tins.2011.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/21/2023]
Abstract
Structure-function studies of neuronal networks have recently benefited from considerable progress in different areas of investigation. Advances in molecular genetics and imaging have allowed for the dissection of neuronal connectivity with unprecedented detail whereas in vivo recordings are providing much needed clues as to how sensory, motor and cognitive function is encoded in neuronal firing. However, bridging the gap between the cellular and behavioral levels will ultimately require an understanding of the functional organization of the underlying neuronal circuits. One way to unravel the complexity of neuronal networks is to understand how their connectivity emerges during brain maturation. In this review, we will describe how graph theory provides experimentalists with novel concepts that can be used to describe and interpret these developing connectivity schemes.
Collapse
Affiliation(s)
- Sarah Feldt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 901, Marseille, 13009, France
| | | | | |
Collapse
|
50
|
Boucsein C, Nawrot MP, Schnepel P, Aertsen A. Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 2011; 5:32. [PMID: 21503145 PMCID: PMC3072165 DOI: 10.3389/fnins.2011.00032] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/28/2011] [Indexed: 11/13/2022] Open
Abstract
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Collapse
Affiliation(s)
- Clemens Boucsein
- Bernstein Center Freiburg, Neurobiology and Biophysics, Faculty of Biology, University of Freiburg Freiburg, Germany
| | | | | | | |
Collapse
|