1
|
Clement G, Cavillon G, Vuillier F, Bouhaddi M, Béreau M. Unveiling autonomic failure in synucleinopathies: Significance in diagnosis and treatment. Rev Neurol (Paris) 2024; 180:79-93. [PMID: 38216420 DOI: 10.1016/j.neurol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Autonomic failure is frequently encountered in synucleinopathies such as multiple system atrophy (MSA), Parkinson's disease (PD), Lewy body disease, and pure autonomic failure (PAF). Cardiovascular autonomic failure affects quality of life and can be life threatening due to the risk of falls and the increased incidence of myocardial infarction, stroke, and heart failure. In PD and PAF, pathogenic involvement is mainly post-ganglionic, while in MSA, the involvement is mainly pre-ganglionic. Cardiovascular tests exploring the autonomic nervous system (ANS) are based on the analysis of continuous, non-invasive recordings of heart rate and digital blood pressure (BP). They assess facets of sympathetic and parasympathetic activities and provide indications on the integrity of the baroreflex arc. The tilt test is widely used in clinical practice. It can be combined with catecholamine level measurement and analysis of baroreflex activity and cardiac variability for a detailed analysis of cardiovascular damage. MIBG myocardial scintigraphy is the most sensitive test for early detection of autonomic dysfunction. It provides a useful measure of post-ganglionic sympathetic fiber integrity and function and is therefore an effective tool for distinguishing PD from other parkinsonian syndromes such as MSA. Autonomic cardiovascular investigations differentiate between certain parkinsonian syndromes that would otherwise be difficult to segregate, particularly in the early stages of the disease. Exploring autonomic failure by gathering information about residual sympathetic tone, low plasma norepinephrine levels, and supine hypertension can guide therapeutic management of orthostatic hypotension (OH).
Collapse
Affiliation(s)
- G Clement
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France.
| | - G Cavillon
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - F Vuillier
- Laboratoire d'anatomie, UFR santé, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - M Bouhaddi
- Laboratoire de physiologie-explorations fonctionnelles, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - M Béreau
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| |
Collapse
|
2
|
Holec SAM, Liu SL, Woerman AL. Consequences of variability in α-synuclein fibril structure on strain biology. Acta Neuropathol 2022; 143:311-330. [PMID: 35122113 DOI: 10.1007/s00401-022-02403-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are a group of clinically and neuropathologically distinct protein misfolding diseases caused by unique α-synuclein conformations, or strains. While multiple atomic resolution cryo-electron microscopy structures of α-synuclein fibrils are now deposited in Protein Data Bank, significant gaps in the biological consequences arising from each conformation have yet to be unraveled. Mutations in the α-synuclein gene (SNCA), cofactors, and the solvation environment contribute to the formation and maintenance of each disease-causing strain. This review highlights the impact of each of these factors on α-synuclein misfolding and discusses the implications of the resulting structural variability on therapeutic development.
Collapse
Affiliation(s)
- Sara A M Holec
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L Liu
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
3
|
OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med 2022; 7:4. [PMID: 35027563 PMCID: PMC8758684 DOI: 10.1038/s41536-021-00199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The generation of human oligodendrocyte progenitor cells (OPCs) may be therapeutically valuable for human demyelinating diseases such as multiple sclerosis. Here, we report the direct reprogramming of human somatic cells into expandable induced OPCs (iOPCs) using a combination of OCT4 and a small molecule cocktail. This method enables generation of A2B5+ (an early marker for OPCs) iOPCs within 2 weeks retaining the ability to differentiate into MBP-positive mature oligodendrocytes. RNA-seq analysis revealed that the transcriptome of O4+ iOPCs was similar to that of O4+ OPCs and ChIP-seq analysis revealed that putative OCT4-binding regions were detected in the regulatory elements of CNS development-related genes. Notably, engrafted iOPCs remyelinated the brains of adult shiverer mice and experimental autoimmune encephalomyelitis mice with MOG-induced 14 weeks after transplantation. In conclusion, our study may contribute to the development of therapeutic approaches for neurological disorders, as well as facilitate the understanding of the molecular mechanisms underlying glial development.
Collapse
|
4
|
Dietrich P, Alli S, Mulligan MK, Cox R, Ashbrook DG, Williams RW, Dragatsis I. Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration. Neurobiol Dis 2022; 162:105581. [PMID: 34871739 PMCID: PMC8717869 DOI: 10.1016/j.nbd.2021.105581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Rachel Cox
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,The University of Tennessee, Knoxville, TN 37996, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| |
Collapse
|
5
|
Evidence of distinct α-synuclein strains underlying disease heterogeneity. Acta Neuropathol 2021; 142:73-86. [PMID: 32440702 DOI: 10.1007/s00401-020-02163-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the misfolding and self-templating of the protein α-synuclein, or the formation of α-synuclein prions. Each disorder differs by age of onset, presenting clinical symptoms, α-synuclein inclusion morphology, and neuropathological distribution. Explaining this disease-specific variability, the strain hypothesis postulates that each prion disease is encoded by a distinct conformation of the misfolded protein, and therefore, each synucleinopathy is caused by a unique α-synuclein structure. This review discusses the current data supporting the role of α-synuclein strains in disease heterogeneity. Several in vitro and in vivo models exist for evaluating strain behavior, however, as the focus of this article is to compare strains across synucleinopathy patients, our discussion predominantly focuses on the two models most commonly used for this purpose: the α-syn140*A53T-YFP cell line and the TgM83+/- mouse model. Here we define each strain based on biochemical stability, ability to propagate in α-syn140-YFP cell lines, and incubation period, inclusion morphology and distribution, and neurological signs in TgM83+/- mice.
Collapse
|
6
|
Osaki Y, Morita Y, Miyamoto Y, Ohtsuru S, Shogase T, Furushima T, Furuya H. Identification of a pre-possible multiple system atrophy phase. Acta Neurol Scand 2021; 143:313-317. [PMID: 33111976 PMCID: PMC7894314 DOI: 10.1111/ane.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES A pre-possible multiple system atrophy (MSA) phase, that is, the period between symptom onset and satisfying the second consensus diagnostic criteria for possible or probable MSA, may exist. The aim of the study was to identify the pre-possible MSA phase and to pursue the earlier diagnosis of MSA. MATERIALS & METHODS We reviewed 52 patients with a clinical diagnosis of MSA and 430 patients showing any signs of parkinsonism, sporadic cerebellar ataxia, or autonomic failure with other clinical diagnoses. RESULTS The pre-possible MSA phase was noted in 35 patients with a clinical diagnosis of MSA and 13 patients with other clinical diagnoses. During this phase, 16 patients presented with autonomic features first, while they presented later in 32 patients. Between these patients, there was no significant difference regarding parkinsonian, cerebellar features, levodopa response, or Babinski sign with hyperreflexia. Comparisons by autonomic features or autonomic function tests could not be performed due to the small number of patients. "Atrophy on magnetic resonance imaging of the putamen, middle cerebellar peduncle, pons, or cerebellum" and "new or increased snoring" showed high positive predictive values for MSA. CONCLUSION A pre-possible MSA phase exists. Improved earlier diagnosis of MSA depends on the sensitivity and positive predictive value of autonomic features or autonomic function tests and on the sensitivity of "atrophy on magnetic resonance imaging of the putamen, middle cerebellar peduncle, pons, or cerebellum" and "new or increased snoring" during the pre-possible MSA phase.
Collapse
Affiliation(s)
- Yasushi Osaki
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Yukari Morita
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Yuka Miyamoto
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Sho Ohtsuru
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Tomohiro Shogase
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Tomomi Furushima
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| | - Hirokazu Furuya
- Department of Neurology Kochi Medical School Hospital Nankoku Japan
| |
Collapse
|
7
|
Yun W, Hong W, Son D, Liu HW, Kim SS, Park M, Kim IY, Kim DS, Song G, You S. Generation of Anterior Hindbrain-Specific, Glial-Restricted Progenitor-Like Cells from Human Pluripotent Stem Cells. Stem Cells Dev 2019; 28:633-648. [PMID: 30880587 DOI: 10.1089/scd.2019.0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Engraftment of oligodendrocyte progenitor cells (OPCs), which form myelinating oligodendrocytes, has the potential to treat demyelinating diseases such as multiple sclerosis. However, conventional strategies for generating oligodendrocytes have mainly focused on direct differentiation into forebrain- or spinal cord-restricted oligodendrocytes without establishing or amplifying stem/progenitor cells. Taking advantage of a recently established culture system, we generated expandable EN1- and GBX2-positive glial-restricted progenitor-like cells (GPLCs) near the anterior hindbrain. These cells expressed PDGFRα, CD9, S100β, and SOX10 and mostly differentiated into GFAP-positive astrocytes and MBP-positive oligodendrocytes. RNA-seq analysis revealed that the transcriptome of GPLCs was similar to that of O4-positive OPCs, but distinct from that of rosette-type neural stem cells. Notably, engrafted GPLCs not only differentiated into GFAP-positive astrocytes but also myelinated the brains of adult shiverer mice 8 weeks after transplantation. Our strategy for establishing anterior hindbrain-specific GPLCs with gliogenic potency will facilitate their use in the treatment of demyelinating diseases and studies of the molecular mechanisms underlying glial development in the hindbrain.
Collapse
Affiliation(s)
- Wonjin Yun
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Wonjun Hong
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Daryeon Son
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hui-Wen Liu
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.,3 Laboratory of Reprogramming & Differentiation, Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seung-Soo Kim
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minji Park
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - In Yong Kim
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,4 Department of Neurosurgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dae-Sung Kim
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.,3 Laboratory of Reprogramming & Differentiation, Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Gwonhwa Song
- 5 Department of Biotechnology, Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungkwon You
- 1 Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Fellner L, Buchinger E, Brueck D, Irschick R, Wenning GK, Stefanova N. Limited effects of dysfunctional macroautophagy on the accumulation of extracellularly derived α-synuclein in oligodendroglia: implications for MSA pathogenesis. BMC Neurosci 2018; 19:32. [PMID: 29783943 PMCID: PMC5963177 DOI: 10.1186/s12868-018-0431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The progressive neurodegenerative disorder multiple system atrophy (MSA) is characterized by α-synuclein-positive (oligodendro-) glial cytoplasmic inclusions (GCIs). A connection between the abnormal accumulation of α-synuclein in GCIs and disease initiation and progression has been postulated. Mechanisms involved in the formation of GCIs are unclear. Abnormal uptake of α-synuclein from extracellular space, oligodendroglial overexpression of α-synuclein, and/or dysfunctional protein degradation including macroautophagy have all been discussed. In the current study, we investigated whether dysfunctional macroautophagy aggravates accumulation of extracellular α-synuclein in the oligodendroglia. RESULTS We show that oligodendroglia uptake monomeric and fibrillar extracellular α-synuclein. Blocking macroautophagy through bafilomycin A1 treatment or genetic knockdown of LC3B does not consistently change the level of incorporated α-synuclein in oligodendroglia exposed to extracellular soluble/monomeric or fibrillar α-synuclein, however leads to higher oxidative stress in combination with fibrillar α-synuclein treatment. Finally, we detected no evidence for GCI-like formation resulting from dysfunctional macroautophagy in oligodendroglia using confocal microscopy. CONCLUSION In summary, isolated dysfunctional macroautophagy is not sufficient to enhance abnormal accumulation of uptaken α-synuclein in vitro, but may lead to increased production of reactive oxygen species in the presence of fibrillar α-synuclein. Multiple complementary pathways are likely to contribute to GCI formation in MSA.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020 Innsbruck, Austria
| | - Edith Buchinger
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020 Innsbruck, Austria
| | - Dominik Brueck
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020 Innsbruck, Austria
| | - Regina Irschick
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Valera E, Masliah E. The neuropathology of multiple system atrophy and its therapeutic implications. Auton Neurosci 2017; 211:1-6. [PMID: 29169744 DOI: 10.1016/j.autneu.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 02/03/2023]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the abnormal accumulation of toxic forms of the synaptic protein alpha-synuclein (α-syn) within oligodendrocytes and neurons. The presence of α-syn within oligodendrocytes in the form of glial cytoplasmic inclusions is the diagnostic hallmark of MSA. However, it has been postulated that α-syn is produced in neurons and propagates to oligodendrocytes, where unknown mechanisms lead to its accumulation. The presence of α-syn within neurons in MSA has not been so extensively studied, but it may shed light into neuropathological mechanisms leading to oligodendroglial accumulation. Here we summarize the principal neuropathological events of MSA, and discuss how a deeper knowledge of these mechanisms may help develop effective therapies targeting α-syn accumulation and spreading.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging/NIH, 7201 Wisconsin Ave, Bethesda, MD 20814, USA.
| |
Collapse
|
10
|
The Diagnosis and Natural History of Multiple System Atrophy, Cerebellar Type. THE CEREBELLUM 2017; 15:663-679. [PMID: 26467153 DOI: 10.1007/s12311-015-0728-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this study was to identify key features differentiating multiple system atrophy cerebellar type (MSA-C) from idiopathic late-onset cerebellar ataxia (ILOCA). We reviewed records of patients seen in the Massachusetts General Hospital Ataxia Unit between 1992 and 2013 with consensus criteria diagnoses of MSA-C or ILOCA. Twelve patients had definite MSA-C, 53 had possible/probable MSA-C, and 12 had ILOCA. Autonomic features, specifically urinary urgency, frequency, and incontinence with erectile dysfunction in males, differentiated MSA-C from ILOCA throughout the disease course (p = 0.005). Orthostatic hypotension developed later and differentiated MSA-C from ILOCA (p < 0.01). REM sleep behavior disorder (RBD) occurred early in possible/probable MSA-C (p < 0.01). Late MSA-C included pathologic laughing and crying (PLC, p < 0.01), bradykinesia (p = 0.01), and corticospinal findings (p = 0.01). MRI distinguished MSA-C from ILOCA by atrophy of the brainstem (p < 0.01) and middle cerebellar peduncles (MCP, p = 0.02). MSA-C progressed faster than ILOCA: by 6 years, MSA-C walker dependency was 100 % and ILOCA 33 %. MSA-C survival was 8.4 ± 2.5 years. Mean length of ILOCA illness to date is 15.9 ± 6.4 years. A sporadic onset, insidiously developing cerebellar syndrome in midlife, with autonomic features of otherwise unexplained bladder dysfunction with or without erectile dysfunction in males, and atrophy of the cerebellum, brainstem, and MCP points strongly to MSA-C. RBD and postural hypotension confirm the diagnosis. Extrapyramidal findings, corticospinal tract signs, and PLC are helpful but not necessary for diagnosis. Clarity in early MSA-C diagnosis can prevent unnecessary investigations and facilitate therapeutic trials.
Collapse
|
11
|
Yang W, Yu S. Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 2017; 74:1485-1501. [PMID: 27826641 PMCID: PMC11107502 DOI: 10.1007/s00018-016-2411-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA) are three major synucleinopathies characterized by α-synuclein-containing inclusions in the brains of patients. Because the cell types and brain structures that are affected vary markedly between the disorders, the patients have different clinical manifestations in addition to some overlapping symptoms, which are the basis for differential diagnosis. Cognitive impairment and depression associated with hippocampal dysfunction are frequently observed in these disorders. While various α-synuclein-containing inclusions are found in the hippocampal formation, increasing evidence supports that small α-synuclein aggregates or oligomers may be the real culprit, causing deficits in neurotransmission and neurogenesis in the hippocampus and related brain regions, which constitute the major mechanism for the hippocampal dysfunctions and associated neuropsychiatric manifestations in synucleinopathies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
12
|
Stefanova N, Wenning GK. Review: Multiple system atrophy: emerging targets for interventional therapies. Neuropathol Appl Neurobiol 2016; 42:20-32. [PMID: 26785838 PMCID: PMC4788141 DOI: 10.1111/nan.12304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Multiple system atrophy (MSA) is a fatal orphan neurodegenerative disorder that manifests with rapidly progressive autonomic and motor dysfunction. The disease is characterized by the accumulation of α-synuclein fibrils in oligodendrocytes that form glial cytoplasmic inclusions, a neuropathological hallmark and central player in the pathogenesis of MSA. Here, we summarize the current knowledge on the etiopathogenesis and neuropathology of MSA. We discuss the role of α-synuclein pathology, microglial activation, oligodendroglial dysfunction and putative cell death mechanisms as candidate therapeutic targets in MSA.
Collapse
Affiliation(s)
- N Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Hu X, Yang Y, Gong D. Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: a meta-analysis. Neurol Sci 2016; 38:407-414. [DOI: 10.1007/s10072-016-2783-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023]
|
14
|
α-Synuclein-induced myelination deficit defines a novel interventional target for multiple system atrophy. Acta Neuropathol 2016; 132:59-75. [PMID: 27059609 DOI: 10.1007/s00401-016-1572-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Multiple system atrophy (MSA) is a rare atypical parkinsonian disorder characterized by a rapidly progressing clinical course and at present without any efficient therapy. Neuropathologically, myelin loss and neurodegeneration are associated with α-synuclein accumulation in oligodendrocytes, but underlying pathomechanisms are poorly understood. Here, we analyzed the impact of oligodendrocytic α-synuclein on the formation of myelin sheaths to define a potential interventional target for MSA. Post-mortem analyses of MSA patients and controls were performed to quantify myelin and oligodendrocyte numbers. As pre-clinical models, we used transgenic MSA mice, a myelinating stem cell-derived oligodendrocyte-neuron co-culture, and primary oligodendrocytes to determine functional consequences of oligodendrocytic α-synuclein overexpression on myelination. We detected myelin loss accompanied by preserved or even increased numbers of oligodendrocytes in post-mortem MSA brains or transgenic mouse forebrains, respectively, indicating an oligodendrocytic dysfunction in myelin formation. Corroborating this observation, overexpression of α-synuclein in primary and stem cell-derived oligodendrocytes severely impaired myelin formation, defining a novel α-synuclein-linked pathomechanism in MSA. We used the pro-myelinating activity of the muscarinic acetylcholine receptor antagonist benztropine to analyze the reversibility of the myelination deficit. Transcriptome profiling of primary pre-myelinating oligodendrocytes demonstrated that benztropine readjusts myelination-related processes such as cholesterol and membrane biogenesis, being compromised by oligodendrocytic α-synuclein. Additionally, benztropine restored the α-synuclein-induced myelination deficit of stem cell-derived oligodendrocytes. Strikingly, benztropine also ameliorated the myelin deficit in transgenic MSA mice, resulting in a prevention of neuronal cell loss. In conclusion, this study defines the α-synuclein-induced myelination deficit as a novel and crucial pathomechanism in MSA. Importantly, the reversible nature of this oligodendrocytic dysfunction opens a novel avenue for an intervention in MSA.
Collapse
|
15
|
Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2016; 152:131-148. [PMID: 27317387 DOI: 10.1016/j.pneurobio.2016.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 01/30/2023]
Abstract
Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing.
Collapse
Affiliation(s)
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital Research Institute and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna) 2016; 123:555-72. [PMID: 27098666 DOI: 10.1007/s00702-016-1545-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Fellner L, Kuzdas-Wood D, Levin J, Ryazanov S, Leonov A, Griesinger C, Giese A, Wenning GK, Stefanova N. Anle138b Partly Ameliorates Motor Deficits Despite Failure of Neuroprotection in a Model of Advanced Multiple System Atrophy. Front Neurosci 2016; 10:99. [PMID: 27013960 PMCID: PMC4785146 DOI: 10.3389/fnins.2016.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/20/2023] Open
Abstract
The neurodegenerative disorder multiple system atrophy (MSA) is characterized by autonomic failure, cerebellar ataxia and parkinsonism in any combination associated with predominantly oligodendroglial α-synuclein (α-syn) aggregates (glial cytoplasmic inclusions = GCIs). To date, there is no effective disease modifying therapy. Previous experiments have shown that the aggregation inhibitor anle138b reduces neurodegeneration, as well as behavioral deficits in both transgenic and toxin mouse models of Parkinson's disease (PD). Here we analyzed whether anle138b improves motor skills and reduces neuronal loss, as well as oligodendroglial α-syn aggregation in the PLP-α-syn transgenic mouse challenged with the mitochondrial toxin 3-nitropropionic acid (3-NP) to model full-blown MSA. Following 1 month of treatment with anle138b, MSA mice showed signs of motor improvement affecting stride length, but not pole, grip strength, and beam test performance. Loss of dopaminergic nigral neurons and Purkinje cells was not attenuated and GCI density remained unchanged. These data suggest that the pathology in transgenic PLP-α-syn mice receiving 3-NP might be too advanced to detect significant effects of anle138b treatment on neuronal loss and intracytoplasmic α-syn inclusion bodies. However, the partial motor amelioration may indicate potential efficacy of anle138b treatment that may be mediated by its actions on α-syn oligomers or may reflect improvement of neuronal dysfunction in neural at risk populations. Further studies are required to address the efficacy of anle138b in transgenic α-syn models of early-stage MSA and in the absence of additional toxin application.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Daniela Kuzdas-Wood
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Johannes Levin
- Neurologische Klinik, Klinikum der Ludwig-Maximilians-Universität München Munich, Germany
| | - Sergey Ryazanov
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Andrei Leonov
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Christian Griesinger
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München Munich, Germany
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| |
Collapse
|
18
|
Bergström AL, Kallunki P, Fog K. Development of Passive Immunotherapies for Synucleinopathies. Mov Disord 2015; 31:203-13. [PMID: 26704735 DOI: 10.1002/mds.26481] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy using antibodies targeting alpha-synuclein has proven to be an effective strategy for ameliorating pathological and behavioral deficits induced by excess pathogenic alpha-synuclein in various animal and/or cellular models. However, the process of selecting the anti-alpha-synuclein antibody with the best potential to treat synucleinopathies in humans is not trivial. Critical to this process is a better understanding of the pathological processes involved in the synucleinopathies and how antibodies are able to influence these. We will give an overview of the first proof-of-concept studies in rodent disease models and discuss challenges associated with developing antibodies against alpha-synuclein resulting from the distribution and structural characteristics of the protein. We will also provide a status on the passive immunization approaches targeting alpha-synuclein that have entered, or are expected to enter, clinical evaluation.
Collapse
Affiliation(s)
| | - Pekka Kallunki
- Division of Neurodegeneration and Biologics, H. Lundbeck A/S, Valby, Denmark
| | - Karina Fog
- Division of Neurodegeneration and Biologics, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|
19
|
Kuzdas-Wood D, Fellner L, Premstaller M, Borm C, Bloem B, Kirik D, Wenning GK, Stefanova N. Overexpression of α-synuclein in oligodendrocytes does not increase susceptibility to focal striatal excitotoxicity. BMC Neurosci 2015; 16:86. [PMID: 26627686 PMCID: PMC4667489 DOI: 10.1186/s12868-015-0227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disease characterized by α-synuclein (α-syn) positive oligodendroglial cytoplasmic inclusions. The latter are associated with a neuronal multisystem neurodegeneration targeting central autonomic, olivopontocerebellar and striatonigral pathways, however the underlying mechanisms of neuronal cell death are poorly understood. Previous experiments have shown that oligodendroglial α-syn pathology increases the susceptibility to mitochondrial stress and proteasomal dysfunction leading to enhanced MSA-like neurodegeneration. Here we analyzed whether oligodendroglial α-syn overexpression in a transgenic mouse model of MSA synergistically interacts with focal neuronal excitotoxic damage generated by a striatal injection of quinolinic acid (QA) to affect the degree of striatal neuronal loss. Results QA injury led to comparable striatal neuronal loss and optical density of astro- and microgliosis in the striatum of transgenic and control mice. Respectively, no differences were identified in drug-induced rotation behavior or open field behavior between the groups. Conclusions The failure of oligodendroglial α-syn pathology to exacerbate striatal neuronal loss resulting from QA excitotoxicity contrasts with enhanced striatal neurodegeneration due to oxidative or proteolytic stress, suggesting that enhanced vulnerability to excitotoxicity does not occur in oligodendroglial α-synucleinopathy like MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Melanie Premstaller
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Carlijn Borm
- Department of Neurology, Parkinson Center Nijmegen (ParC), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Bastiaan Bloem
- Department of Neurology, Parkinson Center Nijmegen (ParC), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Deniz Kirik
- Department of Experimental Medical Science, BMC D11, Brain Repair and Imaging in Neural Systems (BRAINS), Lund University, Klinikgatan 32, 22184, Lund, Sweden.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
Kuzdas-Wood D, Irschick R, Theurl M, Malsch P, Mair N, Mantinger C, Wanschitz J, Klimaschewski L, Poewe W, Stefanova N, Wenning GK. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype. PLoS One 2015; 10:e0136575. [PMID: 26496712 PMCID: PMC4619736 DOI: 10.1371/journal.pone.0136575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Regina Irschick
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Philipp Malsch
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Norbert Mair
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Christine Mantinger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
- * E-mail:
| |
Collapse
|
21
|
Poewe W, Mahlknecht P, Krismer F. Therapeutic advances in multiple system atrophy and progressive supranuclear palsy. Mov Disord 2015; 30:1528-38. [DOI: 10.1002/mds.26334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Werner Poewe
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| | - Philipp Mahlknecht
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London United Kingdom
| | - Florian Krismer
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
22
|
Kaindlstorfer C, Sommer P, Georgievska B, Mather RJ, Kugler AR, Poewe W, Wenning GK, Stefanova N. Failure of Neuroprotection Despite Microglial Suppression by Delayed-Start Myeloperoxidase Inhibition in a Model of Advanced Multiple System Atrophy: Clinical Implications. Neurotox Res 2015; 28:185-94. [PMID: 26194617 PMCID: PMC4556742 DOI: 10.1007/s12640-015-9547-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/26/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease. Post-mortem hallmarks of MSA neuropathology include oligodendroglial α-synuclein (αSYN) inclusions, striatonigral degeneration, olivopontocerebellar atrophy, and increased microglial activation that accompanies the wide spread neurodegeneration. Recently, we demonstrated upregulation of myeloperoxidase (MPO) in activated microglia and provided evidence for the role of microglial MPO in the mediation of MSA-like neurodegeneration (Stefanova et al. Neurotox Res 21:393–404, 2015). The aim of the current study was to assess the therapeutic potency of MPO inhibition (MPOi) in a model of advanced MSA. We replicated the advanced pathology of MSA by intoxicating transgenic PLP-α-synuclein transgenic mice with 3-nitropropionic acid (3NP). After onset of the full-blown pathology, MSA mice received either MPOi or vehicle over 3 weeks. Motor phenotype and neuropathology were analyzed to assess the therapeutic efficacy of MPOi compared to vehicle treatment in MSA mice. MPOi therapy initiated after the onset of severe MSA-like neuropathology in mice failed to attenuate motor impairments and neuronal loss within the striatum, substantia nigra pars compacta, inferior olives, pontine nuclei, and cerebellar cortex. However, we observed a significant reduction of microglial activation in degenerating brain areas. Further, nitrated αSYN accumulation was reduced in the striatonigral region. In summary, delayed-start MPOi treatment reduced microglial activation and levels of nitrated αSYN in a mouse model of advanced MSA. These effects failed to impact on motor impairments and neuronal loss in contrast to previously reported disease modifying efficacy of early-start therapy with MPOi in MSA.
Collapse
Affiliation(s)
- Christine Kaindlstorfer
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Low PA, Reich SG, Jankovic J, Shults CW, Stern MB, Novak P, Tanner CM, Gilman S, Marshall FJ, Wooten F, Racette B, Chelimsky T, Singer W, Sletten DM, Sandroni P, Mandrekar J. Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol 2015; 14:710-9. [PMID: 26025783 PMCID: PMC4472464 DOI: 10.1016/s1474-4422(15)00058-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
Background Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disorder exhibiting a combination of parkinsonism and/or cerebellar ataxia with autonomic failure. We report the first North American prospective natural history study of MSA, and the effects of phenotype and autonomic failure on prognosis. Methods 175 subjects with probable MSA, both MSA-P and MSA-C, were recruited and prospectively followed for 5 years with evaluations every 6 months in 12 centers. Natural history was evaluated by Kaplan-Meier survival analysis. We compared MSA-P with MSA-C and evaluated predictors of outcome. These subjects were evaluated with UMSARS I (a functional score of symptoms and ability to undertake activities of daily living), UMSARS II (neurological motor evaluation), and the Composite Autonomic Symptoms Scale (COMPASS)-select (a measure of autonomic symptoms and autonomic functional status. Findings Mean age of symptom onset was 63.4 (SD 8.57) years. Median survival from symptom onset by Kaplan-Meier analysis was 9.8 years (95% CI 8.8-10.7). Subjects with severe symptomatic autonomic failure (symptomatic orthostatic hypotension, urinary incontinence) at diagnosis had a worse prognosis, surviving 8.0 years (95% CI, 6.5-9.5, n=62) while remaining subjects survived a median of 10.3 years (95% CI, 9.3-11.4, n=113). At baseline MSA-P (n=126) and MSA-C (n=49) were not different in symptoms and function, UMSARS I, 25.2 (8.08) vs 24.6 (8.34), p=0.835; UMSARS II, 26.4 (8.77) vs 25.4 (10.51), p=0.7635; COMPASS_select), 43.5 (18.66) vs 42.8 (19.56), p=0.835. Progression, evaluated by change in UMSARS I, UMSARS II, COMPASS_select over the next 5 years, was not significantly different between MSA-P and MSA-C. Median time to death from enrollment baseline was 1.8 (95% CI, 0.9-2.7) years. Interpretation Probable MSA represents late-stage disease with short survival. Natural history of MSA-P and MSA-C are similar. Severe symptomatic autonomic failure at diagnosis is associated with worse prognosis. Funding National Institutes of Health (P01 NS044233), Mayo CTSA (UL1 TR000135), the Kathy Shih Memorial Foundation, and Mayo funds.
Collapse
Affiliation(s)
- Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Stephen G Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Clifford W Shults
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew B Stern
- Parkinson's Disease and Movement Disorders Center, Pennsylvania Hospital, Philadelphia, PA, USA
| | - Peter Novak
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | - Caroline M Tanner
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Sid Gilman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederick Wooten
- Department of Neurology, University of Virginia Health System, Charlottesville, VA, USA
| | - Brad Racette
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Thomas Chelimsky
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jay Mandrekar
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Bates CA, Fu S, Ysselstein D, Rochet JC, Zheng W. Expression and Transport of α-Synuclein at the Blood-Cerebrospinal Fluid Barrier and Effects of Manganese Exposure. ADMET AND DMPK 2015; 3:15-33. [PMID: 26640596 PMCID: PMC4669215 DOI: 10.5599/admet.3.1.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus maintains the homeostasis of critical molecules in the brain by regulating their transport between the blood and cerebrospinal fluid (CSF). The current study was designed to investigate the potential role of the blood-CSF barrier (BCSFB) in α-synuclein (a-Syn) transport in the brain as affected by exposure to manganese (Mn), the toxic metal implicated in Parkinsonian disorders. Immunohistochemistry was used to identify intracellular a-Syn expression at the BCSFB. Quantitative real-time PCR was used to quantify the change in a-Syn mRNA expression following Mn treatments at the BCSFB in vitro. ELISA was used to quantify a-Syn levels following in vivo and in vitro treatments of Mn, copper (Cu), and/or external a-Syn. Thioflavin-T assay was used to investigate a-Syn aggregation after incubating with Mn and/or Cu in vitro. A two-chamber Transwell system was used to study a-Syn transport by BCSFB monolayer. Data revealed the expression of endogenous a-Syn in rat choroid plexus tissue and immortalized choroidal epithelial Z310 cells. The cultured primary choroidal epithelia from rats showed the ability to take up a-Syn from extracellular medium and transport a-Syn across the cellular monolayer from the donor to receiver chamber. Exposure of cells with Mn induced intracellular a-Syn accumulation without causing any significant changes in a-Syn mRNA expression. A significant increase in a-Syn aggregation in a cell-free system was observed with the presence of Mn. Moreover, Mn exposure resulted in a significant uptake of a-Syn by primary cells. These data indicate that the BCSFB expresses a-Syn endogenously and is capable of transporting a-Syn across the BCSFB monolayer; Mn exposure apparently increases a-Syn accumulation in the BCSFB by facilitating its uptake and intracellular aggregation.
Collapse
Affiliation(s)
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| | - Daniel Ysselstein
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
25
|
Singer W, Low PA. Optimizing clinical trial design for multiple system atrophy: lessons from the rifampicin study. Clin Auton Res 2015; 25:47-52. [PMID: 25763826 DOI: 10.1007/s10286-015-0281-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by autonomic failure and parkinsonism/ataxia; no treatment exists to slow disease progression. A number of factors have prevented or compromised trials targeting disease modification. A major hurdle has been uncertainty about the number of patients needed to achieve adequate power. Information based on natural history studies suggested such numbers to be so large that only international multi-center models seemed feasible. When designing the rifampicin trial in MSA we sought to identify and apply strategies that would improve power and reduce the number needed to treat to allow for an oligocenter approach. Strategies included: (1) inclusion/exclusion criteria designed to enroll patients with relatively early, actively progressing disease; (2) minimizing dropouts; (3) pre-defined interim analysis; and (4) approaches to reduce scoring variability. The model allowed for the number needed to treat to be only 50 patients per treatment arm. Ten selected sites managed to reach the recruitment goal within 12 months. The dropout rate was less than 10%, and the goal of enrolling patients with actively progressing disease was accomplished as reflected by the progression rate in the placebo group. Data from this unfortunately negative trial can now be effectively used to more realistically power future trials. A number of ways to further improve trial design and feasibility have been identified and include rigorous site selection and training, designated primary site investigators, improved error trapping, early site visits, remedial training, and future biomarkers for earlier diagnosis and tracking of disease progression.
Collapse
Affiliation(s)
- Wolfgang Singer
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| | | |
Collapse
|
26
|
Brück D, Wenning GK, Stefanova N, Fellner L. Glia and alpha-synuclein in neurodegeneration: A complex interaction. Neurobiol Dis 2015; 85:262-274. [PMID: 25766679 DOI: 10.1016/j.nbd.2015.03.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
α-Synucleinopathies (ASP) comprise adult-onset, progressive neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) that are characterized by α-synuclein (AS) aggregates in neurons or glia. PD and DLB feature neuronal AS-positive inclusions termed Lewy bodies (LB) whereas glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) are recognized as the defining hallmark of MSA. Furthermore, AS-positive cytoplasmic aggregates may also be seen in astroglial cells of PD/DLB and MSA brains. The glial AS-inclusions appear to trigger reduced trophic support resulting in neuronal loss. Moreover, microgliosis and astrogliosis can be found throughout the neurodegenerative brain and both are key players in the initiation and progression of ASP. In this review, we will highlight AS-dependent alterations of glial function and their impact on neuronal vulnerability thereby providing a detailed summary on the multifaceted role of glia in ASP.
Collapse
Affiliation(s)
- Dominik Brück
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
The degree of astrocyte activation in multiple system atrophy is inversely proportional to the distance to α-synuclein inclusions. Mol Cell Neurosci 2015; 65:68-81. [PMID: 25731829 DOI: 10.1016/j.mcn.2015.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25μm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25μm), with a reciprocal linear correlation (m, 90μm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.
Collapse
|
28
|
Perez-Lloret S, Flabeau O, Fernagut PO, Pavy-Le Traon A, Rey MV, Foubert-Samier A, Tison F, Rascol O, Meissner WG. Current Concepts in the Treatment of Multiple System Atrophy. Mov Disord Clin Pract 2015; 2:6-16. [PMID: 30363880 DOI: 10.1002/mdc3.12145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
MSA is a progressive neurodegenerative disorder characterized by autonomic failure and a variable combination of poor levodopa-responsive parkinsonism and cerebellar ataxia (CA). Current therapeutic management is based on symptomatic treatment. Almost one third of MSA patients may benefit from l-dopa for the symptomatic treatment of parkinsonism, whereas physiotherapy remains the best therapeutic option for CA. Only midodrine and droxidopa were found to be efficient for neurogenic hypotension in double-blind, controlled studies, whereas other symptoms of autonomic failure may be managed with off-label treatments. To date, no curative treatment is available for MSA. Recent results of neuroprotective and -restorative trials have provided some hope for future advances. Considerations for future clinical trials are also discussed in this review.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Olivier Flabeau
- Department of Neurology Center Hospitalier de la Côte Basque Bayonne France
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France
| | - Anne Pavy-Le Traon
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - María Verónica Rey
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Alexandra Foubert-Samier
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Francois Tison
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Olivier Rascol
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| |
Collapse
|
29
|
Ciolli L, Krismer F, Nicoletti F, Wenning GK. An update on the cerebellar subtype of multiple system atrophy. CEREBELLUM & ATAXIAS 2014; 1:14. [PMID: 26331038 PMCID: PMC4552412 DOI: 10.1186/s40673-014-0014-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Multiple system atrophy is a rare and fatal neurodegenerative disorder characterized by progressive autonomic failure, ataxia and parkinsonism in any combination. The clinical manifestations reflect central autonomic and striatonigral degeneration as well as olivopontocerebellar atrophy. Glial cytoplasmic inclusions, composed of α-synuclein and other proteins are considered the cellular hallmark lesion. The cerebellar variant of MSA (MSA-C) denotes a distinctive motor subtype characterized by progressive adult onset sporadic gait ataxia, scanning dysarthria, limb ataxia and cerebellar oculomotor dysfunction. In addition, there is autonomic failure and variable degrees of parkinsonism. A range of other disorders may present with MSA-C like features and therefore the differential diagnosis of MSA-C is not always straightforward. Here we review key aspects of MSA-C including pathology, pathogenesis, diagnosis, clinical features and treatment, paying special attention to differential diagnosis in late onset sporadic cerebellar ataxias.
Collapse
Affiliation(s)
- Ludovico Ciolli
- Sapienza University, Via di Grottarossa, 1035-00189 Rome, Italy ; Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Ferdinando Nicoletti
- IRCSS NEUROMED, Pozzilli, Isernia Italy ; Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, School of Medicine and Psychology, Rome, Italy
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|