1
|
Yue Y, Zhang X, Lv W, Lai HY, Shen T. Interplay between the glymphatic system and neurotoxic proteins in Parkinson's disease and related disorders: current knowledge and future directions. Neural Regen Res 2024; 19:1973-1980. [PMID: 38227524 DOI: 10.4103/1673-5374.390970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins, including α-synuclein, amyloid-β, and tau, in addition to the impaired elimination of these neurotoxic protein. Atypical parkinsonism, which has the same clinical presentation and neuropathology as Parkinson's disease, expands the disease landscape within the continuum of Parkinson's disease and related disorders. The glymphatic system is a waste clearance system in the brain, which is responsible for eliminating the neurotoxic proteins from the interstitial fluid. Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease, as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage. Therefore, impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration. Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson's disease and related disorders; however, many unanswered questions remain. This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson's disease and related disorders. The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins, including loss of polarization of aquaporin-4 in astrocytic endfeet, sleep and circadian rhythms, neuroinflammation, astrogliosis, and gliosis. This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson's disease and related disorders, and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaodan Zhang
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wen Lv
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting Shen
- Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Caramiello AM, Pirota V. Novel Therapeutic Horizons: SNCA Targeting in Parkinson's Disease. Biomolecules 2024; 14:949. [PMID: 39199337 PMCID: PMC11352499 DOI: 10.3390/biom14080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-synuclein (αSyn) aggregates are the primary component of Lewy bodies, which are pathological hallmarks of Parkinson's disease (PD). The toxicity of αSyn seems to increase with its elevated expression during injury, suggesting that therapeutic approaches focused on reducing αSyn burden in neurons could be beneficial. Additionally, studies have shown higher levels of SNCA mRNA in the midbrain tissues and substantia nigra dopaminergic neurons of sporadic PD post-mortem brains compared to controls. Therefore, the regulation of SNCA expression and inhibition of αSyn synthesis could play an important role in the pathogenesis of injury, resulting in an effective treatment approach for PD. In this context, we summarized the most recent and innovative strategies proposed that exploit the targeting of SNCA to regulate translation and efficiently knock down cytoplasmatic levels of αSyn. Significant progress has been made in developing antisense technologies for treating PD in recent years, with a focus on antisense oligonucleotides and short-interfering RNAs, which achieve high specificity towards the desired target. To provide a more exhaustive picture of this research field, we also reported less common but highly innovative strategies, including small molecules, designed to specifically bind 5'-untranslated regions and, targeting secondary nucleic acid structures present in the SNCA gene, whose formation can be modulated, acting as a transcription and translation control. To fully describe the efficiency of the reported strategies, the effect of αSyn reduction on cellular viability and dopamine homeostasis was also considered.
Collapse
Affiliation(s)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Trinchese G, Feola A, Cavaliere G, Cimmino F, Catapano A, Penna E, Scala G, Greco L, Bernardo L, Porcellini A, Crispino M, Pezone A, Mollica MP. Mitochondrial metabolism and neuroinflammation in the cerebral cortex and cortical synapses of rats: effect of milk intake through DNA methylation. J Nutr Biochem 2024; 128:109624. [PMID: 38518858 DOI: 10.1016/j.jnutbio.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.
Collapse
Affiliation(s)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Kong W, Li X, Guo X, Sun Y, Chai W, Chang Y, Huang Q, Wang P, Wang X. Ultrasound-Assisted CRISPRi-Exosome for Epigenetic Modification of α-Synuclein Gene in a Mouse Model of Parkinson's Disease. ACS NANO 2024; 18:7837-7851. [PMID: 38437635 DOI: 10.1021/acsnano.3c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Currently, there is a lack of effective treatment for Parkinson's disease (PD). In PD patients, aberrant methylation of SNCA (α-synuclein gene) has been reported and may be a potential therapeutic target. In this study, we established an epigenetic regulation platform based on an exosomal CRISPR intervention system. With the assist of focused ultrasound (FUS) opening the blood-brain barrier, engineered exosomes carrying RVG (rabies viral glycoprotein) targeting peptide, sgRNA (single guide RNA), and dCas9-DNMT3A (named RVG-CRISPRi-Exo) were efficiently delivered into the brain lesions and induced specific methylation of SNCA. In vivo, FUS combined with RVG-CRISPRi-Exo significantly improved motor performance, balance coordination, and neurosensitivity in PD mice, greatly down-regulated the elevation of α-synuclein (α-syn) caused by modeling, rescued cell apoptosis, and alleviated the progression of PD in mice. [18F]-FP-DTBZ imaging suggested that the synaptic function of the nigrostriatal pathway could be restored, which was conducive to the control of motor behavior in PD mice. Pyrosequencing results showed that RVG-CRISPRi-Exo could methylate CpG at specific sites of SNCA, and this fine-tuned editing achieved good therapeutic effects in PD model mice. In vitro, RVG-CRISPRi-Exo down-regulated SNCA transcripts and α-syn expression and relieved neuronal cell damage. Collectively, our findings provide a proof-of-principle for the development of targeted brain nanodelivery based on engineered exosomes and provide insights into epigenetic regulation of brain diseases.
Collapse
Affiliation(s)
- Weirong Kong
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xin Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| |
Collapse
|
5
|
Sun Z, Kantor B, Chiba-Falek O. Neuronal-type-specific epigenome editing to decrease SNCA expression: Implications for precision medicine in synucleinopathies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102084. [PMID: 38130373 PMCID: PMC10732167 DOI: 10.1016/j.omtn.2023.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Overexpression of SNCA has been implicated in the pathogenesis of synucleinopathies, particularly Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While PD and DLB share some clinical and pathological similarities, each disease presents distinct characteristics, including the primary affected brain region and neuronal type. We aimed to develop neuronal-type-specific SNCA-targeted epigenome therapies for synucleinopathies. The system is based on an all-in-one lentiviral vector comprised of CRISPR-dSaCas9 and guide RNA (gRNA) targeted at SNCA intron 1 fused with a synthetic repressor molecule of Krüppel-associated box (KRAB)/ methyl CpG binding protein 2 (MeCp2) transcription repression domain (TRD). To achieve neuronal-type specificity for dopaminergic and cholinergic neurons, the system was driven by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) promoters, respectively. Delivering the system into human induced pluripotent stem cell (hiPSC)-derived dopaminergic and cholinergic neurons from a patient with the SNCA triplication resulted in efficient and neuronal-type-specific downregulation of SNCA-mRNA and protein. Furthermore, the reduction in SNCA levels by the gRNA-dSaCas9-repressor system rescued disease-related cellular phenotypes including Ser129-phophorylated α-synuclein, neuronal viability, and mitochondrial dysfunction. We established a novel neuronal-type-specific SNCA-targeted epigenome therapy and provided in vitro proof of concept using human-based disease models. Our results support the therapeutic potential of our system for PD and DLB and provide the foundation for further preclinical studies in animal models toward investigational new drug (IND) enablement and clinical trials.
Collapse
Affiliation(s)
| | - Boris Kantor
- Viral Vector Core, Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
7
|
Reho P, Saez-Atienzar S, Ruffo P, Solaiman S, Shah Z, Chia R, Kaivola K, Traynor BJ, Tilley BS, Gentleman SM, Hodges AK, Aarsland D, Monuki ES, Newell KL, Woltjer R, Albert MS, Dawson TM, Rosenthal LS, Troncoso JC, Pletnikova O, Serrano GE, Beach TG, Easwaran HP, Scholz SW. Differential methylation analysis in neuropathologically confirmed dementia with Lewy bodies. Commun Biol 2024; 7:35. [PMID: 38182665 PMCID: PMC10770032 DOI: 10.1038/s42003-023-05725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.
Collapse
Affiliation(s)
- Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Laboratory of Precision Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Bension S Tilley
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Steve M Gentleman
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Angela K Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy Woltjer
- Department of Neurology, Oregon Health & Sciences University, Portland, OR, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Hariharan P Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
8
|
Salas-Leal AC, Salas-Pacheco SM, Hernández-Cosaín EI, Vélez-Vélez LM, Antuna-Salcido EI, Castellanos-Juárez FX, Méndez-Hernández EM, Llave-León OL, Quiñones-Canales G, Arias-Carrión O, Sandoval-Carrillo AA, Salas-Pacheco JM. Differential expression of PSMC4, SKP1, and HSPA8 in Parkinson's disease: insights from a Mexican mestizo population. Front Mol Neurosci 2023; 16:1298560. [PMID: 38115821 PMCID: PMC10728481 DOI: 10.3389/fnmol.2023.1298560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative condition characterized by alpha-synuclein aggregation and dysfunctional protein degradation pathways. This study investigates the differential gene expression of pivotal components (UBE2K, PSMC4, SKP1, and HSPA8) within these pathways in a Mexican-Mestizo PD population compared to healthy controls. We enrolled 87 PD patients and 87 controls, assessing their gene expression levels via RT-qPCR. Our results reveal a significant downregulation of PSMC4, SKP1, and HSPA8 in the PD group (p = 0.033, p = 0.003, and p = 0.002, respectively). Logistic regression analyses establish a strong association between PD and reduced expression of PSMC4, SKP1, and HSPA8 (OR = 0.640, 95% CI = 0.415-0.987; OR = 0.000, 95% CI = 0.000-0.075; OR = 0.550, 95% CI = 0.368-0.823, respectively). Conversely, UBE2K exhibited no significant association or expression difference between the groups. Furthermore, we develop a gene expression model based on HSPA8, PSMC4, and SKP1, demonstrating robust discrimination between healthy controls and PD patients. Notably, the model's diagnostic efficacy is particularly pronounced in early-stage PD. In conclusion, our study provides compelling evidence linking decreased gene expression of PSMC4, SKP1, and HSPA8 to PD in the Mexican-Mestizo population. Additionally, our gene expression model exhibits promise as a diagnostic tool, particularly for early-stage PD diagnosis.
Collapse
Affiliation(s)
- Alma C. Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Sergio M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Erik I. Hernández-Cosaín
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Lilia M. Vélez-Vélez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | | | - Edna M. Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| | - Ada A. Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - José M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| |
Collapse
|
9
|
Sun X, Kong J, Dong S, Kato H, Sato H, Hirofuji Y, Ito Y, Wang L, Kato TA, Torio M, Sakai Y, Ohga S, Fukumoto S, Masuda K. TRPV4-mediated Ca 2+ deregulation causes mitochondrial dysfunction via the AKT/α-synuclein pathway in dopaminergic neurons. FASEB Bioadv 2023; 5:507-520. [PMID: 38094157 PMCID: PMC10714070 DOI: 10.1096/fba.2023-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 06/30/2024] Open
Abstract
Mutations in the gene encoding the transient receptor potential vanilloid member 4 (TRPV4), a Ca2+ permeable nonselective cation channel, cause TRPV4-related disorders. TRPV4 is widely expressed in the brain; however, the pathogenesis underlying TRPV4-mediated Ca2+ deregulation in neurodevelopment remains unresolved and an effective therapeutic strategy remains to be established. These issues were addressed by isolating mutant dental pulp stem cells from a tooth donated by a child diagnosed with metatropic dysplasia with neurodevelopmental comorbidities caused by a gain-of-function TRPV4 mutation, c.1855C > T (p.L619F). The mutation was repaired using CRISPR/Cas9 to generate corrected isogenic stem cells. These stem cells were differentiated into dopaminergic neurons and the pharmacological effects of folic acid were examined. In mutant neurons, constitutively elevated cytosolic Ca2+ augmented AKT-mediated α-synuclein (α-syn) induction, resulting in mitochondrial Ca2+ accumulation and dysfunction. The TRPV4 antagonist, AKT inhibitor, or α-syn knockdown, normalizes the mitochondrial Ca2+ levels in mutant neurons, suggesting the importance of mutant TRPV4/Ca2+/AKT-induced α-syn in mitochondrial Ca2+ accumulation. Folic acid was effective in normalizing mitochondrial Ca2+ levels via the transcriptional repression of α-syn and improving mitochondrial reactive oxygen species levels, adenosine triphosphate synthesis, and neurite outgrowth of mutant neurons. This study provides new insights into the neuropathological mechanisms underlying TRPV4-related disorders and related therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- Present address:
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
- Present address:
Department of Pediatric DentistryCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral AnatomyKyushu University Graduate School of Dental ScienceFukuokaJapan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Michiko Torio
- Department of General Pediatrics, Fukuoka Children's HospitalFukuokaJapan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
10
|
Vetchinova AS, Kapkaeva MR, Ivanov MV, Kutukova KA, Mudzhiri NM, Frumkina LE, Brydun AV, Sukhorukov VS, Illarioshkin SN. Mitochondrial Dysfunction in Dopaminergic Neurons Derived from Patients with LRRK2- and SNCA-Associated Genetic Forms of Parkinson's Disease. Curr Issues Mol Biol 2023; 45:8395-8411. [PMID: 37886972 PMCID: PMC10605424 DOI: 10.3390/cimb45100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Some cases of PD may be caused by genetic factors, among which mutations in the LRRK2 and SNCA genes play an important role. To develop effective neuroprotective strategies for PD, it is important to diagnose the disease at the earliest stages of the neurodegenerative process. Therefore, the detection of diagnostic and prognostic markers of Parkinson's disease (PD) is an urgent medical need. Advances in induced pluripotent stem cell (iPSC) culture technology provide new opportunities for the search for new biomarkers of PD and its modeling in vitro. In our work, we used a new technology for multiplex profiling of gene expression using barcoding on the Nanostring platform to assess the activity of mitochondrial genes on iPSC-derived cultures of dopaminergic neurons obtained from patients with LRRK2- and SNCA-associated genetic forms PD and a healthy donor. Electron microscopy revealed ultrastructural changes in mitochondria in both LRRK2 and SNCA mutant cells, whereas mitochondria in cells from a healthy donor were normal. In a culture with the SNCA gene mutation, the ratio of the area occupied by mitochondria to the total area of the cytoplasm was significantly lower than in the control and in the line with the LRRK2 gene mutation. Transcriptome analysis of 105 mitochondria proteome genes using the Nanostring platform revealed differences between the diseased and normal cells in the activity of genes involved in respiratory complex function, the tricarboxylic acid cycle, ATP production, mitochondria-endoplasmic reticulum interaction, mitophagy, regulation of calcium concentration, and mitochondrial DNA replication.
Collapse
Affiliation(s)
- Anna S. Vetchinova
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Marina R. Kapkaeva
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Mikhail V. Ivanov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Kristina A. Kutukova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Natalia M. Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Lydia E. Frumkina
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Anatoly V. Brydun
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Vladimir S. Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Sergey N. Illarioshkin
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
11
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
12
|
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on Epigenetics landscape of Parkinson's disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023:111826. [PMID: 37268278 DOI: 10.1016/j.mad.2023.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The development of novel therapeutics for the effective management of Parkinson's disease (PD) is undertaken seriously by the scientific community as the burden of PD continues to increase. Several molecular pathways are being explored to identify novel therapeutic targets. Epigenetics is strongly implicated in several neurodegenerative diseases (NDDs) including PD. Several epigenetic mechanisms were found to dysregulated in various studies. These mechanisms are regulated by several miRNAs which are associated with a variety of pathogenic mechanisms in PD. This concept is extensively investigated in several cancers but not well documented in PD. Identifying the miRNAs with dual role i.e., regulation of epigenetic mechanisms as well as modulation of proteins implicated in the pathogenesis of PD could pave way for the development of novel therapeutics to target them. These miRNAs could also serve as potential biomarkers and can be useful in the early diagnosis or assessment of disease severity. In this article we would like to discuss about various epigenetic changes operating in PD and how miRNAs are involved in the regulation of these mechanisms and their potential to be novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Sai Nikhil Uppala
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Padmashri Naren
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| |
Collapse
|
13
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
14
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
15
|
Regulation of Αlpha-Synuclein Gene (SNCA) by Epigenetic Modifier TET1 in Parkinson Disease. Int Neurourol J 2022; 26:S85-93. [PMID: 36503211 PMCID: PMC9767688 DOI: 10.5213/inj.2222206.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Deregulation of SNCA encoding α-synuclein (α-SYN) has been associated with both the familial and sporadic forms of Parkinson disease (PD). Epigenetic regulation plays a crucial role in PD. The intron1 of SNCA harbors a large unmethylated CpG island. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1), a CpG island binding protein, can repress gene expression by occupying hypomethylated CpG-rich promoters, and therefore SNCA could be a target for TET1. We investigated whether TET1 binds to SNCA-intron1 and regulates gene expression. METHODS The dopaminergic neuronal cell line, ReNcell VM, was used. Reverse transcription-polymerase chain reaction (RT-PCR), real time-quantitative PCR, Western blot, dot-blot, and Chromatin immunoprecipitation were conducted. The substantia nigra tissues of postmortem PD samples were used to confirm the level of TET1 expression. RESULTS In the human dopaminergic cell line, ReNcell VM, overexpression of the DNA-binding domain of TET1 (TET1-CXXC) led to significant repression of α-SYN. On the contrary, knocking down of TET1 led to significantly higher expression of α-SYN. However, overexpression of the DNA-hydroxymethylating catalytic domain of TET1 failed to change the expression of α-SYN. Altogether, we showed that TET1 is a repressor for SNCA, and a CXXC domain of TET1 is the primary mediator for this repressive action independent of its hydroxymethylation activity. TET1 levels in PD patients are significantly lower than that in the controls. CONCLUSION We identified that TET1 acts as a repressor for SNCA by binding the intron1 regions of the gene. As a high level of α-SYN is strongly implicated in the pathogenesis of PD, discovering a repressor for the gene encoding α-SYN is highly important for developing novel therapeutic strategies for the disease.
Collapse
|
16
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
17
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
18
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [PMID: 34973458 DOI: 10.1016/j.arr.2021.101554] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
Collapse
Affiliation(s)
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Peterlee Place NSW2700, Australia; AFNP Med, Haidingergasse 29, 1030 Wien, Austria
| |
Collapse
|
19
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [DOI: https:/doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Rey F, Pandini C, Messa L, Launi R, Barzaghini B, Zangaglia R, Raimondi MT, Gagliardi S, Cereda C, Zuccotti GV, Carelli S. α-Synuclein antisense transcript SNCA-AS1 regulates synapses- and aging-related genes suggesting its implication in Parkinson's disease. Aging Cell 2021; 20:e13504. [PMID: 34799977 PMCID: PMC8672788 DOI: 10.1111/acel.13504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
SNCA protein product, α‐synuclein, is widely renowned for its role in synaptogenesis and implication in both aging and Parkinson's disease (PD), but research efforts are still needed to elucidate its physiological functions and mechanisms of regulation. In this work, we aim to characterize SNCA‐AS1, antisense transcript to the SNCA gene, and its implications in cellular processes. The overexpression of SNCA‐AS1 upregulates both SNCA and α‐synuclein and, through RNA‐sequencing analysis, we investigated the transcriptomic changes of which both genes are responsible. We highlight how they impact neurites' extension and synapses' biology, through specific molecular signatures. We report a reduced expression of markers associated with synaptic plasticity, and we specifically focus on GABAergic and dopaminergic synapses, for their relevance in aging processes and PD, respectively. A reduction in SNCA‐AS1 expression leads to the opposite effect. As part of this signature is co‐regulated by the two genes, we discriminate between functions elicited by genes specifically altered by SNCA‐AS1 or SNCA's overexpression, observing a relevant role for SNCA‐AS1 in synaptogenesis through a shared molecular signature with SNCA. We also highlight how numerous deregulated pathways are implicated in aging‐related processes, suggesting that SNCA‐AS1 could be a key player in cellular senescence, with implications for aging‐related diseases. Indeed, the upregulation of SNCA‐AS1 leads to alterations in numerous PD‐specific genes, with an impact highly comparable to that of SNCA's upregulation. Our results show that SNCA‐AS1 elicits its cellular functions through the regulation of SNCA, with a specific modulation of synaptogenesis and senescence, presenting implications in PD.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Cecilia Pandini
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
- Department of Biology and Biotechnology “L. Spallanzani” University of Pavia Pavia Italy
| | - Letizia Messa
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Rossella Launi
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit IRCCS Mondino Foundation Pavia Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Stella Gagliardi
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Cristina Cereda
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
- Department of Pediatrics Children's Hospital "V. Buzzi" Milan Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| |
Collapse
|
22
|
Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021; 11:life11111239. [PMID: 34833115 PMCID: PMC8625417 DOI: 10.3390/life11111239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in elderly people. It is characterized by the aggregation of misfolded alpha-synuclein throughout the nervous system. Aside from cardinal motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms that occurs during the progression of the disease. The accumulation and spreading of alpha-synuclein pathology from the brainstem to limbic and neocortical structures is correlated with emerging cognitive decline in PD. This review summarizes the genetic and pathophysiologic relationship between alpha-synuclein and cognitive impairment in PD, together with potential areas of biomarker advancement.
Collapse
|
23
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
24
|
Martinez Hernandez A, Silbern I, Geffers I, Tatenhorst L, Becker S, Urlaub H, Zweckstetter M, Griesinger C, Eichele G. Low-Expressing Synucleinopathy Mouse Models Based on Oligomer-Forming Mutations and C-Terminal Truncation of α-Synuclein. Front Neurosci 2021; 15:643391. [PMID: 34220415 PMCID: PMC8248494 DOI: 10.3389/fnins.2021.643391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
α-synuclein (αSyn) is the main protein component of Lewy bodies, intracellular inclusions found in the brain of Parkinson's disease (PD) patients. Neurotoxic αSyn species are broadly modified post-translationally and, in patients with genetic forms of PD, carry genetically encoded amino acid substitutions. Mutations and C-terminal truncation can increase αSyn oligomerization and fibrillization. Although several genetic mouse models based on αSyn mutations and/or truncations exist, there is still a lack of mouse models for synucleinopathies not relying on overexpression. We report here two synucleinopathy mouse models, which are based on a triple alanine to proline mutation and a C-terminal truncation of αSyn, but do not overexpress the mutant protein when compared to the endogenous mouse protein. We knocked hαSyn TP or hαSynΔ119 (h stands for "human") into the murine αSyn locus. hαSynTP is a structure-based mutant with triple alanine to proline substitutions that favors oligomers, is neurotoxic and evokes PD-like symptoms in Drosophila melanogaster. hαSynΔ119 lacks 21 amino acids at the C-terminus, favors fibrillary aggregates and occurs in PD. Knocking-in of hαSyn TP or hαSynΔ119 into the murine αSyn locus places the mutant protein under the control of the endogenous regulatory elements while simultaneously disrupting the mαSyn gene. Mass spectrometry revealed that hαSyn TP and hαSynΔ119 mice produced 12 and 10 times less mutant protein, compared to mαSyn in wild type mice. We show phenotypes in 1 and 1.5 years old hαSyn TP and hαSynΔ119 mice, despite the lower levels of hαSynTP and hαSynΔ119 expression. Direct comparison of the two mouse models revealed many commonalities but also aspects unique to each model. Commonalities included strong immunoactive state, impaired olfaction and motor coordination deficits. Neither model showed DAergic neuronal loss. Impaired climbing abilities at 1 year of age and a deviant gait pattern at 1.5 years old were specific for hαSynΔ119 mice, while a compulsive behavior was exclusively detected in hαSyn TP mice starting at 1 year of age. We conclude that even at very moderate levels of expression the two αSyn variants evoke measurable and progressive deficiencies in mutant mice. The two transgenic mouse models can thus be suitable to study αSyn-variant-based pathology in vivo and test new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Martinez Hernandez
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ivan Silbern
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Insa Geffers
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Becker
- NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,German Center for Neurodegenerative Diseases, DZNE, Göttingen, Germany
| | - Christian Griesinger
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,NMR-Based Structural Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
25
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
26
|
McGregor BA, Schommer J, Guo K, Raihan MO, Ghribi O, Hur J, Porter JE. Alpha-Synuclein-induced DNA Methylation and Gene Expression in Microglia. Neuroscience 2021; 468:186-198. [PMID: 34082066 DOI: 10.1016/j.neuroscience.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Synucleinopathy disorders are characterized by aggregates of α-synuclein (α-syn), which engage microglia to elicit a neuroinflammatory response. Here, we determined the gene expression and DNA methylation changes in microglia induced by aggregate α-syn. Transgenic murine Thy-1 promoter (mThy1)-Asyn mice overexpressing human α-syn are a model of synucleinopathy. Microglia from 3 and 13-month-old mice were used to isolate nucleic acids for methylated DNA and RNA-sequencing. α-Syn-regulated changes in gene expression and genomic methylation were determined and examined for functional enrichment followed by network analysis to further elucidate possible connections within the data. Microglial DNA isolated from our 3-month cohort had 5315 differentially methylated gene (DMG) changes, while RNA levels demonstrated a change in 119 differentially expressed genes (DEGs) between mThy1-Asyn mice and wild-type littermate controls. The 3-month DEGs and DMGs were highly associated with adhesion and migration signaling, suggesting a phenotypic transition from resting to active microglia. We observed 3742 DMGs and 3766 DEGs in 13-month mThy1-Asyn mice. These genes were often related to adhesion, migration, cell cycle, cellular metabolism, and immune response. Network analysis also showed increased cell mobility and inflammatory functions at 3 months, shifting to cell cycle, immune response, and metabolism changes at 13 months. We observed significant α-syn-induced methylation and gene expression changes in microglia. Our data suggest that α-syn overexpression initiates microglial activation leading to neuroinflammation and cellular metabolic stresses, which is associated with disease progression.
Collapse
Affiliation(s)
- Brett A McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Jared Schommer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Md Obayed Raihan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| |
Collapse
|
27
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
28
|
Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules 2021; 11:biom11050624. [PMID: 33922207 PMCID: PMC8145209 DOI: 10.3390/biom11050624] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.
Collapse
|
29
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
30
|
Guhathakurta S, Kim J, Adams L, Basu S, Song MK, Adler E, Je G, Fiadeiro MB, Kim Y. Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson's disease. EMBO Mol Med 2021; 13:e12188. [PMID: 33428332 PMCID: PMC7863397 DOI: 10.15252/emmm.202012188] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/19/2023] Open
Abstract
Epigenetic deregulation of α-synuclein plays a key role in Parkinson's disease (PD). Analysis of the SNCA promoter using the ENCODE database revealed the presence of important histone post-translational modifications (PTMs) including transcription-promoting marks, H3K4me3 and H3K27ac, and repressive mark, H3K27me3. We investigated these histone marks in post-mortem brains of controls and PD patients and observed that only H3K4me3 was significantly elevated at the SNCA promoter of the substantia nigra (SN) of PD patients both in punch biopsy and in NeuN-positive neuronal nuclei samples. To understand the importance of H3K4me3 in regulation of α-synuclein, we developed CRISPR/dCas9-based locus-specific H3K4me3 demethylating system where the catalytic domain of JARID1A was recruited to the SNCA promoter. This CRISPR/dCas9 SunTag-JARID1A significantly reduced H3K4me3 at SNCA promoter and concomitantly decreased α-synuclein both in the neuronal cell line SH-SY5Y and idiopathic PD-iPSC derived dopaminergic neurons. In sum, this study indicates that α-synuclein expression in PD is controlled by SNCA's histone PTMs and modulation of the histone landscape of SNCA can reduce α-synuclein expression.
Collapse
Affiliation(s)
- Subhrangshu Guhathakurta
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Jinil Kim
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
- NexmosYongin‐SiSouth Korea
| | - Levi Adams
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
- Robert Wood Johnson Medical School Institute for Neurological TherapeuticsRutgers Biomedical and Health SciencesPiscatawayNJUSA
| | - Sambuddha Basu
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Min Kyung Song
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
- Robert Wood Johnson Medical School Institute for Neurological TherapeuticsRutgers Biomedical and Health SciencesPiscatawayNJUSA
| | - Evan Adler
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Goun Je
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Mariana Bernardo Fiadeiro
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
| | - Yoon‐Seong Kim
- Burnett School of Biomedical SciencesUCF College of MedicineUniversity of Central FloridaOrlandoFLUSA
- Robert Wood Johnson Medical School Institute for Neurological TherapeuticsRutgers Biomedical and Health SciencesPiscatawayNJUSA
| |
Collapse
|
31
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
32
|
Zeng H, Liu N, Liu XX, Yang YY, Zhou MW. α-Synuclein in traumatic and vascular diseases of the central nervous system. Aging (Albany NY) 2020; 12:22313-22334. [PMID: 33188159 PMCID: PMC7695413 DOI: 10.18632/aging.103675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
α-Synuclein (α-Syn) is a small, soluble, disordered protein that is widely expressed in the nervous system. Although its physiological functions are not yet fully understood, it is mainly involved in synaptic vesicle transport, neurotransmitter synthesis and release, cell membrane homeostasis, lipid synthesis, mitochondrial and lysosomal activities, and heavy metal removal. The complex and inconsistent pathological manifestations of α-Syn are attributed to its structural instability, mutational complexity, misfolding, and diverse posttranslational modifications. These effects trigger mitochondrial dysfunction, oxidative stress, and neuroinflammatory responses, resulting in neuronal death and neurodegeneration. Several recent studies have discovered the pathogenic roles of α-Syn in traumatic and vascular central nervous system diseases, such as traumatic spinal cord injury, brain injury, and stroke, and in aggravating the processes of neurodegeneration. This review aims to highlight the structural and pathophysiological changes in α-Syn and its mechanism of action in traumatic and vascular diseases of the central nervous system.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
33
|
Sun X, Zhang H, Xie L, Qian C, Ye Y, Mao H, Wang B, Zhang H, Zhang Y, He X, Zhang S. Tristetraprolin destabilizes NOX2 mRNA and protects dopaminergic neurons from oxidative damage in Parkinson's disease. FASEB J 2020; 34:15047-15061. [PMID: 32954540 DOI: 10.1096/fj.201902967r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
Tristetraprolin (TTP), an RNA-binding protein encoded by the ZFP36 gene, is vital for neural differentiation; however, its involvement in neurodegenerative diseases such as Parkinson's disease (PD) remains unclear. To explore the role of TTP in PD, an in vitro 1-methyl-4-phenylpyridinium (MPP+ ) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of PD were used. Transfection of small interfering (si)-TTP RNA upregulated pro-oxidative NOX2 expression and ROS formation, downregulated anti-oxidative GSH and SOD activity;si-TTP upregulated pro-apoptotic cleaved-caspase-3 expression, and downregulated antiapoptotic Bcl-2 expression; while overexpression (OE)-TTP lentivirus caused opposite effects. Through database prediction, luciferase experiment, RNA immunoprecipitation (RIP), and mRNA stability analysis, we evaluated the potential binding sites of TTP to 3'-untranslated regions (3'-UTR) of NOX2 mRNA. TTP affected the NOX2 luciferase activity by binding to two sites in the NOX2 3'-UTR. RIP-qPCR confirmed TTP binding to both sites, with a higher affinity for site-2. In addition, TTP reduced the NOX2 mRNA stability. si-NOX2 and antioxidant N-acetyl cysteine (NAC) reversed si-TTP-induced cell apoptosis. In MPTP-treated mice, TTP expression increased and was co-located with dopaminergic neurons. TTP also inhibited NOX2 and decreased the oxidative stress in vivo. In conclusion, TTP protects against dopaminergic oxidative injury by promoting NOX2 mRNA degradation in the MPP+ /MPTP model of PD, suggesting that TTP could be a potential therapeutic target for regulating the oxidative stress in PD.
Collapse
Affiliation(s)
- Xiang Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'Torah Community Day School, Irvine, CA, USA
| | - Xiaozheng He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
The class II histone deacetylases as therapeutic targets for Parkinson's disease. Neuronal Signal 2020; 4:NS20200001. [PMID: 32714601 PMCID: PMC7373248 DOI: 10.1042/ns20200001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by specific motor impairments. The neuropathological hallmarks of PD include progressive degeneration of midbrain dopaminergic neurons, and loss of their axonal projections to the striatum. Additionally, there is progressive accumulation and spread of intracellular aggregates of α-synuclein. Although dopamine-replacement pharmacotherapy can treat PD symptoms in the short-term, there is a critical need for the development of disease-modifying therapies based on an understanding of the underlying disease mechanisms. One such mechanism is histone acetylation, which is a common epigenetic modification that alters gene transcription. A number of studies have described alterations in histone acetylation in the brains of PD patients. Moreover, α-synuclein accumulation has been linked to alterations in histone acetylation and pharmacological strategies aimed at modulating histone acetylation are under investigation as novel approaches to disease modification in PD. Currently, such strategies are focused predominantly on pan-inhibition of histone deacetylase (HDAC) enzymes. Inhibition of specific individual HDAC enzymes is a more targeted strategy that may allow for future clinical translation. However, the most appropriate class of HDACs that should be targeted for neuroprotection in PD is still unclear. Recent work has shed new light on the role of class-II HDACs in dopaminergic degeneration. For this reason, here we describe the regulation of histone acetylation, outline the evidence for alterations in histone acetylation in the PD brain, and focus on the roles of class II HDACs and the potential of class-II HDAC inhibition as a therapeutic approach for neuroprotection in PD.
Collapse
|
35
|
Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY) 2020; 11:1934-1964. [PMID: 30958793 PMCID: PMC6503885 DOI: 10.18632/aging.101884] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Memory deficiency is a common non-motor symptom of Parkinson’s disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
36
|
Chouliaras L, Kumar GS, Thomas AJ, Lunnon K, Chinnery PF, O'Brien JT. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog Neurobiol 2020; 192:101822. [PMID: 32407744 DOI: 10.1016/j.pneurobio.2020.101822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
Lewy body dementia encompasses both dementia with Lewy bodies and Parkinson's disease dementia. Although both are common causes of dementia, they remain relatively understudied. The review summarises the clinico-pathologic characteristics of Lewy Body dementia and discusses the genetic and environmental evidence contributing to the risk of developing the condition. Considering that the pathophysiology of Lewy body dementia is not yet fully understood, here we focus on the role of epigenetic mechanisms as potential key mediators of gene-environment interactions in the development of the disease. We examine available important data on genomics, epigenomics, gene expression and proteomic studies in Lewy body dementia on human post-mortem brain and peripheral tissues. Genetic variation and epigenetic modifications in key genes involved in the disorder, such as apolipoprotein E (APOE), α-synuclein (SNCA) and glucocerobrosidase (GBA), suggest a central involvement of epigenetics in DLB but conclusive evidence is scarce. This is due to limitations of existing literature, such as small sample sizes, lack of replication and lack of studies interrogating cell-type specific epigenetic modifications in the brain. Future research in the field can improve the understanding of this common but complex and rapidly progressing type of dementia and potentially open early diagnostic and effective therapeutic targets.
Collapse
Affiliation(s)
| | - Gautham S Kumar
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alan J Thomas
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Katie Lunnon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati-Mowahed M, Petramfar P, Khademi F. CRISPR System: A High-throughput Toolbox for Research and Treatment of Parkinson's Disease. Cell Mol Neurobiol 2020; 40:477-493. [PMID: 31773362 DOI: 10.1007/s10571-019-00761-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the innovation of gene-editing tools such as the CRISPR/Cas9 system improves the translational gap of treatments mediated by gene therapy. The privileges of CRISPR/Cas9 such as working in living cells and organs candidate this technology for using in research and treatment of the central nervous system (CNS) disorders. Parkinson's disease (PD) is a common, debilitating, neurodegenerative disorder which occurs due to loss of dopaminergic neurons and is associated with progressive motor dysfunction. Knowledge about the pathophysiological basis of PD has altered the classification system of PD, which manifests in familial and sporadic forms. The first genetic linkage studies in PD demonstrated the involvement of Synuclein alpha (SNCA) mutations and SNCA genomic duplications in the pathogenesis of PD familial forms. Subsequent studies have also insinuated mutations in leucine repeat kinase-2 (LRRK2), Parkin, PTEN-induced putative kinase 1 (PINK1), as well as DJ-1 causing familial forms of PD. This review will attempt to discuss the structure, function, and development in genome editing mediated by CRISP/Cas9 system. Further, it describes the genes involved in the pathogenesis of PD and the pertinent alterations to them. We will pursue this line by delineating the PD linkage studies in which CRISPR system was employed. Finally, we will discuss the pros and cons of CRISPR employment vis-à-vis the process of genome editing in PD patients' iPSCs.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Rezaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Khademi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165431. [PMID: 30898538 PMCID: PMC6751032 DOI: 10.1016/j.bbadis.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Current application of human induced pluripotent stem cells (hiPSCs) technology in patient-specific models of neurodegenerative disorders recapitulate some of key phenotypes of diseases, representing disease-specific cellular modeling and providing a unique platform for therapeutics development. We review recent efforts toward advancing hiPSCs-derived neuronal cell types and highlight their potential use for the development of more complex in vitro models of neurodegenerative diseases by focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. We present evidence from previous works on the important phenotypic changes of various neuronal types in these neurological diseases. We also summarize efforts on conducting low- and high-throughput screening experiments with hiPSCs toward developing potential therapeutics for treatment of neurodegenerative diseases. Lastly, we discuss the limitations of hiPSCs culture system in studying neurodegenerative diseases and alternative strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Xinwen Zhang
- Center of Implant Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
40
|
Sharma A, Osato N, Liu H, Asthana S, Dakal TC, Ambrosini G, Bucher P, Schmitt I, Wüllner U. Common genetic variants associated with Parkinson's disease display widespread signature of epigenetic plasticity. Sci Rep 2019; 9:18464. [PMID: 31804560 PMCID: PMC6895091 DOI: 10.1038/s41598-019-54865-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson disease (PD) is characterized by a pivotal progressive loss of substantia nigra dopaminergic neurons and aggregation of α-synuclein protein encoded by the SNCA gene. Genome-wide association studies identified almost 100 sequence variants linked to PD in SNCA. However, the consequences of this genetic variability are rather unclear. Herein, our analysis on selective single nucleotide polymorphisms (SNPs) which are highly associated with the PD susceptibility revealed that several SNP sites attribute to the nucleosomes and overlay with bivalent regions poised to adopt either active or repressed chromatin states. We also identified large number of transcription factor (TF) binding sites associated with these variants. In addition, we located two docking sites in the intron-1 methylation prone region of SNCA which are required for the putative interactions with DNMT1. Taken together, our analysis reflects an additional layer of epigenomic contribution for the regulation of the SNCA gene in PD.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany.,Department of Ophthalmology, University Clinic Bonn, Bonn, Germany
| | - Naoki Osato
- Department of Bioinformatics Engineering, Osaka University, Osaka, Japan
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Shailendra Asthana
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Haryana, 121001, India
| | - Tikam Chand Dakal
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | | | - Philipp Bucher
- EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ina Schmitt
- Department of Neurology, University Clinic Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
41
|
La Rovere M, Franzago M, Stuppia L. Epigenetics and Neurological Disorders in ART. Int J Mol Sci 2019; 20:ijms20174169. [PMID: 31454921 PMCID: PMC6747212 DOI: 10.3390/ijms20174169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
About 1–4% of children are currently generated by Assisted Reproductive Technologies (ART) in developed countries. These babies show only a slightly increased risk of neonatal malformations. However, follow-up studies have suggested a higher susceptibility to multifactorial, adult onset disorders like obesity, diabetes and cardiovascular diseases in ART offspring. It has been suggested that these conditions could be the consequence of epigenetic, alterations, due to artificial manipulations of gametes and embryos potentially able to alter epigenetic stability during zygote reprogramming. In the last years, epigenetic alterations have been invoked as a possible cause of increased risk of neurological disorders, but at present the link between epigenetic modifications and long-term effects in terms of neurological diseases in ART children remains unclear, due to the short follow up limiting retrospective studies. In this review, we summarize the current knowledge about neurological disorders promoted by epigenetics alterations in ART. Based on data currently available, it is possible to conclude that little, if any, evidence of an increased risk of neurological disorders in ART conceived children is provided. Most important, the large majority of reports appears to be limited to epidemiological studies, not providing any experimental evidence about epigenetic modifications responsible for an increased risk.
Collapse
Affiliation(s)
- Marina La Rovere
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
- Aging Center Studies-Translational Medicine (CeSI-Met), "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy.
- Aging Center Studies-Translational Medicine (CeSI-Met), "G. d'Annunzio" University, 66100 Chieti-Pescara, Italy.
| |
Collapse
|
42
|
Xu DJ, Wei LY, Li HF, Zhang WQ. Serum levels of chromogranins and secretogranins correlate with the progress and severity of Parkinson's disease. Kaohsiung J Med Sci 2019; 35:146-150. [PMID: 30887724 DOI: 10.1002/kjm2.12026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Little is known about the relevance of chromogranins (Cgs) and secretogranins (Sgs) in Parkinson's disease (PD). In this study, we determined serum levels of CgA, CgB, and SgII in PD patients and assessed their association with disease severity. PD patients were recruited, identified, and classified as having early (n = 14), intermediate (n = 18), or late (n = 4) stage disease according to Hoehn-Yahr scores. The serum concentrations of CgA, CgB, and SgII in patients with well-defined PD (n = 36) and in healthy controls (n = 52) were measured by enzyme-linked immunosorbent assay. Compared with controls, serum CgA levels were significantly elevated and serum SgII levels were significantly reduced in PD patients (both P < 0.05). There was no difference in serum CgB levels between the two groups. Both serum CgA and SgII levels changed progressively over time from early to intermediate to late stage (P < 0.05). Spearman correlation analysis revealed that serum CgA and SgII levels correlated with Hoehn-Yahr and UPDRS scores (P < 0.001). These results indicate that changes in serum levels of CgA and SgII may be closely related to the severity of PD.
Collapse
Affiliation(s)
- Dong-Juan Xu
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Lian-Yan Wei
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Hong-Fei Li
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| | - Wei-Qiang Zhang
- Department of Neurology, Dongyang People's Hospital, Zhejiang, China
| |
Collapse
|
43
|
CCAAT/enhancer binding protein δ is a transcriptional repressor of α-synuclein. Cell Death Differ 2019; 27:509-524. [PMID: 31209363 DOI: 10.1038/s41418-019-0368-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription. CCAAT/enhancer binding protein (C/EBP) β and δ are b-zip transcription factors that play distinct roles in neurons and glial cells. C/EBPβ overexpression increases SNCA expression in neuroblastoma cells and putative C/EBPβ and δ binding sites are present in the SNCA genomic region suggesting that these proteins could regulate SNCA transcription. Based on these premises, the goal of this study was to determine if C/EBPβ and δ regulate the expression of SNCA. We first observed that α-synuclein CNS expression was not affected by C/EBPβ deficiency but it was markedly increased in C/EBPδ-deficient mice. This prompted us to characterize further the role of C/EBPδ in SNCA transcription. C/EBPδ absence led to the in vivo increase of α-synuclein in all brain regions analyzed, both at mRNA and protein level, and in primary neuronal cultures. In agreement with this, CEBPD overexpression in neuroblastoma cells and in primary neuronal cultures markedly reduced SNCA expression. ChIP experiments demonstrated C/EBPδ binding to the SNCA genomic region of mice and humans and luciferase experiments showed decreased expression of a reporter gene attributable to C/EBPδ binding to the SNCA promoter. Finally, decreased CEBPD expression was observed in the substantia nigra and in iPSC-derived dopaminergic neurons from Parkinson patients resulting in a significant negative correlation between SNCA and CEBPD levels. This study points to C/EBPδ as an important repressor of SNCA transcription and suggests that reduced C/EBPδ neuronal levels could be a pathogenic factor in Parkinson's disease and other synucleinopathies and C/EBPδ activity a potential pharmacological target for these neurological disorders.
Collapse
|
44
|
van Heesbeen HJ, Smidt MP. Entanglement of Genetics and Epigenetics in Parkinson's Disease. Front Neurosci 2019; 13:277. [PMID: 30983962 PMCID: PMC6449477 DOI: 10.3389/fnins.2019.00277] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson disease (PD) is a common neurodegenerative disorder that progresses with age, with an increasing number of symptoms. Some of the efforts to understand PD progression have been focusing on the regulation of epigenetic mechanisms, that generally include small molecular modifications to the DNA and histones that are essential for regulating gene activity. Here, we have pointed out difficulties to untangle genetic and epigenetic mechanisms, and reviewed several studies that have aimed for untangling. Some of those have enabled more solid claims on independent roles for epigenetic mechanisms. Hereby, evidence that specific DNA hydroxymethylation, global hyperacetylation, and histone deacetylase (HDAC) dependent regulation of SNCA, one of the hallmark genes involved in PD, have become more prominent from the current perspective, than mechanisms that directly involve DNA methylation. In the absence of current epigenetic clinical targets to counteract PD progression, we also hypothesize how several mechanisms may affect local and global epigenetics in PD neurons, including inflammation, oxidative stress, autophagy and DNA repair mechanisms which may lead to future therapeutic targets.
Collapse
Affiliation(s)
| | - Marten P. Smidt
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
A Causal Relationship in Spinal Cord Injury Rat Model Between Microglia Activation and EGFR/MAPK Detected by Overexpression of MicroRNA-325-3p. J Mol Neurosci 2019; 68:181-190. [PMID: 30911940 DOI: 10.1007/s12031-019-01297-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Microglial activation and inflammatory response played an important role in the secondary injury of spinal cord injury (SCI). Several microRNAs were associated with this procedure, but the underlying molecular mechanism was poorly understood. Sprague-Dawley (SD) rats were divided into four groups: SCI group (n = 7), agomiR-325-3p group (n = 7), and their control groups. Expression of miR-325-3p and proteins in epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway was evaluated in microglia from SCI rats and primary microglia/BV2 cells activated by lipopolysaccharide (LPS). Concentrations of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in supernatants were measured by ELISA. Low expression of miR-325-3p and activation of EGFR/MAPK was observed in microglia of SCI and LPS-induced primary microglia. Overexpression of miR-325-3p in LPS-induced BV2 cells inhibited microglial activation and release of TNF-α and IL-1β. Luciferase reporter assay confirmed that miR-325-3p negatively regulated EGFR by targeting its 3'-untranslated regions. Additionally, agomiR-325-3p inhibited the activation of microglia and EGFR/MAPK, alleviating the inflammatory response. These results indicated that miR-325-3p attenuated secondary injury after SCI through inhibition of EGFR/MAPK signaling pathway, the microglial activation, and the release of inflammatory cytokines, suggesting that miR-325-3p may be employed as a therapeutic target for SCI.
Collapse
|
46
|
Selective inhibition of mitochondrial sodium-calcium exchanger protects striatal neurons from α-synuclein plus rotenone induced toxicity. Cell Death Dis 2019; 10:80. [PMID: 30692508 PMCID: PMC6349907 DOI: 10.1038/s41419-018-1290-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Progressive accumulation of α-synuclein (α-syn) and exposure to environmental toxins are risk factors that may both concur to Parkinson’s disease (PD) pathogenesis. Electrophysiological recordings of field postsynaptic potentials (fEPSPs) and Ca2+ measures in striatal brain slices and differentiated SH-SY5Y cells showed that co-application of α-syn and the neurotoxic pesticide rotenone (Rot) induced Ca2+ dysregulation and alteration of both synaptic transmission and cell function. Interestingly, the presence of the mitochondrial NCX inhibitor CGP-37157 prevented these alterations. The specific involvement of the mitochondrial NCX was confirmed by the inability of the plasma membrane inhibitor SN-6 to counteract such phenomenon. Of note, using a siRNA approach, we found that NCX1 was the isoform specifically involved. These findings suggested that NCX1, operating on the mitochondrial membrane, may have a critical role in the maintenance of ionic Ca2+ homeostasis in PD and that its inhibition most likely exerts a protective effect in the toxicity induced by α-syn and Rot.
Collapse
|
47
|
Kantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, Huang ZY, Murphy S, Chiba-Falek O. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol Ther 2018; 26:2638-2649. [PMID: 30266652 PMCID: PMC6224806 DOI: 10.1016/j.ymthe.2018.08.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Elevated levels of SNCA have been implicated in the pathogenesis of Parkinson's disease (PD), while normal physiological levels of SNCA are needed to maintain neuronal function. We ought to develop new therapeutic strategies targeting the regulation of SNCA expression. DNA methylation at SNCA intron 1 regulates SNCA transcription, and PD brains showed differential methylation levels compared to controls. Thus, DNA methylation at SNCA intron 1 is an attractive target for fine-tuned downregulation of SNCA levels. Here we developed a system, comprising an all-in-one lentiviral vector, for targeted DNA methylation editing within intron 1. The system is based on CRISPR-deactivated Cas9 (dCas9) fused with the catalytic domain of DNA-methyltransferase 3A (DNMT3A). Applying the system to human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons from a PD patient with the SNCA triplication resulted in fine downregulation of SNCA mRNA and protein mediated by targeted DNA methylation at intron 1. Furthermore, the reduction in SNCA levels by the guide RNA (gRNA)-dCas9-DMNT3A system rescued disease-related cellular phenotype characteristics of the SNCA triplication hiPSC-derived dopaminergic neurons, e.g., mitochondrial ROS production and cellular viability. We established that DNA hypermethylation at SNCA intron 1 allows an effective and sufficient tight downregulation of SNCA expression levels, suggesting the potential of this target sequence combined with the CRISPR-dCas9 technology as a novel epigenetic-based therapeutic approach for PD.
Collapse
Affiliation(s)
- Boris Kantor
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Lidia Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey Gu
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Madison E Zamora
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ekaterina Ilich
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carole Grenier
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiqing Y Huang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice. J Neurosci 2018; 38:10535-10551. [PMID: 30373770 DOI: 10.1523/jneurosci.0702-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors are considered to be cell-surface sensors of extracellular signals, thereby having a crucial role in signal transduction and being the most fruitful targets for drug discovery. G-protein-coupled receptor 151 (GPR151) was reported to be expressed specifically in the habenular area. Here we report the expression and the epigenetic regulation of GRP151 in the spinal cord after spinal nerve ligation (SNL) and the contribution of GPR151 to neuropathic pain in male mice. SNL dramatically increased GPR151 expression in spinal neurons. GPR151 mutation or spinal inhibition by shRNA alleviated SNL-induced mechanical allodynia and heat hyperalgesia. Interestingly, the CpG island in the GPR151 gene promoter region was demethylated, the expression of DNA methyltransferase 3b (DNMT3b) was decreased, and the binding of DNMT3b with GPR151 promoter was reduced after SNL. Overexpression of DNMT3b in the spinal cord decreased GPR151 expression and attenuated SNL-induced neuropathic pain. Furthermore, Krüppel-like factor 5 (KLF5), a transcriptional factor of the KLF family, was upregulated in spinal neurons, and the binding affinity of KLF5 with GPR151 promoter was increased after SNL. Inhibition of KLF5 reduced GPR151 expression and attenuated SNL-induced pain hypersensitivity. Further mRNA microarray analysis revealed that mutation of GPR151 reduced the expression of a variety of pain-related genes in response to SNL, especially mitogen-activated protein kinase (MAPK) signaling pathway-associated genes. This study reveals that GPR151, increased by DNA demethylation and the enhanced interaction with KLF5, contributes to the maintenance of neuropathic pain via increasing MAPK pathway-related gene expression.SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are targets of various clinically approved drugs. Here we report that SNL increased GPR151 expression in the spinal cord, and mutation or inhibition of GPR151 alleviated SNL-induced neuropathic pain. In addition, SNL downregulated the expression of DNMT3b, which caused demethylation of GPR151 gene promoter, facilitated the binding of transcriptional factor KLF5 with the GPR151 promoter, and further increased GPR151 expression in spinal neurons. The increased GPR151 may contribute to the pathogenesis of neuropathic pain via activating MAPK signaling and increasing pain-related gene expression. Our study reveals an epigenetic mechanism underlying GPR151 expression and suggests that targeting GPR151 may offer a new strategy for the treatment of neuropathic pain.
Collapse
|
49
|
Sex-Specific Transcriptome Differences in Substantia Nigra Tissue: A Meta-Analysis of Parkinson's Disease Data. Genes (Basel) 2018; 9:genes9060275. [PMID: 29799491 PMCID: PMC6027313 DOI: 10.3390/genes9060275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common progressive neurodegenerative diseases. Clinical and epidemiological studies indicate that sex differences, as well as genetic components and ageing, can influence the prevalence, age at onset and symptomatology of PD. This study undertook a systematic meta-analysis of substantia nigra microarray data using the Transcriptome Mapper (TRAM) software to integrate and normalize a total of 10 suitable datasets from multiple sources. Four different analyses were performed according to default parameters, to better define the segments differentially expressed between PD patients and healthy controls, when comparing men and women data sets. The results suggest a possible regulation of specific sex-biased systems in PD susceptibility. TRAM software allowed us to highlight the different activation of some genomic regions and loci involved in molecular pathways related to neurodegeneration and neuroinflammatory mechanisms.
Collapse
|
50
|
Evangelista BA, Kim YS, Kolpashchikov DM. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem 2018; 19:10.1002/cbic.201800017. [PMID: 29700982 PMCID: PMC6422747 DOI: 10.1002/cbic.201800017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Dmitry M. Kolpashchikov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA,
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|