1
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Lorenc-Koci E, Kamińska K, Lenda T, Konieczny J. The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats. Molecules 2024; 29:4318. [PMID: 39339313 PMCID: PMC11434559 DOI: 10.3390/molecules29184318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (K.K.); (T.L.); (J.K.)
| | | | | | | |
Collapse
|
3
|
Ballardin D, Makrini-Maleville L, Seper A, Valjent E, Rebholz H. 5-HT4R agonism reduces L-DOPA-induced dyskinesia via striatopallidal neurons in unilaterally 6-OHDA lesioned mice. Neurobiol Dis 2024; 198:106559. [PMID: 38852753 DOI: 10.1016/j.nbd.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France
| | | | - Alexander Seper
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
| | - Emmanuel Valjent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France; Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria; GHU-Paris Psychiatrie et Neuroscience, Hôpital Sainte Anne, F-75014 Paris, France.
| |
Collapse
|
4
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Du L, Yang D, Wu L, Mei L, Wu S, Ba Y, Bao Y, Su R, Song L. Integration of Gut Microbiota, Serum Metabolomic, and Network Pharmacology to Reveal the Anti Insomnia Mechanism of Mongolian Medicine Sugemule-4 Decoction on Insomnia Model Rats. Drug Des Devel Ther 2024; 18:2617-2639. [PMID: 38957410 PMCID: PMC11217142 DOI: 10.2147/dddt.s455600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Objective To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.
Collapse
Affiliation(s)
- Lina Du
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Dezhi Yang
- Innovative Mongolian Medical Engineering Research Center, Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lan Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Li Mei
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Sarula Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yasula Ba
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yongchang Bao
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Rigugaqiqige Su
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lin Song
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
6
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
7
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
8
|
Ribeiro DL, Guimarães RP, Bariotto-Dos-Santos K, Del Bel E, Padovan-Neto FE. Sodium nitroprusside enhances stepping test performance and increases medium spiny neurons responsiveness to cortical inputs in a rat model of Levodopa-induced dyskinesias. Eur J Neurosci 2024; 59:1604-1620. [PMID: 38359910 DOI: 10.1111/ejn.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.
Collapse
Affiliation(s)
- Danilo Leandro Ribeiro
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rayanne Poletti Guimarães
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Keila Bariotto-Dos-Santos
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando E Padovan-Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Chagraoui A, Anouar Y, De Deurwaerdere P, Arias HR. To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease. Int J Biochem Cell Biol 2024; 168:106528. [PMID: 38246261 DOI: 10.1016/j.biocel.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France.
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
10
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
11
|
Bi Y, Wang P, Yu J, Wang Z, Yang H, Deng Y, Guan J, Zhang W. Eltoprazine modulated gamma oscillations on ameliorating L-dopa-induced dyskinesia in rats. CNS Neurosci Ther 2023; 29:2998-3013. [PMID: 37122156 PMCID: PMC10493666 DOI: 10.1111/cns.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
AIM Parkinson's disease (PD) is a pervasive neurodegenerative disease, and levodopa (L-dopa) is its preferred treatment. The pathophysiological mechanism of levodopa-induced dyskinesia (LID), the most common complication of long-term L-dopa administration, remains obscure. Accumulated evidence suggests that the dopaminergic as well as non-dopaminergic systems contribute to LID development. As a 5-hydroxytryptamine 1A/1B receptor agonist, eltoprazine ameliorates dyskinesia, although little is known about its electrophysiological mechanism. The aim of this study was to investigate the cumulative effects of chronic L-dopa administration and the potential mechanism of eltoprazine's amelioration of dyskinesia at the electrophysiological level in rats. METHODS Neural electrophysiological analysis techniques were conducted on the acquired local field potential (LFP) data from primary motor cortex (M1) and dorsolateral striatum (DLS) during different pathological states to obtain the information of power spectrum density, theta-gamma phase-amplitude coupling (PAC), and functional connectivity. Behavior tests and AIMs scoring were performed to verify PD model establishment and evaluate LID severity. RESULTS We detected exaggerated gamma activities in the dyskinetic state, with different features and impacts in distinct regions. Gamma oscillations in M1 were narrowband manner, whereas that in DLS had a broadband appearance. Striatal exaggerated theta-gamma PAC in the LID state contributed to broadband gamma oscillation, and aperiodic-corrected cortical beta power correlated robustly with aperiodic-corrected gamma power in M1. M1-DLS coherence and phase-locking values (PLVs) in the gamma band were enhanced following L-dopa administration. Eltoprazine intervention reduced gamma oscillations, theta-gamma PAC in the DLS, and coherence and PLVs in the gamma band to alleviate dyskinesia. CONCLUSION Excessive cortical gamma oscillation is a compelling clinical indicator of dyskinesia. The detection of enhanced PAC and functional connectivity of gamma-band oscillation can be used to guide and optimize deep brain stimulation parameters. Eltoprazine has potential clinical application for dyskinesia.
Collapse
Affiliation(s)
- Yuewei Bi
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianshen Yu
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhuyong Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hanjie Yang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuhao Deng
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianwei Guan
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangming Zhang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Khsime I, Boulain M, Fettah A, Chagraoui A, Courtand G, De Deurwaerdère P, Juvin L, Barrière G. Limiting Monoamines Degradation Increases L-DOPA Pro-Locomotor Action in Newborn Rats. Int J Mol Sci 2023; 24:14747. [PMID: 37834195 PMCID: PMC10572489 DOI: 10.3390/ijms241914747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.
Collapse
Affiliation(s)
- Inès Khsime
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abderrahman Fettah
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, UNIROUEN, INSERM U1239, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), F-76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, F-76000 Rouen, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Grégory Barrière
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| |
Collapse
|
13
|
Brzezicki MA, Conway N, Sotirakis C, FitzGerald JJ, Antoniades CA. Antiparkinsonian medication masks motor signal progression in de novo patients. Heliyon 2023; 9:e16415. [PMID: 37265609 PMCID: PMC10230196 DOI: 10.1016/j.heliyon.2023.e16415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Patients not yet receiving medication provide insight to drug-naïve early physiology of Parkinson's Disease (PD). Wearable sensors can measure changes in motor features before and after introduction of antiparkinsonian medication. We aimed to identify features of upper limb bradykinesia, postural stability, and gait that measurably progress in de novo PD patients prior to the start of medication, and determine whether these features remain sensitive to progression in the period after commencement of antiparkinsonian medication. Upper limb motion was measured using an inertial sensor worn on a finger, while postural stability and gait were recorded using an array of six wearable sensors. Patients were tested over nine visits at three monthly intervals. The timepoint of start of medication was noted. Three upper limb bradykinetic features (finger tapping speed, pronation supination speed, and pronation supination amplitude) and three gait features (gait speed, arm range of motion, duration of stance phase) were found to progress in unmedicated early-stage PD patients. In all features, progression was masked after the start of medication. Commencing antiparkinsonian medication is known to lead to masking of progression signals in clinical measures in de novo PD patients. In this study, we show that this effect is also observed with digital measures of bradykinetic and gait motor features.
Collapse
Affiliation(s)
- Maksymilian A. Brzezicki
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Niall Conway
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Charalampos Sotirakis
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - James J. FitzGerald
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chrystalina A. Antoniades
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
14
|
Crapnell R, Banks CE. Electroanalytical Overview: The Determination of Levodopa (L-DOPA). ACS MEASUREMENT SCIENCE AU 2023; 3:84-97. [PMID: 37090256 PMCID: PMC10120037 DOI: 10.1021/acsmeasuresciau.2c00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA (levodopa) is a therapeutic agent which is the most effective medication for treating Parkinson's disease, but it needs dose optimization, and therefore its analytical determination is required. Laboratory analytical instruments can be routinely used to measure L-DOPA but are not always available in clinical settings and traditional research laboratories, and they also have slow result delivery times and high costs. The use of electroanalytical sensing overcomes these problems providing a highly sensitivity, low-cost, and readily portable solution. Consequently, we overview the electroanalytical determination of L-DOPA reported throughout the literature summarizing the endeavors toward sensing L-DOPA, and we offer insights into future research opportunities.
Collapse
|
15
|
Foo SS, Chen W, Jung KL, Azamor T, Choi UY, Zhang P, Comhair SA, Erzurum SC, Jehi L, Jung JU. Immunometabolic rewiring in long COVID patients with chronic headache. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531302. [PMID: 36945569 PMCID: PMC10028820 DOI: 10.1101/2023.03.06.531302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Almost 20% of patients with COVID-19 experience long-term effects, known as post-COVID condition or long COVID. Among many lingering neurologic symptoms, chronic headache is the most common. Despite this health concern, the etiology of long COVID headache is still not well characterized. Here, we present a longitudinal multi-omics analysis of blood leukocyte transcriptomics, plasma proteomics and metabolomics of long COVID patients with chronic headache. Long COVID patients experienced a state of hyper-inflammation prior to chronic headache onset and maintained persistent inflammatory activation throughout the progression of chronic headache. Metabolomic analysis also revealed augmented arginine and lipid metabolisms, skewing towards a nitric oxide-based pro-inflammation. Furthermore, metabolisms of neurotransmitters including serotonin, dopamine, glutamate, and GABA were markedly dysregulated during the progression of long COVID headache. Overall, these findings illustrate the immuno-metabolomics landscape of long COVID patients with chronic headache, which may provide insights to potential therapeutic interventions.
Collapse
|
16
|
Zhu Q, Song J, Chen J, Yuan Z, Liu L, Xie L, Liao Q, Ye RD, Chen X, Yan Y, Tan J, Heng Tan CS, Li M, Lu J. Corynoxine B targets at HMGB1/2 to enhance autophagy for alpha-synuclein clearance in fly and rodent models of Parkinson’s disease. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
17
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
18
|
De Deurwaerdère P, Samb N, El Boukhari H, Corne R, Chagraoui A, Di Giovanni G. In Vivo Study of Monoamine Oxidases Using Multisite Intracerebral Microdialysis. Methods Mol Biol 2023; 2558:183-195. [PMID: 36169864 DOI: 10.1007/978-1-0716-2643-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activity of monoamine oxidases (MAOs) in the brain is often associated with neurodegenerative diseases. The study of MAOs in vivo or ex vivo is generally performed using MAO inhibitors and rarely using substrates. We present a pharmacological approach using intracerebral microdialysis to study the activity of MAO in the striatum and the prefrontal cortex of rats. It consists of applying ascending concentrations of 3-methoxytyramine (3-MT) as a substrate via the probes and measuring the indirect product homovanillic acid generated by MAO activity. We present herein the methodologies comprising our in-house stereotaxic procedures in rats, the microdialysis perfusion system and the substrate application, and the neurochemical analysis of the samples.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), Bordeaux Cedex, France.
| | - Nouhad Samb
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), Bordeaux Cedex, France
| | - Hasna El Boukhari
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), Bordeaux Cedex, France
| | - Rémi Corne
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Normandie University, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Nakahara K, Okuda H, Isonishi A, Kawabe Y, Tanaka T, Tatsumi K, Wanaka A. Amino acid transporter Asc-1 (SLC7A10) expression is altered in basal ganglia in experimental Parkinsonism and L-dopa-induced dyskinesia model mice. J Chem Neuroanat 2023; 127:102191. [PMID: 36403747 DOI: 10.1016/j.jchemneu.2022.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In Parkinson's disease (PD), a decrease in dopamine levels in the striatum causes abnormal circuit activity in the basal ganglia, resulting in increased output via the substantia nigra pars reticulata (SNr). A characteristic feature of glutamatergic synaptic transmission in the basal ganglia circuitry under conditions of dopamine depletion is enhanced synaptic activity of NMDA receptors. However, the cause of this NMDA receptor hyperactivity is not fully understood. We focused on Asc-1 (SLC7A10), an alanine-serine-cysteine transporter, as one of the factors that regulate NMDA receptor activity by modulating D-serine and glycine concentration in synaptic clefts. We generated PD model mice by injection of 6-hydroxydopamine into the unilateral medial forebrain bundle and analyzed the expression level of Asc-1 mRNA in the nuclei of basal ganglia (the external segment of the globus pallidus (GPe), subthalamic nucleus (STN), and SNr) compared to control mice. Each nucleus was dissected using laser microdissection, and RNA was extracted and quantified by quantitative PCR. Asc-1 mRNA expression was significantly higher in the GPe and lower in the SNr under the PD state than that in control naïve mice. The STN showed no change in Asc-1 mRNA expression. We further modeled L-dopa-induced dyskinesia by administering L-dopa continuously for 14 days to the PD model mice and found that Asc-1 mRNA expression in the GPe and SNr became close to that of control mice, regardless of the presence of abnormal involuntary movements. The present study revealed that Asc-1 mRNA expression is differentially regulated in the basal ganglionic nuclei in response to striatal dopamine concentration (depleted or replenished) and suggests that Asc-1 can be a therapeutic target for the amelioration of motor symptoms of PD.
Collapse
Affiliation(s)
- Kazuki Nakahara
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Okuda
- Department of Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshie Kawabe
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
20
|
Sukhanov I, Dorotenko A, Fesenko Z, Savchenko A, Efimova EV, Mor MS, Belozertseva IV, Sotnikova TD, Gainetdinov RR. Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson's Disease Therapy. Biomolecules 2022; 13:biom13010009. [PMID: 36671394 PMCID: PMC9855999 DOI: 10.3390/biom13010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative pathology. Due to the limitations of existing therapeutic approaches, novel anti-parkinsonian medicines with non-dopamine mechanisms of action are clearly needed. One of the promising pharmacological targets for anti-Parkinson drug development is phosphodiesterase (PDE) 10A. The stimulating motor effects of PDE10A inhibition were detected only under the conditions of partial dopamine depletion. The results raise the question of whether PDE10A inhibitors are able to restore locomotor activity when dopamine levels are very low. To address this issue, we (1) developed and validated the rat model of acute severe dopamine deficiency and (2) tested the action of PDE10A inhibitor MP-10 in this model. All experiments were performed in dopamine transporter knockout (DAT-KO) rats. A tyrosine hydroxylase inhibitor, α-Methyl-DL-tyrosine (αMPT), was used as an agent to cause extreme dopamine deficiency. In vivo tests included estimation of locomotor activity and catalepsy levels in the bar test. Additionally, we evaluated the tissue content of dopamine in brain samples by HPLC analysis. The acute administration of αMPT to DAT-KO rats caused severe depletion of dopamine, immobility, and catalepsy (Dopamine-Deficient DAT-KO (DDD) rats). As expected, treatment with the L-DOPA and carbidopa combination restored the motor functions of DDD rats. Strikingly, administration of MP-10 also fully reversed immobility and catalepsy in DDD rats. According to neurochemical studies, the action of MP-10, in contrast to L-DOPA + carbidopa, seems to be dopamine-independent. These observations indicate that targeting PDE10A may represent a new promising approach in the development of non-dopamine therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (I.S.); (R.R.G.); Tel.: +7-(812)-346-39-25 (I.S.); +7-(812)-363-69-39 (R.R.G.)
| | - Artem Dorotenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikael S. Mor
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Belozertseva
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Tatyana D. Sotnikova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (I.S.); (R.R.G.); Tel.: +7-(812)-346-39-25 (I.S.); +7-(812)-363-69-39 (R.R.G.)
| |
Collapse
|
21
|
He T, Xiong L, Zhang Y, Yan R, Yu M, Liu M, Liu L, Duan C, Li X, Zhang J. Mice kidney biometabolic process analysis after cantharidin exposure using widely-targeted metabolomics combined with network pharmacology. Food Chem Toxicol 2022; 171:113541. [PMID: 36464109 DOI: 10.1016/j.fct.2022.113541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Cantharidin (CTD) is a principal bioactive component of traditional Chinese medicine Mylabris used in cancer treatment. However, CTD clinical application is limited due to nephrotoxicity, and the mechanism is unknown. The present study used widely-targeted metabolomics, network pharmacology, and cell experiments to investigate the nephrotoxicity mechanism after CTD exposure. In mice exposed to CTD, serum creatinine and urea nitrogen levels increased with renal injury. Then, 74 differential metabolites were detected, including 51 up-regulated and 23 down-regulated metabolites classified as amino acids, small peptides, fatty acyl, arachidonic acid metabolite, organic acid, and nucleotides. Sixteen metabolic pathways including tyrosine, sulfur, and pyrimidine metabolism were all disrupted in the kidney. Furthermore, network pharmacology revealed that 258 metabolic targets, and pathway enrichment indicated that CTD could activate oxidative phosphorylation and oxidative stress (OS). Subsequently, HK-2 cell experiments demonstrated that CTD could reduce superoxide dismutase while increasing malondialdehyde levels. In conclusion, after CTD exposure, biometabolic processes may be disrupted with renal injury in mice, resulting in oxidative phosphorylation and OS.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China; School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yixin Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Yan
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Ming Yu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Meichen Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Liu Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China; School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
22
|
Tackling the challenges of developing microneedle-based electrochemical sensors. Mikrochim Acta 2022; 189:440. [DOI: 10.1007/s00604-022-05510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
23
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
24
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
25
|
Florio E, Serra M, Lewis RG, Kramár E, Freidberg M, Wood M, Morelli M, Borrelli E. D2R signaling in striatal spiny neurons modulates L-DOPA induced dyskinesia. iScience 2022; 25:105263. [PMID: 36274959 PMCID: PMC9579025 DOI: 10.1016/j.isci.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Degeneration of dopaminergic neurons leads to Parkinson's disease (PD), characterized by reduced levels of striatal dopamine (DA) and impaired voluntary movements. DA replacement is achieved by levodopa treatment which in long-term causes involuntary movements or dyskinesia. Dyskinesia is linked to the pulsatile activation of D1 receptors of the striatal medium spiny neurons (MSNs) forming the direct output pathway (dMSNs). The contribution of DA stimulation of D2R in MSNs of the indirect pathway (iMSNs) is less clear. Using the 6-hydroxydopamine model of PD, here we show that loss of DA-mediated inhibition of these neurons intensifies levodopa-induced dyskinesia (LID) leading to reprogramming of striatal gene expression. We propose that the motor impairments characteristic of PD and of its therapy are critically dependent on D2R-mediated iMSNs activity. D2R signaling not only filters inputs to the striatum but also indirectly regulates dMSNs mediated responses.
Collapse
Affiliation(s)
- Ermanno Florio
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Robert G. Lewis
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Michael Freidberg
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697, USA
| | - Marcello Wood
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Emiliana Borrelli
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Abstract
Ergometrine is widely used for the treatment of excessive postpartum uterine bleeding. Claviceps paspali is a common species for industrial production of ergometrine, which is often accompanied by lysergic acid α-hydroxyethylamide (LAH) and lysergic acid amide (LAA). Currently, direct evidence on the biosynthetic mechanism of LAH and LAA from lysergic acid in C. paspali is absent, except that LAH and LAA share the common precursor with ergometrine and LAA is spontaneously transformed from LAH. A comparison of the gene clusters between C. purpurea and C. paspali showed that the latter harbored the additional easO and easP genes. Thus, the knockout of easO and easP in the species should not only improve the ergometrine production but also elucidate the function. In this study, gene knockout of C. paspali by homologous recombination yielded two mutants ∆easOhetero-1 and ∆easPhetero-34 with ergometrine titers of 1559.36 mg∙L−1 and 837.57 mg∙L−1, which were four and two times higher than that of the wild-type control, respectively. While the total titer of LAH and LAA of ∆easOhetero-1 was lower than that of the wild-type control. The Aspergillus nidulans expression system was adopted to verify the function of easO and easP. Heterologous expression in A. nidulans further demonstrated that easO, but not easP, determines the formation of LAA.
Collapse
|
27
|
Patel A, Olang CA, Lewis G, Mandalaneni K, Anand N, Gorantla VR. An Overview of Parkinson's Disease: Curcumin as a Possible Alternative Treatment. Cureus 2022; 14:e25032. [PMID: 35719816 PMCID: PMC9199586 DOI: 10.7759/cureus.25032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain and basal ganglia, followed by dopamine deficiency in the brain. Dopamine plays a crucial role in motor coordination, memory, and cognition; its decrease in PD leads to dyskinesia, cognitive deficits, and depression. In addition, the formation of alpha-synuclein protein aggregates (Lewy bodies) causes further damage to the CNS. Current treatment options include dopamine precursors, inhibitors of dopamine metabolism, upregulation of autophagy, adenosine A2A antagonists, and surgical intervention as a last resort. A challenge arises from a progressive decrease in treatment efficacy as the disease progresses and this necessitates exploration of adjunctive treatments. Epidemiological studies suggest that the prevalence of PD varies between ethnic groups of Caucasians, Asians, and African Americans. Notably, the prevalence of PD is lower in countries of Southeastern Asia including India. The differences in the diet of various ethnic groups may suggest an origin for this difference in the prevalence of PD. One staple ingredient in traditional Asian cuisine is turmeric. Curcuma longa, popularly known as turmeric, is an orange tuberous rhizome that has been used for centuries in traditional Indian cuisine and traditional medicine. Turmeric contains curcumin, a potent antioxidant that scavenges reactive oxygen species and chelates toxic metals. Curcumin has been proposed to be a neuroprotective agent due to its potent antioxidative properties. Though preliminary studies in animal model systems have suggested a protective effect of curcumin on dopaminergic neurons, the direct benefits of curcumin on the progress of PD remains poorly understood. In this review, we explore the promising use of curcumin as an adjunct to conventional PD treatments in order to enhance treatment and improve outcomes.
Collapse
Affiliation(s)
- Arjun Patel
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Catherine A Olang
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Gregory Lewis
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Kesava Mandalaneni
- Physiology, St. George's University School of Medicine, St. George's, GRD
| | - Nikhilesh Anand
- Pharmacology, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
28
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
29
|
Jiang J, Liu Y, Wu Q. Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Front Neurosci 2021; 15:781722. [PMID: 34867177 PMCID: PMC8636772 DOI: 10.3389/fnins.2021.781722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s diseases (AD and PD) are amongst top of the prevalent neurodegenerative disease. One-third of PD patients are diagnosed with dementia, a pre-symptom of AD, but the underlying mechanism is elusive. Amyloid beta (Aβ) and α-synuclein are two of the most investigated proteins, whose pathological aggregation and spreading are crucial to the pathogenesis of AD and PD, respectively. Transcriptomic studies of the mammalian central nervous system shed light on gene expression profiles at molecular levels, regarding the complexity of neuronal morphologies and electrophysiological inputs/outputs. In the last decade, the booming of the single-cell RNA sequencing technique helped to understand gene expression patterns, alternative splicing, novel transcripts, and signal pathways in the nervous system at single-cell levels, providing insight for molecular taxonomy and mechanistic targets of the degenerative nervous system. Here, we re-visited the cell-cell transmission mechanisms of Aβ and α-synuclein in mediating disease propagation, and summarized recent single-cell transcriptome sequencing from different perspectives and discussed its understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinwen Jiang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
31
|
Boulain M, Yuan W, Oueghlani Z, Khsime I, Salvi V, Courtand G, Halgand C, Morin D, de Deurwaerdere P, Barrière G, Juvin L. L-DOPA and 5-HTP modulation of air-stepping in newborn rats. J Physiol 2021; 599:4455-4476. [PMID: 34411301 DOI: 10.1113/jp281983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.
Collapse
Affiliation(s)
- Marie Boulain
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Zied Oueghlani
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Vianney Salvi
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Gilles Courtand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Christophe Halgand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | | | - Grégory Barrière
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
32
|
Viaro R, Longo F, Vincenzi F, Varani K, Morari M. l-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Res 2021; 1768:147583. [PMID: 34284020 DOI: 10.1016/j.brainres.2021.147583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have pointed out that l-DOPA can interact with D1 or D2 receptors independent of its conversion to endogenous dopamine. The present study was set to investigate whether l-DOPA modulates dopamine release from striatal nerve terminals, using a preparation of synaptosomes preloaded with [3H]DA. Levodopa (1 µM) doubled the K+-induced [3H]DA release whereas the D2/D3 receptor agonist pramipexole (100 nM) inhibited it. The l-DOPA-evoked facilitation was mimicked by the D1 receptor agonist SKF38393 (30-300 nM) and prevented by the D1/D5 antagonist SCH23390 (100 nM) but not the DA transporter inhibitor GBR12783 (300 nM) or the aromatic l-amino acid decarboxylase inhibitor benserazide (1 µM). Higher l-DOPA concentrations (10 and 100 µM) elevated spontaneous [3H]DA efflux. This effect was counteracted by GBR12783 but not SCH23390. Binding of [3H]SCH23390 in synaptosomes (in test tubes) revealed a dense population of D1 receptors (2105 fmol/mg protein). Both SCH23390 and SKF38393 fully inhibited [3H]SCH23390 binding (Ki 0.42 nM and 29 nM, respectively). l-DOPA displaced [3H]SCH23390 binding maximally by 44% at 1 mM. This effect was halved by addition of GBR12935 and benserazide. We conclude that l-DOPA facilitates exocytotic [3H]DA release through SCH23390-sensitive D1 receptors, independent of its conversion to DA. It also promotes non-exocytotic [3H]DA release, possibly via conversion to DA and reversal of DA transporter. These data confirm that l-DOPA can directly interact with dopamine D1 receptors and might extend our knowledge of the neurobiological mechanisms underlying l-DOPA clinical effects.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Francesco Longo
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
33
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
34
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
35
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
36
|
Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota. Signal Transduct Target Ther 2021; 6:77. [PMID: 33623004 PMCID: PMC7902645 DOI: 10.1038/s41392-020-00456-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The phenylalanine–tyrosine–dopa–dopamine pathway provides dopamine to the brain. In this process, tyrosine hydroxylase (TH) is the rate-limiting enzyme that hydroxylates tyrosine and generates levodopa (l-dopa) with tetrahydrobiopterin (BH4) as a coenzyme. Here, we show that oral berberine (BBR) might supply H• through dihydroberberine (reduced BBR produced by bacterial nitroreductase) and promote the production of BH4 from dihydrobiopterin; the increased BH4 enhances TH activity, which accelerates the production of l-dopa by the gut bacteria. Oral BBR acts in a way similar to vitamins. The l-dopa produced by the intestinal bacteria enters the brain through the circulation and is transformed to dopamine. To verify the gut–brain dialog activated by BBR’s effect, Enterococcus faecalis or Enterococcus faecium was transplanted into Parkinson’s disease (PD) mice. The bacteria significantly increased brain dopamine and ameliorated PD manifestation in mice; additionally, combination of BBR with bacteria showed better therapeutic effect than that with bacteria alone. Moreover, 2,4,6-trimethyl-pyranylium tetrafluoroborate (TMP-TFB)-derivatized matrix-assisted laser desorption mass spectrometry (MALDI-MS) imaging of dopamine identified elevated striatal dopamine levels in mouse brains with oral Enterococcus, and BBR strengthened the imaging intensity of brain dopamine. These results demonstrated that BBR was an agonist of TH in Enterococcus and could lead to the production of l-dopa in the gut. Furthermore, a study of 28 patients with hyperlipidemia confirmed that oral BBR increased blood/fecal l-dopa by the intestinal bacteria. Hence, BBR might improve the brain function by upregulating the biosynthesis of l-dopa in the gut microbiota through a vitamin-like effect.
Collapse
|
37
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
38
|
Radlicka A, Kamińska K, Borczyk M, Piechota M, Korostyński M, Pera J, Lorenc-Koci E, Rodriguez Parkitna J. Effects of L-DOPA on Gene Expression in the Frontal Cortex of Rats with Unilateral Lesions of Midbrain Dopaminergic Neurons. eNeuro 2021; 8:ENEURO.0234-20.2020. [PMID: 33257528 PMCID: PMC7877460 DOI: 10.1523/eneuro.0234-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
The development of Parkinson's disease (PD) causes dysfunction of the frontal cortex, which contributes to the hallmark motor symptoms and is regarded as one of the primary causes of the affective and cognitive impairments observed in PD. Treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) alleviates motor symptoms but has mixed efficacy in restoring normal cognitive functions, which is further complicated by the psychoactive effects of the drug. We investigated how L-DOPA affects gene expression in the frontal cortex in an animal model of unilateral PD. We performed RNA sequencing (RNA-Seq) analysis of gene expression in the frontal cortex of rats with 6-hydroxydopamine (6-OHDA)-induced unilateral dopaminergic lesions treated with L-DOPA, for two weeks. The analysis of variance identified 48 genes with a significantly altered transcript abundance after L-DOPA treatment. We also performed a weighted gene coexpression network analysis (WGCNA), which resulted in the detection of five modules consisting of genes with similar expression patterns. The analyses led to three primary observations. First, the changes in gene expression induced by L-DOPA were bilateral, although only one hemisphere was lesioned. Second, the changes were not restricted to neurons but also appeared to affect immune or endothelial cells. Finally, comparisons with databases of drug-induced gene expression signatures revealed multiple nonspecific effects, indicating that a part of the observed response is a common pattern activated by multiple types of drugs in different target tissues. Taken together, our results identify cellular mechanisms in the frontal cortex that are involved in the response to L-DOPA treatment.
Collapse
Affiliation(s)
- Anna Radlicka
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-503, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| |
Collapse
|
39
|
Zhang LY, Jin QQ, Hölscher C, Li L. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen Res 2021; 16:1660-1670. [PMID: 33433498 PMCID: PMC8323666 DOI: 10.4103/1673-5374.303045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with Parkinson's disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qian-Qian Jin
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Lin Li
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
40
|
Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson's disease. Brain Res Bull 2020; 168:100-109. [PMID: 33387636 DOI: 10.1016/j.brainresbull.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022]
Abstract
Current treatments for Parkinson's disease (PD) are mainly dopaminergic drugs. However, dopaminergic drugs are only symptomatic treatments and limited by several side effects. Recent studies into drug development focused on emerging new molecular mechanisms, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear receptor-related 1 (Nurr1), adenosine receptor A2, nicotine receptor, metabotropic glutamate receptors (mGluRs), and glucocerebrosidase (GCase). Also, immunotherapy and common pathological mechanisms shared with Alzheimer's Disease (AD) and diabetes have attracted much attention. In this review, we summarized the development of preclinical and clinical studies of novel drugs and the improvement of dopaminergic drugs to provide a prospect for PD treatment.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
41
|
Woitalla D, Krüger R, Lorenzl S, Müller T, Oelwein G, Storch A, Wolz M, Wüllner U. [The role of inhibitors of COMT and MAO-B in the therapy of Parkinson's disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:620-633. [PMID: 32588409 DOI: 10.1055/a-1149-9308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inhibitors of COMT and MAO-B are well established in the pharmacotherapy of Parkinson's disease (PD). MAO-B inhibitors are used as monotherapy as well as in combination with levodopa, whereas COMT inhibitors exert their effects only in conjungtion with levodopa. Both classes of compounds prolong the response duration of levodopa and optimise its clinical benefit. As a result, the ON-times are prolonged significantly. In the past, MAO-B inhibitors were also adminstered for neuroprotection; however, despite convincing scientific reasoning in support of neuroprotective effects, these could not be substantiated in clinical studies performed so far.
Collapse
|
42
|
Marin C, Bonastre M, Fuentes M, Mullol J. Lack of correlation between dyskinesia and pallidal serotonin transporter expression-induced by L-Dopa and Pramipexole in hemiparkinsonian rats. Pharmacol Biochem Behav 2020; 197:173012. [PMID: 32750392 DOI: 10.1016/j.pbb.2020.173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
The role of pallidal serotonergic terminals in the development of L-Dopa-induced dyskinesias (LIDs) in Parkinson's disease (PD) has been recently highlighted correlating pallidal serotonin transporter (SERT) expression levels with dyskinesias severity. However, the role of external globus pallidus (GPe, GP in rodents) serotonergic function in LIDs is still controversial since several studies have shown no differences in GPe serotonin (SER) and SERT levels between dyskinetic and non-dyskinetic PD patients. In addition, the increase in pallidal SERT/dopamine transporter (DAT) binding ratio obtained in positron emission tomography studies has been shown similar in both subtypes of PD patients. Based on these controversial results, further studies are required to clarify the possible involvement of GPe serotonergic activity in LIDs expression. We investigated the pallidal SER and SERT expression changes and the abnormal involuntary movements (AIMs) induced by L-Dopa or the D3/D2 dopamine (DA) agonist, Pramipexole, in partial unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. L-Dopa treatment led to an increment of axial (p < 0.01), limb (p < 0.01), and orolingual (p < 0.01) AIMs. However, Pramipexole treatment did not induce AIMs. The number of GP SERT-positive axon varicosities was increased in L-Dopa (p < 0.05) and Pramipexole (p < 0.01) treated rats. No differences were observed in the number of GP SERT-positive varicosities between L-Dopa and Pramipexole treatments. Our results indicate a lack of correlation between GP SERT expression levels and the development of AIMs suggesting that pallidal serotonergic fibers are not responsible for LIDs. The possible involvement of the SER system in dyskinesia may include other mechanisms.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | - Mercè Bonastre
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Mireya Fuentes
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
43
|
Shehata AM, Ahmed-Farid OA, Rizk HA, Saber SM, Lashin FM, Re L. Neurochemical, neurobehavioral and histochemical effects of therapeutic dose of l-dopa on striatal neurons in rats: Protective effect of virgin coconut oil. Biomed Pharmacother 2020; 130:110473. [PMID: 32707436 DOI: 10.1016/j.biopha.2020.110473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the fact that levodopa has proven its effectiveness in treating the symptoms of Parkinson's disease (PD), increasing concerns have emerged about its possible long-term toxic effects on dopamine (DA) neurons. The study investigated the possible ameliorative effect of virgin coconut oil against l-dopa- induced neurotoxicity in adult rats. A total number of 40 rats were divided into four groups. Briefly, the first served as control, the second was orally administered virgin coconut oil (1.42 mL/kg), the third group was administered a single daily dose of l-dopa/carbidopa (100/10 mg/kg/day, p.o) and the fourth group pre-treated with virgin coconut oil then administered a single daily dose of l-dopa/carbidopa. The different treatments were extended for 30 days. l-dopa treated group exhibited aggressive behavior and behavioral abnormalities in open field test compared to control group. In addition, l-dopa treatment caused significant increase in the levels of striatal dopamine and norepinephrine and their metabolites with concomitant decrease of serotonin and its metabolite. Moreover, l-dopa treatment increased histamine and GABA levels. In addition, l-dopa treatment induced oxidative stress and energy crisis. The histological and immunohistochemical studies showed that l-dopa caused a remarkable neurodegeneration and increased glial fibrillary acidic protein (GFAP) immunoexpression in the striatal area. Virgin coconut oil co-treatment significantly minimized the harmful effects of l-dopa. In conclusion, the present study revealed that virgin coconut oil provided a notable protection against l-dopa's untoward effects.
Collapse
Affiliation(s)
- Ahmed M Shehata
- PhysiologyDepartment, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A Ahmed-Farid
- PhysiologyDepartment, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanan A Rizk
- Histology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Sara M Saber
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Fawzy M Lashin
- Biochemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Lamberto Re
- Clinical Pharmacology, Medinat, Ancona, Italy.
| |
Collapse
|
44
|
Possible synergies between isatin, an endogenous MAO inhibitor, and antiparkinsonian agents on the dopamine release from striatum of freely moving rats. Neuropharmacology 2020; 171:108083. [DOI: 10.1016/j.neuropharm.2020.108083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/22/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022]
|
45
|
Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task. Eur Neuropsychopharmacol 2020; 35:17-29. [PMID: 32404279 DOI: 10.1016/j.euroneuro.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/06/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
When facing decisions to approach rewards or to avoid punishments, we often figuratively go with our gut, and the impact of metabolic states such as hunger on motivation are well documented. However, whether and how vagal feedback signals from the gut influence instrumental actions is unknown. Here, we investigated the effect of non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) vs. sham (randomized cross-over design) on approach and avoidance behavior using an established go/no-go reinforcement learning paradigm in 39 healthy human participants (23 female) after an overnight fast. First, mixed-effects logistic regression analysis of choice accuracy showed that taVNS acutely impaired decision-making, p = .041. Computational reinforcement learning models identified the cause of this as a reduction in the learning rate through taVNS (∆α = -0.092, pboot = .002), particularly after punishment (∆αPun = -0.081, pboot = .012 vs. ∆αRew =-0.031, pboot = .22). However, taVNS had no effect on go biases, Pavlovian response biases or response time. Hence, taVNS appeared to influence learning rather than action execution. These results highlight a novel role of vagal afferent input in modulating reinforcement learning by tuning the learning rate according to homeostatic needs.
Collapse
|
46
|
Jost WH, Ebersbach G, Kassubek J, Klebe S, Tönges L. [New Therapeutic Options for the Individualised Titration of Levodopa]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 89:23-28. [PMID: 32462651 DOI: 10.1055/a-1158-9281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Levodopa is the most effective medication in the treatment of Parkinson's disease. In the course of the disease the storage facility of dopaminergic neurones deteriorates, so that the duration of the half-life period likewise converges. This results in fluctuations in performance, and also in dyskinesias as a further consequence of the narrowing therapeutic window. Therapeutically, this in turn leads to further fractioning of the levodopa dosage and a reduction of single-dose levels. There is, however, only limited scope for doing this with the conventional levodopa formulations. For this reason, the introduction of water-soluble microtablets à 5 / 1.25 mg levodopa / carbidopa can be regarded as a beneficial extension permitting for fine titration of the dopaminergic stimulation. Here we present this new therapeutic principle, the available data and concepts for clinical use.
Collapse
Affiliation(s)
| | - Georg Ebersbach
- Neurologisches Fachkrankenhaus für Bewegungsstörungen / Parkinson, Beelitz-Heilstätten
| | | | | | - Lars Tönges
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum
| |
Collapse
|
47
|
Steece-Collier K, Collier TJ, Lipton JW, Stancati JA, Winn ME, Cole-Strauss A, Sellnow R, Conti MM, Mercado NM, Nillni EA, Sortwell CE, Manfredsson FP, Bishop C. Striatal Nurr1, but not FosB expression links a levodopa-induced dyskinesia phenotype to genotype in Fisher 344 vs. Lewis hemiparkinsonian rats. Exp Neurol 2020; 330:113327. [PMID: 32387398 DOI: 10.1016/j.expneurol.2020.113327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Numerous genes, and alterations in their expression, have been identified as risk factors for developing levodopa-induced dyskinesia (LID). However, our understanding of the complexities of molecular changes remains insufficient for development of clinical treatment. In the current study we used gene array, in situ hybridization, immunohistochemistry, and microdialysis to provide a unique compare and contrast assessment of the relationship of four candidate genes to LID, employing three genetically distinct rat strains (Sprague-Dawley (SD), Fischer-344 (F344) and Lewis-RT.1) showing differences in dyskinesia susceptibility and 'first-ever LID' versus 'chronic LID' expression in subjects displaying equal dyskinesia severity. In these studies, rat strains were easily distinguishable for their LID propensity with: 1) a majority of SD rats expressing LID (LID+) and a subset being resistant (LID-); 2) all F344 rats readily developing (LID+); and 3) all Lewis rats being LID-resistant (LID-). Following chronic levodopa, LID+ SD rats showed significant increases in candidate gene expression: Nr4a2/(Nurr1) > > Trh > Inhba = Fosb. However, SD rats with long-standing striatal dopamine (DA) depletion treated with first-ever versus chronic high-dose levodopa revealed that despite identical levels of LID severity: 1) Fosb and Nurr1 transcripts but not protein were elevated with acute LID expression; 2) FOSB/ΔFOSB and NURR1 proteins were elevated only with chronic LID; and 3) Trh transcript and protein were elevated only with chronic LID. Strikingly, despite similar levodopa-induced striatal DA release in both LID-expressing F344 and LID-resistant Lewis rats, Fosb, Trh, Inhba transcripts were significantly elevated in both strains; however, Nurr1 mRNA was significantly increased only in LID+ F344 rats. These findings suggest a need to reevaluate currently accepted genotype-to-phenotype relationships in the expression of LID, specifically that of Fosb, a transcription factor generally assumed to play a causal role, and Nurr1, a transcription factor that has received significant attention in PD research linked to its critical role in the survival and function of midbrain DA neurons but who's striatal expression, generally below levels of detection, has remained largely unexplored as a regulator of LID. Finally these studies introduce a novel 'model' (inbred F344 vs inbred Lewis) that may provide a powerful tool for investigating the role for 'dyskinesia-resistance' genes downstream of 'dyskinesia-susceptibility' genes in modulating LID expression, a concept that has received considerably less attention and offers a new ways of thinking about antidyskinetic therapies.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA.
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mary E Winn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Rhyomi Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Eduardo A Nillni
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
48
|
Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The Noradrenergic System in Parkinson's Disease. Front Pharmacol 2020; 11:435. [PMID: 32322208 PMCID: PMC7157437 DOI: 10.3389/fphar.2020.00435] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Nowadays it is well accepted that in Parkinson’s disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacological-based treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.
Collapse
Affiliation(s)
- Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Philippe De Deurwaerdere
- Centre National de la Recherche scientifique, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA UMR 5287), Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
49
|
Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. PROGRESS IN BRAIN RESEARCH 2020; 252:131-168. [PMID: 32247363 DOI: 10.1016/bs.pbr.2020.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally believed to primarily affect neurons, Parkinson's disease (PD) has recently been recognized to also affect the functions and integrity of microglia and astroglia, two cell categories of fundamental importance to brain tissue homeostasis, defense, and repair. Both a loss of glial supportive-defensive functions and a toxic gain of glial functions are implicated in the neurodegenerative process. Moreover, the chronic treatment with L-DOPA may cause maladaptive glial plasticity favoring a development of therapy complications. This chapter focuses on the pathophysiology of PD from a glial point of view, presenting this rapidly growing field from the first discoveries made to the most recent developments. We report and compare histopathological and molecular findings from experimental models of PD and human studies. We moreover discuss the important role played by astrocytes in compensatory adaptations taking place during presymptomatic disease stages. We finally describe examples of potential therapeutic applications stemming from an increased understanding of the important roles of glia in PD.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy.
| |
Collapse
|
50
|
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, De Deurwaerdère P. L-DOPA in Parkinson's Disease: Looking at the "False" Neurotransmitters and Their Meaning. Int J Mol Sci 2019; 21:ijms21010294. [PMID: 31906250 PMCID: PMC6981630 DOI: 10.3390/ijms21010294] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson’s disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood–brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These “false neurotransmitters,” also known for some of them as inducing an “amphetamine-like” mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to “false neurotransmission.”
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, 76000 Rouen, France
| | - Marie Boulain
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Laurent Juvin
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
| | - Grégory Barrière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
- Correspondence: ; Tel.: +33-0-557-57-12-90
| |
Collapse
|